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Introduction

Introduction

Let p ≥ 3 be a prime.

Problem
What is the maximum size of a subset of Fn

p without p distinct elements
summing to zero?

For p = 3, this is the famous cap-set problem asking for the maximum size
of a subset of Fn

3 without a three-term arithmetic progression.

Indeed, for x , y , z ∈ Fn
3, we have x + y + z = 0 if and only if x , y , z form a

three-term arithmetic progression.

We will consider the case p ≥ 5 in this talk.
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Erdős-Ginzburg-Ziv constants

Erdős-Ginzburg-Ziv constants

Let m and n be positive integers.

Problem
What is the minimum integer s such that among any s points in the integer
lattice Zn there are m points whose centroid is also a lattice point in Zn?

Equivalent problem
What is the is the minimum s such that every sequence of s (not necessarily
distinct) elements of Zn

m has a zero-sum subsequence of length m?

This number s is the Erdős-Ginzburg-Ziv constant s(Zn
m) of Zn

m.
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Erdős-Ginzburg-Ziv constants

Definition
s(Zn

m) is the smallest s such that every sequence of s (not necessarily
distinct) elements of Zn

m has a zero-sum subsequence of length m.

The study of Erdős-Ginzburg-Ziv constants was initiated by a result of
Erdős, Ginzburg and Ziv from 1961 which essentially states that
s(Zm) = 2m − 1.

Erdős-Ginzburg-Ziv constants have been studied intensively, but there are
only few known values for s(Zn

m).

Alon and Dubiner proved that s(Zn
m) ≤ (cn log n)nm for some constant c .

Thus, when n is fixed, s(Zn
m) grows linearly with m.

They posed the problem of finding good upper bounds for s(Zn
m) for fixed

m and large n.
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Erdős-Ginzburg-Ziv constants

Alon and Dubiner posed the problem of finding good upper bounds for
s(Zn

m) for fixed m and large n.

The special case of finding upper bounds for s(Fn
p) for a fixed prime p ≥ 3

and large n has received particular attention.

In fact, one can deduce bounds for s(Zn
m) from bounds for s(Fn

p) for the
prime factors p of m.

For a fixed prime p ≥ 3 and large n, bounding s(Fn
p) is essentially

equivalent to bounding the maximum size of a subset of Fn
p without p

distinct elements summing to zero.

Problem
What is the maximum size of a subset of Fn

p without p distinct elements
summing to zero?
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Background and Main Result

Background and Main Result

Let p ≥ 3 be prime.

Problem
What is the maximum size of a subset of Fn

p without p distinct elements
summing to zero?

In other words, we are asking for the maximum size of a subset A ⊆ Fn
p

with no solution for x1 + · · ·+ xp = 0 with x1, . . . , xp ∈ A being .

Similar-looking problem
What is the maximum size of a subset of A ⊆ Fn

p with no solution for
x1 + · · ·+ xp = 0 with x1, . . . , xp ∈ A being not all equal.

Here, we have |A| < 4n. This is an easy consequence of Tao’s slice rank
formulation of the Croot-Lev-Pach polynomial method.
However, this argument fails for the top problem.
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Background and Main Result

Problem
What is the maximum size of a subset A ⊆ Fn

p without p distinct elements
summing to zero?

Naslund introduced a variant of Tao’s slice rank and used it to show
|A| ≤ (2p − p − 2) · Γn

p.

Here, Γp < p is the constant in the work of Ellenberg and Gijswijt on
progression-free subsets of Fn

p. It satisfies 0.8414p ≤ Γp ≤ 0.9184p.

Theorem (Ellenberg, Gijswijt, 2017)

Any subset of Fn
p without a three-term arithmetic progression has size at

most Γn
p.

Ellenberg and Gijswijt’s proof uses the Croot-Lev-Pach polynomial method.

In joint work with Jacob Fox, we combined the result of Ellenberg and
Gijswijt with a probabilistic subspace sampling argument to prove the
bound |A| ≤ 3 · Γn

p for the problem above.
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Background and Main Result

Theorem (S., 2019+)

Let p ≥ 5 be a fixed prime. Then any subset A ⊆ Fn
p without p distinct

elements summing to zero satisfies

|A| ≤ Cp ·
(√
γp · p

)n
< Cp · (2

√
p)n .

