On the size of subsets of \mathbb{F}_{p}^{n} without p distinct elements summing to zero

Lisa Sauermann
Stanford University

September 2, 2019

Introduction

Let $p \geq 3$ be a prime.

Problem

What is the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero?

Introduction

Let $p \geq 3$ be a prime.

Problem

What is the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero?

For $p=3$, this is the famous cap-set problem asking for the maximum size of a subset of \mathbb{F}_{3}^{n} without a three-term arithmetic progression.
Indeed, for $x, y, z \in \mathbb{F}_{3}^{n}$, we have $x+y+z=0$ if and only if x, y, z form a three-term arithmetic progression.

Introduction

Let $p \geq 3$ be a prime.

Problem

What is the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero?

For $p=3$, this is the famous cap-set problem asking for the maximum size of a subset of \mathbb{F}_{3}^{n} without a three-term arithmetic progression.
Indeed, for $x, y, z \in \mathbb{F}_{3}^{n}$, we have $x+y+z=0$ if and only if x, y, z form a three-term arithmetic progression.

We will consider the case $p \geq 5$ in this talk.

Erdős-Ginzburg-Ziv constants

Let m and n be positive integers.

Problem

What is the minimum integer s such that among any s points in the integer lattice \mathbb{Z}^{n} there are m points whose centroid is also a lattice point in \mathbb{Z}^{n} ?

Erdős-Ginzburg-Ziv constants

Let m and n be positive integers.

Problem

What is the minimum integer s such that among any s points in the integer lattice \mathbb{Z}^{n} there are m points whose centroid is also a lattice point in \mathbb{Z}^{n} ?

Erdős-Ginzburg-Ziv constants

Let m and n be positive integers.

Problem

What is the minimum integer s such that among any s points in the integer lattice \mathbb{Z}^{n} there are m points whose centroid is also a lattice point in \mathbb{Z}^{n} ?

Erdős-Ginzburg-Ziv constants

Let m and n be positive integers.

Problem

What is the minimum integer s such that among any s points in the integer lattice \mathbb{Z}^{n} there are m points whose centroid is also a lattice point in \mathbb{Z}^{n} ?

Erdős-Ginzburg-Ziv constants

Let m and n be positive integers.

Problem

What is the minimum integer s such that among any s points in the integer lattice \mathbb{Z}^{n} there are m points whose centroid is also a lattice point in \mathbb{Z}^{n} ?

Equivalent problem

What is the is the minimum s such that every sequence of s (not necessarily distinct) elements of \mathbb{Z}_{m}^{n} has a zero-sum subsequence of length m ?

This number s is the Erdős-Ginzburg-Ziv constant $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ of \mathbb{Z}_{m}^{n}.

Definition

$\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ is the smallest s such that every sequence of s (not necessarily distinct) elements of \mathbb{Z}_{m}^{n} has a zero-sum subsequence of length m.

Definition

$\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ is the smallest s such that every sequence of s (not necessarily distinct) elements of \mathbb{Z}_{m}^{n} has a zero-sum subsequence of length m.

The study of Erdős-Ginzburg-Ziv constants was initiated by a result of Erdős, Ginzburg and Ziv from 1961 which essentially states that $\mathfrak{s}\left(\mathbb{Z}_{m}\right)=2 m-1$.

Definition

$\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ is the smallest s such that every sequence of s (not necessarily distinct) elements of \mathbb{Z}_{m}^{n} has a zero-sum subsequence of length m.

The study of Erdős-Ginzburg-Ziv constants was initiated by a result of Erdős, Ginzburg and Ziv from 1961 which essentially states that $\mathfrak{s}\left(\mathbb{Z}_{m}\right)=2 m-1$.

Erdős-Ginzburg-Ziv constants have been studied intensively, but there are only few known values for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$.

Definition

$\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ is the smallest s such that every sequence of s (not necessarily distinct) elements of \mathbb{Z}_{m}^{n} has a zero-sum subsequence of length m.