Here,

γp = min
0<t<1

1 + t + · · ·+ tp−1

t(p−1)/p < 4,

and Cp is a constant just depending on the prime p. One can take
Cp = 2p2 · P(p), where P(p) denotes the number of partitions of p. Then
Cp is exponential in

√
p.

For fixed p ≥ 5 and large n, this significantly improves the previous bound
s(Fn

p) ≤ 3 · Γn
p. (Γp is between 0.8414p and 0.9184p)

For large n and p, this bound is of the form p(1/2−o(1))n, whereas all
previous bounds were of the form p(1−o(1))n.
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Proof Overview

Proof Overview

Our proof uses the multi-colored sum-free Theorem, which is a consequence
of Tao’s slice rank formulation of the Croot-Lev-Pach polynomial method.

Multi-colored sum-free Theorem
Let p be a prime, and let (x1,i , x2,i , . . . , xp,i )

m
i=1 be a collection of p-tuples

in Fn
p × · · · × Fn

p such that
x1,i1 + x2,i2 + · · ·+ xp,ip = 0 ⇔ i1 = i2 = · · · = ip.

Then m ≤ γnp .

The constant γp is best-possible here (by joint work with László Miklós
Lovász).

However, the multi-colored sum-free Theorem cannot be directly applied in
our situation.

We use new combinatorial ideas in order to be able to apply this theorem.
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Proof Overview

Theorem (S., 2019+)

Let p ≥ 5 be a fixed prime. Then any subset A ⊆ Fn
p without p distinct

elements summing to zero satisfies

|A| ≤ Cp ·
(√
γp · p

)n
< Cp · (2

√
p)n .

Let us say a p-tuple (x1, . . . , xp) ∈ Fn
p × · · · × Fn

p is a cycle if
x1 + · · ·+ xp = 0.

Call two cycles (x1, . . . , xp), (x ′1, . . . , x
′
p) ∈ Fn

p × · · · × Fn
p disjoint if no

element of Fn
p appears in both of them.

Let A ⊆ Fn
p be as above. Then each cycle (x1, . . . , xp) ∈ A× · · · × A

contains some element of Fn
p at least twice.

For a given cycle in A× · · · × A, we obtain a pattern of how many different
elements of Fn

p occur in this cycle and with which multiplicities the
different elements occur.
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For a given cycle in A× · · · × A, we obtain a pattern of how many different
elements of Fn

p occur in this cycle and with which multiplicities the
different elements occur.
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Proof Overview

Each cycle (x1, . . . , xp) ∈ A× · · · × A contains some element of Fn
p at least

twice.

We categorize the cycles (x1, . . . , xp) ∈ A× · · · × A by their multiplicity
pattern.

We go through all the possible multiplicity patterns (in a suitable order).

For each multiplicity pattern we can either find a large collection of disjoint
cycles, or we can delete a small number of elements of A to destroy all
cycles with this multiplicity pattern.

This way, we construct subsets Y1, . . . ,Yp ⊆ Fn
p such that:

Each cycle (x1, . . . , xp) ∈ Y1 × · · · × Yp satisfies x1 = x2.
There is a collection of at least |A|/(p · P(p)) disjoint cycles in
Y1 × · · · × Yp.
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We constructed subsets Y1, . . . ,Yp ⊆ Fn
p such that:

Each cycle (x1, . . . , xp) ∈ Y1 × · · · × Yp satisfies x1 = x2.
There is a collectionM of at least |A|/(p · P(p)) disjoint cycles in
Y1 × · · · × Yp.

Now, the following proposition finishes the proof of the theorem.

Proposition
Suppose that Y1, . . . ,Yp ⊆ Fn

p are subsets such that every cycle
(x1, . . . , xp) ∈ Y1 × · · · × Yp satisfies x1 = x2.
Furthermore, suppose thatM is a collection of disjoint cycles in
Y1 × · · · × Yp. Then |M| ≤ 2p ·

(√
γp · p

)n.
Indeed, the proposition implies

|A|/(p · P(p)) ≤ |M| ≤ 2p ·
(√
γp · p

)n
,

and therefore |A| ≤ 2p2 · P(p) ·
(√
γp · p

)n
= Cp ·

(√
γp · p

)n.
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Proof Overview

Let Y1, . . . ,Yp ⊆ Fn
p be such that every cycle (x1, . . . , xp) ∈ Y1 × · · · × Yp

satisfies x1 = x2.

Key observation
Let 3 ≤ j ≤ p. Consider cycles (x1, . . . , xp), (x ′1, . . . , x

′
p) ∈ Y1 × · · · × Yp.

If (x1, xj) 6= (x ′1, x
′
j ), then x1 + xj 6= x ′1 + x ′j .

Proof: Assume that j = 3. Suppose that (x1, x3) 6= (x ′1, x
′
3), but

x1 + x3 = x ′1 + x ′3.

Then x ′1 6= x1 and x1 = x2, so x ′1 6= x2.

Hence the cycle (x ′1, x2, x
′
3, x4 . . . , xp) ∈ Y1 × · · · × Yp contradicts the

assumptions on Y1, . . . ,Yp.

So for every j = 3, . . . , p, there are at most pn different pairs in Y1 × Yj

occurring as (x1, xj) for some cycle (x1, . . . , xp) ∈ Y1 × · · · × Yp.
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Proof Overview

Proposition
Suppose that Y1, . . . ,Yp ⊆ Fn

p are subsets such that every cycle
(x1, . . . , xp) ∈ Y1 × · · · × Yp satisfies x1 = x2.
Furthermore, suppose thatM is a collection of disjoint cycles in
Y1 × · · · × Yp. Then |M| ≤ 2p ·

(√
γp · p

)n.

For every j = 3, . . . , p, there are at most pn different pairs in Y1 × Yj

occurring as (x1, xj) for some cycle (x1, . . . , xp) ∈ Y1 × · · · × Yp.

By a greedy procedure we can now choose a sufficiently large subcollection
ofM satisfying the assumptions in the multi-colored sum-free theorem.

Multi-colored sum-free Theorem
Let p prime, k ≥ 3 and let (x1,i , x2,i , . . . , xp,i )

m
i=1 be a collection of p-tuples

in Fn
p × · · · × Fn

p such that
x1,i1 + x2,i2 + · · ·+ xp,ik = 0 ⇔ i1 = i2 = · · · = ip.

Then m ≤ (γp)n.
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Concluding remarks

Concluding remarks

Theorem (S., 2019+)

Let p ≥ 5 be a fixed prime. Then any subset A ⊆ Fn
p without p distinct

elements summing to zero, satisfies

|A| ≤ Cp ·
(√
γp · p

)n
< Cp · (2

√
p)n .

The best known lower bounds are due to Edel. They are of the form Ω(cn)
for some absolute constant c ≈ 2.1398.

Thus, there is still a big gap between the upper and lower bound. In
particular, the following problem is open.

Open problem
Is there an absolute constant C such that any subset A ⊆ Fn

p without p
distinct elements summing to zero has size at most Cn?
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Concluding remarks

The proof of our main result also gives a multi-colored generalization:

Theorem
Let p ≥ 5 be a fixed prime. Consider a collection of p-tuples
(x1,i , x2,i , . . . , xp,i )

L
i=1 of elements of Fn

p such that for each j = 1, . . . , p all
the elements xj ,i for i ∈ {1, . . . , L} are distinct. Assume that for
i = 1, . . . , L, we have

x1,i + x2,i + · · ·+ xp,i = 0,
and that there are no distinct indices i1, . . . , ip ∈ {1, . . . , L} with

x1,i1 + x2,i2 + · · ·+ xp,ip = 0.
Then L ≤ C ′p ·

(√
γp · p

)n
< C ′p ·

(
2
√
p
)n.

This implies our bound on the size of subsets A ⊆ Fn
p without p distinct

elements summing to zero by considering the collection of p-tuples
(x , . . . , x) for all x ∈ A.

Interestingly, in this multi-colored version, the bound is close to optimal.
For all even n, there are examples with L =

√
pn.
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Thank you

Thank you very much for your attention!
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