The study of Erdős-Ginzburg-Ziv constants was initiated by a result of Erdős, Ginzburg and Ziv from 1961 which essentially states that $\mathfrak{s}\left(\mathbb{Z}_{m}\right)=2 m-1$.

Erdős-Ginzburg-Ziv constants have been studied intensively, but there are only few known values for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$.

Alon and Dubiner proved that $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right) \leq(c n \log n)^{n} m$ for some constant c. Thus, when n is fixed, $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ grows linearly with m.

Definition

$\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ is the smallest s such that every sequence of s (not necessarily distinct) elements of \mathbb{Z}_{m}^{n} has a zero-sum subsequence of length m.

The study of Erdős-Ginzburg-Ziv constants was initiated by a result of Erdős, Ginzburg and Ziv from 1961 which essentially states that $\mathfrak{s}\left(\mathbb{Z}_{m}\right)=2 m-1$.

Erdős-Ginzburg-Ziv constants have been studied intensively, but there are only few known values for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$.

Alon and Dubiner proved that $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right) \leq(c n \log n)^{n} m$ for some constant c. Thus, when n is fixed, $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ grows linearly with m.

They posed the problem of finding good upper bounds for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ for fixed m and large n.

Alon and Dubiner posed the problem of finding good upper bounds for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ for fixed m and large n.

Alon and Dubiner posed the problem of finding good upper bounds for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ for fixed m and large n.

The special case of finding upper bounds for $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ for a fixed prime $p \geq 3$ and large n has received particular attention.

In fact, one can deduce bounds for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ from bounds for $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ for the prime factors p of m.

Alon and Dubiner posed the problem of finding good upper bounds for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ for fixed m and large n.
The special case of finding upper bounds for $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ for a fixed prime $p \geq 3$ and large n has received particular attention.

In fact, one can deduce bounds for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ from bounds for $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ for the prime factors p of m.

For a fixed prime $p \geq 3$ and large n, bounding $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ is essentially equivalent to bounding the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero.

Alon and Dubiner posed the problem of finding good upper bounds for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ for fixed m and large n.
The special case of finding upper bounds for $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ for a fixed prime $p \geq 3$ and large n has received particular attention.

In fact, one can deduce bounds for $\mathfrak{s}\left(\mathbb{Z}_{m}^{n}\right)$ from bounds for $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ for the prime factors p of m.

For a fixed prime $p \geq 3$ and large n, bounding $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ is essentially equivalent to bounding the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero.

Problem

What is the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero?

Background and Main Result

Let $p \geq 3$ be prime.

Problem

What is the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero?

Background and Main Result

Let $p \geq 3$ be prime.

Problem

What is the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero?

In other words, we are asking for the maximum size of a subset $A \subseteq \mathbb{F}_{p}^{n}$ with no solution for $x_{1}+\cdots+x_{p}=0$ with $x_{1}, \ldots, x_{p} \in A$ being distinct.

Background and Main Result

Let $p \geq 3$ be prime.

Problem

What is the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero?

In other words, we are asking for the maximum size of a subset $A \subseteq \mathbb{F}_{p}^{n}$ with no solution for $x_{1}+\cdots+x_{p}=0$ with $x_{1}, \ldots, x_{p} \in A$ being distinct.

Background and Main Result

Let $p \geq 3$ be prime.

Problem

What is the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero?

In other words, we are asking for the maximum size of a subset $A \subseteq \mathbb{F}_{p}^{n}$ with no solution for $x_{1}+\cdots+x_{p}=0$ with $x_{1}, \ldots, x_{p} \in A$ being distinct.

Similar-looking problem

What is the maximum size of a subset of $A \subseteq \mathbb{F}_{p}^{n}$ with no solution for $x_{1}+\cdots+x_{p}=0$ with $x_{1}, \ldots, x_{p} \in A$ being not all equal.

Background and Main Result

Let $p \geq 3$ be prime.

Problem

What is the maximum size of a subset of \mathbb{F}_{p}^{n} without p distinct elements summing to zero?

In other words, we are asking for the maximum size of a subset $A \subseteq \mathbb{F}_{p}^{n}$ with no solution for $x_{1}+\cdots+x_{p}=0$ with $x_{1}, \ldots, x_{p} \in A$ being distinct.

Similar-looking problem

What is the maximum size of a subset of $A \subseteq \mathbb{F}_{p}^{n}$ with no solution for $x_{1}+\cdots+x_{p}=0$ with $x_{1}, \ldots, x_{p} \in A$ being not all equal.

Here, we have $|A|<4^{n}$. This is an easy consequence of Tao's slice rank formulation of the Croot-Lev-Pach polynomial method. However, this argument fails for the top problem.

Problem

What is the maximum size of a subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero?

Problem

What is the maximum size of a subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero?

Naslund introduced a variant of Tao's slice rank and used it to show $|A| \leq\left(2^{p}-p-2\right) \cdot \Gamma_{p}^{n}$.
Here, $\Gamma_{p}<p$ is the constant in the work of Ellenberg and Gijswijt on progression-free subsets of \mathbb{F}_{p}^{n}. It satisfies $0.8414 p \leq \Gamma_{p} \leq 0.9184 p$.

Problem

What is the maximum size of a subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero?

Naslund introduced a variant of Tao's slice rank and used it to show $|A| \leq\left(2^{p}-p-2\right) \cdot \Gamma_{p}^{n}$.
Here, $\Gamma_{p}<p$ is the constant in the work of Ellenberg and Gijswijt on progression-free subsets of \mathbb{F}_{p}^{n}. It satisfies $0.8414 p \leq \Gamma_{p} \leq 0.9184 p$.

Theorem (Ellenberg, Gijswijt, 2017)

Any subset of \mathbb{F}_{p}^{n} without a three-term arithmetic progression has size at most Γ_{p}^{n}.

Ellenberg and Gijswijt's proof uses the Croot-Lev-Pach polynomial method.

Problem

What is the maximum size of a subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero?

Naslund introduced a variant of Tao's slice rank and used it to show $|A| \leq\left(2^{p}-p-2\right) \cdot \Gamma_{p}^{n}$.
Here, $\Gamma_{p}<p$ is the constant in the work of Ellenberg and Gijswijt on progression-free subsets of \mathbb{F}_{p}^{n}. It satisfies $0.8414 p \leq \Gamma_{p} \leq 0.9184 p$.

Theorem (Ellenberg, Gijswijt, 2017)

Any subset of \mathbb{F}_{p}^{n} without a three-term arithmetic progression has size at most Γ_{p}^{n}.

Ellenberg and Gijswijt's proof uses the Croot-Lev-Pach polynomial method. In joint work with Jacob Fox, we combined the result of Ellenberg and Gijswijt with a probabilistic subspace sampling argument to prove the bound $|A| \leq 3 \cdot \Gamma_{p}^{n}$ for the problem above.

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

Here,

$$
\gamma_{p}=\min _{0<t<1} \frac{1+t+\cdots+t^{p-1}}{t^{(p-1) / p}}<4,
$$

and C_{p} is a constant just depending on the prime p. One can take $C_{p}=2 p^{2} \cdot P(p)$, where $P(p)$ denotes the number of partitions of p. Then C_{p} is exponential in \sqrt{p}.

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

Here,

$$
\gamma_{p}=\min _{0<t<1} \frac{1+t+\cdots+t^{p-1}}{t^{(p-1) / p}}<4,
$$

and C_{p} is a constant just depending on the prime p. One can take $C_{p}=2 p^{2} \cdot P(p)$, where $P(p)$ denotes the number of partitions of p. Then C_{p} is exponential in \sqrt{p}.
For fixed $p \geq 5$ and large n, this significantly improves the previous bound $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) \leq 3 \cdot \Gamma_{p}^{n} . \quad\left(\Gamma_{p}\right.$ is between $0.8414 p$ and $\left.0.9184 p\right)$

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

Here,

$$
\gamma_{p}=\min _{0<t<1} \frac{1+t+\cdots+t^{p-1}}{t^{(p-1) / p}}<4,
$$

and C_{p} is a constant just depending on the prime p. One can take $C_{p}=2 p^{2} \cdot P(p)$, where $P(p)$ denotes the number of partitions of p. Then C_{p} is exponential in \sqrt{p}.
For fixed $p \geq 5$ and large n, this significantly improves the previous bound $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) \leq 3 \cdot \Gamma_{p}^{n} . \quad\left(\Gamma_{p}\right.$ is between $0.8414 p$ and $\left.0.9184 p\right)$
For large n and p, this bound is of the form $p^{(1 / 2-o(1)) n}$, whereas all previous bounds were of the form $p^{(1-o(1)) n}$.

Proof Overview

Our proof uses the multi-colored sum-free Theorem, which is a consequence of Tao's slice rank formulation of the Croot-Lev-Pach polynomial method.

Multi-colored sum-free Theorem

Let p be a prime, and let $\left(x_{1, i}, x_{2, i}, \ldots, x_{p, i}\right)_{i=1}^{m}$ be a collection of p-tuples in $\mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ such that

$$
x_{1, i_{1}}+x_{2, i_{2}}+\cdots+x_{p, i_{p}}=0 \quad \Leftrightarrow \quad i_{1}=i_{2}=\cdots=i_{p} .
$$

Then $m \leq \gamma_{p}^{n}$.

Proof Overview

Our proof uses the multi-colored sum-free Theorem, which is a consequence of Tao's slice rank formulation of the Croot-Lev-Pach polynomial method.

Multi-colored sum-free Theorem

Let p be a prime, and let $\left(x_{1, i}, x_{2, i}, \ldots, x_{p, i}\right)_{i=1}^{m}$ be a collection of p-tuples in $\mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ such that

$$
x_{1, i_{1}}+x_{2, i_{2}}+\cdots+x_{p, i_{p}}=0 \quad \Leftrightarrow \quad i_{1}=i_{2}=\cdots=i_{p} .
$$

Then $m \leq \gamma_{p}^{n}$.
The constant γ_{p} is best-possible here (by joint work with László Miklós Lovász).

Proof Overview

Our proof uses the multi-colored sum-free Theorem, which is a consequence of Tao's slice rank formulation of the Croot-Lev-Pach polynomial method.

Multi-colored sum-free Theorem

Let p be a prime, and let $\left(x_{1, i}, x_{2, i}, \ldots, x_{p, i}\right)_{i=1}^{m}$ be a collection of p-tuples in $\mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ such that

$$
x_{1, i_{1}}+x_{2, i_{2}}+\cdots+x_{p, i_{p}}=0 \quad \Leftrightarrow \quad i_{1}=i_{2}=\cdots=i_{p} .
$$

Then $m \leq \gamma_{p}^{n}$.
The constant γ_{p} is best-possible here (by joint work with László Miklós Lovász).

However, the multi-colored sum-free Theorem cannot be directly applied in our situation.

Proof Overview

Our proof uses the multi-colored sum-free Theorem, which is a consequence of Tao's slice rank formulation of the Croot-Lev-Pach polynomial method.

Multi-colored sum-free Theorem

Let p be a prime, and let $\left(x_{1, i}, x_{2, i}, \ldots, x_{p, i}\right)_{i=1}^{m}$ be a collection of p-tuples in $\mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ such that

$$
x_{1, i_{1}}+x_{2, i_{2}}+\cdots+x_{p, i_{p}}=0 \quad \Leftrightarrow \quad i_{1}=i_{2}=\cdots=i_{p} .
$$

Then $m \leq \gamma_{p}^{n}$.
The constant γ_{p} is best-possible here (by joint work with László Miklós Lovász).

However, the multi-colored sum-free Theorem cannot be directly applied in our situation.

We use new combinatorial ideas in order to be able to apply this theorem.

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

Let us say a p-tuple $\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ is a cycle if $x_{1}+\cdots+x_{p}=0$.

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

Let us say a p-tuple $\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ is a cycle if $x_{1}+\cdots+x_{p}=0$.

Call two cycles $\left(x_{1}, \ldots, x_{p}\right),\left(x_{1}^{\prime}, \ldots, x_{p}^{\prime}\right) \in \mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ disjoint if no element of \mathbb{F}_{p}^{n} appears in both of them.

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

Let us say a p-tuple $\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ is a cycle if $x_{1}+\cdots+x_{p}=0$.
Call two cycles $\left(x_{1}, \ldots, x_{p}\right),\left(x_{1}^{\prime}, \ldots, x_{p}^{\prime}\right) \in \mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ disjoint if no element of \mathbb{F}_{p}^{n} appears in both of them.
Let $A \subseteq \mathbb{F}_{p}^{n}$ be as above. Then each cycle $\left(x_{1}, \ldots, x_{p}\right) \in A \times \cdots \times A$ contains some element of \mathbb{F}_{p}^{n} at least twice.

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

Let us say a p-tuple $\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ is a cycle if $x_{1}+\cdots+x_{p}=0$.
Call two cycles $\left(x_{1}, \ldots, x_{p}\right),\left(x_{1}^{\prime}, \ldots, x_{p}^{\prime}\right) \in \mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ disjoint if no element of \mathbb{F}_{p}^{n} appears in both of them.
Let $A \subseteq \mathbb{F}_{p}^{n}$ be as above. Then each cycle $\left(x_{1}, \ldots, x_{p}\right) \in A \times \cdots \times A$ contains some element of \mathbb{F}_{p}^{n} at least twice.
For a given cycle in $A \times \cdots \times A$, we obtain a pattern of how many different elements of \mathbb{F}_{p}^{n} occur in this cycle and with which multiplicities the different elements occur.

Each cycle $\left(x_{1}, \ldots, x_{p}\right) \in A \times \cdots \times A$ contains some element of \mathbb{F}_{p}^{n} at least twice.

We categorize the cycles $\left(x_{1}, \ldots, x_{p}\right) \in A \times \cdots \times A$ by their multiplicity pattern.

Each cycle $\left(x_{1}, \ldots, x_{p}\right) \in A \times \cdots \times A$ contains some element of \mathbb{F}_{p}^{n} at least twice.

We categorize the cycles $\left(x_{1}, \ldots, x_{p}\right) \in A \times \cdots \times A$ by their multiplicity pattern.

We go through all the possible multiplicity patterns (in a suitable order).
For each multiplicity pattern we can either find a large collection of disjoint cycles, or we can delete a small number of elements of A to destroy all cycles with this multiplicity pattern.

Each cycle $\left(x_{1}, \ldots, x_{p}\right) \in A \times \cdots \times A$ contains some element of \mathbb{F}_{p}^{n} at least twice.

We categorize the cycles $\left(x_{1}, \ldots, x_{p}\right) \in A \times \cdots \times A$ by their multiplicity pattern.

We go through all the possible multiplicity patterns (in a suitable order).
For each multiplicity pattern we can either find a large collection of disjoint cycles, or we can delete a small number of elements of A to destroy all cycles with this multiplicity pattern.

This way, we construct subsets $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ such that:

- Each cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.
- There is a collection of at least $|A| /(p \cdot P(p))$ disjoint cycles in $Y_{1} \times \cdots \times Y_{p}$.

We constructed subsets $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ such that:

- Each cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.
- There is a collection \mathcal{M} of at least $|A| /(p \cdot P(p))$ disjoint cycles in $Y_{1} \times \cdots \times Y_{p}$.

We constructed subsets $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ such that:

- Each cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.
- There is a collection \mathcal{M} of at least $|A| /(p \cdot P(p))$ disjoint cycles in $Y_{1} \times \cdots \times Y_{p}$.

Now, the following proposition finishes the proof of the theorem.

Proposition

Suppose that $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ are subsets such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.
Furthermore, suppose that \mathcal{M} is a collection of disjoint cycles in $Y_{1} \times \cdots \times Y_{p}$. Then $|\mathcal{M}| \leq 2 p \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}$.

We constructed subsets $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ such that:

- Each cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.
- There is a collection \mathcal{M} of at least $|A| /(p \cdot P(p))$ disjoint cycles in $Y_{1} \times \cdots \times Y_{p}$.

Now, the following proposition finishes the proof of the theorem.

Proposition

Suppose that $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ are subsets such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.
Furthermore, suppose that \mathcal{M} is a collection of disjoint cycles in $Y_{1} \times \cdots \times Y_{p}$. Then $|\mathcal{M}| \leq 2 p \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}$.

Indeed, the proposition implies

$$
|A| /(p \cdot P(p)) \leq|\mathcal{M}| \leq 2 p \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n},
$$

and therefore $|A| \leq 2 p^{2} \cdot P(p) \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}=C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}$.

Let $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ be such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.

Let $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ be such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.

Key observation

Let $3 \leq j \leq p$. Consider cycles $\left(x_{1}, \ldots, x_{p}\right),\left(x_{1}^{\prime}, \ldots, x_{p}^{\prime}\right) \in Y_{1} \times \cdots \times Y_{p}$. If $\left(x_{1}, x_{j}\right) \neq\left(x_{1}^{\prime}, x_{j}^{\prime}\right)$, then $x_{1}+x_{j} \neq x_{1}^{\prime}+x_{j}^{\prime}$.

Let $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ be such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.

Key observation

Let $3 \leq j \leq p$. Consider cycles $\left(x_{1}, \ldots, x_{p}\right),\left(x_{1}^{\prime}, \ldots, x_{p}^{\prime}\right) \in Y_{1} \times \cdots \times Y_{p}$. If $\left(x_{1}, x_{j}\right) \neq\left(x_{1}^{\prime}, x_{j}^{\prime}\right)$, then $x_{1}+x_{j} \neq x_{1}^{\prime}+x_{j}^{\prime}$.

Proof: Assume that $j=3$. Suppose that $\left(x_{1}, x_{3}\right) \neq\left(x_{1}^{\prime}, x_{3}^{\prime}\right)$, but $x_{1}+x_{3}=x_{1}^{\prime}+x_{3}^{\prime}$.

Let $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ be such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.

Key observation

Let $3 \leq j \leq p$. Consider cycles $\left(x_{1}, \ldots, x_{p}\right),\left(x_{1}^{\prime}, \ldots, x_{p}^{\prime}\right) \in Y_{1} \times \cdots \times Y_{p}$. If $\left(x_{1}, x_{j}\right) \neq\left(x_{1}^{\prime}, x_{j}^{\prime}\right)$, then $x_{1}+x_{j} \neq x_{1}^{\prime}+x_{j}^{\prime}$.

Proof: Assume that $j=3$. Suppose that $\left(x_{1}, x_{3}\right) \neq\left(x_{1}^{\prime}, x_{3}^{\prime}\right)$, but $x_{1}+x_{3}=x_{1}^{\prime}+x_{3}^{\prime}$.

Then $x_{1}^{\prime} \neq x_{1}$ and $x_{1}=x_{2}$, so $x_{1}^{\prime} \neq x_{2}$.

Let $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ be such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.

Key observation

Let $3 \leq j \leq p$. Consider cycles $\left(x_{1}, \ldots, x_{p}\right),\left(x_{1}^{\prime}, \ldots, x_{p}^{\prime}\right) \in Y_{1} \times \cdots \times Y_{p}$. If $\left(x_{1}, x_{j}\right) \neq\left(x_{1}^{\prime}, x_{j}^{\prime}\right)$, then $x_{1}+x_{j} \neq x_{1}^{\prime}+x_{j}^{\prime}$.

Proof: Assume that $j=3$. Suppose that $\left(x_{1}, x_{3}\right) \neq\left(x_{1}^{\prime}, x_{3}^{\prime}\right)$, but $x_{1}+x_{3}=x_{1}^{\prime}+x_{3}^{\prime}$.

Then $x_{1}^{\prime} \neq x_{1}$ and $x_{1}=x_{2}$, so $x_{1}^{\prime} \neq x_{2}$.
Hence the cycle $\left(x_{1}^{\prime}, x_{2}, x_{3}^{\prime}, x_{4} \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ contradicts the assumptions on Y_{1}, \ldots, Y_{p}.

Let $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ be such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.

Key observation

Let $3 \leq j \leq p$. Consider cycles $\left(x_{1}, \ldots, x_{p}\right),\left(x_{1}^{\prime}, \ldots, x_{p}^{\prime}\right) \in Y_{1} \times \cdots \times Y_{p}$. If $\left(x_{1}, x_{j}\right) \neq\left(x_{1}^{\prime}, x_{j}^{\prime}\right)$, then $x_{1}+x_{j} \neq x_{1}^{\prime}+x_{j}^{\prime}$.

Proof: Assume that $j=3$. Suppose that $\left(x_{1}, x_{3}\right) \neq\left(x_{1}^{\prime}, x_{3}^{\prime}\right)$, but $x_{1}+x_{3}=x_{1}^{\prime}+x_{3}^{\prime}$.
Then $x_{1}^{\prime} \neq x_{1}$ and $x_{1}=x_{2}$, so $x_{1}^{\prime} \neq x_{2}$.
Hence the cycle $\left(x_{1}^{\prime}, x_{2}, x_{3}^{\prime}, x_{4} \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ contradicts the assumptions on Y_{1}, \ldots, Y_{p}.
So for every $j=3, \ldots, p$, there are at most p^{n} different pairs in $Y_{1} \times Y_{j}$ occurring as $\left(x_{1}, x_{j}\right)$ for some cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$.

Proposition

Suppose that $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ are subsets such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.
Furthermore, suppose that \mathcal{M} is a collection of disjoint cycles in $Y_{1} \times \cdots \times Y_{p}$. Then $|\mathcal{M}| \leq 2 p \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}$.

Proposition

Suppose that $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ are subsets such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.
Furthermore, suppose that \mathcal{M} is a collection of disjoint cycles in $Y_{1} \times \cdots \times Y_{p}$. Then $|\mathcal{M}| \leq 2 p \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}$.

For every $j=3, \ldots, p$, there are at most p^{n} different pairs in $Y_{1} \times Y_{j}$ occurring as $\left(x_{1}, x_{j}\right)$ for some cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$.

Proposition

Suppose that $Y_{1}, \ldots, Y_{p} \subseteq \mathbb{F}_{p}^{n}$ are subsets such that every cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$ satisfies $x_{1}=x_{2}$.
Furthermore, suppose that \mathcal{M} is a collection of disjoint cycles in $Y_{1} \times \cdots \times Y_{p}$. Then $|\mathcal{M}| \leq 2 p \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}$.

For every $j=3, \ldots, p$, there are at most p^{n} different pairs in $Y_{1} \times Y_{j}$ occurring as $\left(x_{1}, x_{j}\right)$ for some cycle $\left(x_{1}, \ldots, x_{p}\right) \in Y_{1} \times \cdots \times Y_{p}$.
By a greedy procedure we can now choose a sufficiently large subcollection of \mathcal{M} satisfying the assumptions in the multi-colored sum-free theorem.

Multi-colored sum-free Theorem

Let p prime, $k \geq 3$ and let $\left(x_{1, i}, x_{2, i}, \ldots, x_{p, i}\right)_{i=1}^{m}$ be a collection of p-tuples in $\mathbb{F}_{p}^{n} \times \cdots \times \mathbb{F}_{p}^{n}$ such that

$$
x_{1, i_{1}}+x_{2, i_{2}}+\cdots+x_{p, i_{k}}=0 \quad \Leftrightarrow \quad i_{1}=i_{2}=\cdots=i_{p}
$$

Then $m \leq\left(\gamma_{p}\right)^{n}$.

Concluding remarks

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero, satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

Concluding remarks

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero, satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

The best known lower bounds are due to Edel. They are of the form $\Omega\left(c^{n}\right)$ for some absolute constant $c \approx 2.1398$.

Concluding remarks

Theorem (S., 2019+)

Let $p \geq 5$ be a fixed prime. Then any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero, satisfies

$$
|A| \leq C_{p} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p} \cdot(2 \sqrt{p})^{n} .
$$

The best known lower bounds are due to Edel. They are of the form $\Omega\left(c^{n}\right)$ for some absolute constant $c \approx 2.1398$.

Thus, there is still a big gap between the upper and lower bound. In particular, the following problem is open.

Open problem

Is there an absolute constant C such that any subset $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero has size at most C^{n} ?

The proof of our main result also gives a multi-colored generalization:

Theorem

Let $p \geq 5$ be a fixed prime. Consider a collection of p-tuples $\left(x_{1, i}, x_{2, i}, \ldots, x_{p, i}\right)_{i=1}^{L}$ of elements of \mathbb{F}_{p}^{n} such that for each $j=1, \ldots, p$ all the elements $x_{j, i}$ for $i \in\{1, \ldots, L\}$ are distinct. Assume that for $i=1, \ldots, L$, we have

$$
x_{1, i}+x_{2, i}+\cdots+x_{p, i}=0,
$$

and that there are no distinct indices $i_{1}, \ldots, i_{p} \in\{1, \ldots, L\}$ with

$$
x_{1, i_{1}}+x_{2, i_{2}}+\cdots+x_{p, i_{p}}=0
$$

Then $L \leq C_{p}^{\prime} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p}^{\prime} \cdot(2 \sqrt{p})^{n}$.

The proof of our main result also gives a multi-colored generalization:

Theorem

Let $p \geq 5$ be a fixed prime. Consider a collection of p-tuples $\left(x_{1, i}, x_{2, i}, \ldots, x_{p, i}\right)_{i=1}^{L}$ of elements of \mathbb{F}_{p}^{n} such that for each $j=1, \ldots, p$ all the elements $x_{j, i}$ for $i \in\{1, \ldots, L\}$ are distinct. Assume that for $i=1, \ldots, L$, we have

$$
x_{1, i}+x_{2, i}+\cdots+x_{p, i}=0,
$$

and that there are no distinct indices $i_{1}, \ldots, i_{p} \in\{1, \ldots, L\}$ with

$$
x_{1, i_{1}}+x_{2, i_{2}}+\cdots+x_{p, i_{p}}=0 .
$$

Then $L \leq C_{p}^{\prime} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p}^{\prime} \cdot(2 \sqrt{p})^{n}$.
This implies our bound on the size of subsets $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero by considering the collection of p-tuples (x, \ldots, x) for all $x \in A$.

The proof of our main result also gives a multi-colored generalization:

Theorem

Let $p \geq 5$ be a fixed prime. Consider a collection of p-tuples $\left(x_{1, i}, x_{2, i}, \ldots, x_{p, i}\right)_{i=1}^{L}$ of elements of \mathbb{F}_{p}^{n} such that for each $j=1, \ldots, p$ all the elements $x_{j, i}$ for $i \in\{1, \ldots, L\}$ are distinct. Assume that for $i=1, \ldots, L$, we have

$$
x_{1, i}+x_{2, i}+\cdots+x_{p, i}=0,
$$

and that there are no distinct indices $i_{1}, \ldots, i_{p} \in\{1, \ldots, L\}$ with

$$
x_{1, i_{1}}+x_{2, i_{2}}+\cdots+x_{p, i_{p}}=0 .
$$

Then $L \leq C_{p}^{\prime} \cdot\left(\sqrt{\gamma_{p} \cdot p}\right)^{n}<C_{p}^{\prime} \cdot(2 \sqrt{p})^{n}$.
This implies our bound on the size of subsets $A \subseteq \mathbb{F}_{p}^{n}$ without p distinct elements summing to zero by considering the collection of p-tuples (x, \ldots, x) for all $x \in A$.

Interestingly, in this multi-colored version, the bound is close to optimal. For all even n, there are examples with $L=\sqrt{p}^{n}$.

Thank you very much for your attention!

