Covering cubes by hyperplanes

Hao Huang
Emory University
Sep 4, 2019

Joint work with Alexander Clifton (Emory).

My collaborator

Alexander Clifton

(Ph.D student at Emory)

A naive question

The n-dimensional cube Q^{n} consists of the binary vectors $\{0,1\}^{n}$.

An affine hyperplane is:

$$
\left\{\vec{x}: a_{1} x_{1}+\cdots+a_{n} x_{n}=b\right\} .
$$

Question

What is the minimum number of affine hyperplanes that cover all the vertices of Q^{n} ?

A naive question

The n-dimensional cube Q^{n} consists of the binary vectors $\{0,1\}^{n}$.
An affine hyperplane is:

$$
\left\{\vec{x}: a_{1} x_{1}+\cdots+a_{n} x_{n}=b\right\} .
$$

Question

What is the minimum number of affine hyperplanes that cover all the vertices of Q^{n} ?

Answer: 2.

The Alon-Füredi Theorem

A NEW QUESTION

Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?

For $Q^{3}, 3$ planes are needed.

Theorem (Alon, Füredi 1993)

Any set of affine hyperplanes that covers all the vertices of the n-cube Q^{n} but one contains at least n affine hyperplanes.

The Alon-Füredi Theorem

A NEW QUESTION

Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?

For $Q^{3}, 3$ planes are needed.

Theorem (Alon, Füredi 1993)

Any set of affine hyperplanes that covers all the vertices of the n-cube Q^{n} but one contains at least n affine hyperplanes.

The Alon-Füredi Theorem

A NEW QUESTION

Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?

For $Q^{3}, 3$ planes are needed.

Theorem (Alon, Füredi 1993)

Any set of affine hyperplanes that covers all the vertices of the n-cube Q^{n} but one contains at least n affine hyperplanes.

The Alon-Füredi Theorem

A NEW QUESTION

Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?

For $Q^{3}, 3$ planes are needed.

Theorem (Alon, Füredi 1993)

Any set of affine hyperplanes that covers all the vertices of the n-cube Q^{n} but one contains at least n affine hyperplanes.

The Alon-Füredi Theorem

A NEW QUESTION

Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?

For $Q^{3}, 3$ planes are needed.

Theorem (Alon, Füredi 1993)

Any set of affine hyperplanes that covers all the vertices of the n-cube Q^{n} but one contains at least n affine hyperplanes.

An outline of the proof of Alon-Füredi Theorem

Proof. Suppose H_{1}, \cdots, H_{m} cover all the vertices of Q^{n} but $(0, \cdots, 0)$, and H_{i} can be parameterized by

$$
\left\langle\vec{x}, \vec{a}_{i}\right\rangle=b_{i}
$$

Then all $b_{i} \neq 0$. Let

$$
p(\vec{x})=\prod_{i=1}^{m}\left(\left\langle\vec{x}, \vec{a}_{i}\right\rangle-b_{i}\right) .
$$

We have $p(\vec{x})=0$ at every $\vec{x} \neq \overrightarrow{0}$, and non-zero at $\overrightarrow{0}$. Polynomials satisfying such property cannot have degree lower than n, so

$$
m \geq n
$$

Covering the cube twice

Question (Bukh's homework assignment at CMU)
What happens if we would like to cover the vertices of Q^{n} at least twice, with one vertex uncovered?

Clearly, $2 n$ is possible, by taking two copies of $x_{i}=1$ for every i. But can we do better?

Covering the cube twice

Question (Bukh's homework assignment at CMU)

What happens if we would like to cover the vertices of Q^{n} at least twice, with one vertex uncovered?

Clearly, $2 n$ is possible, by taking two copies of $x_{i}=1$ for every i. But can we do better?

Yes! The actual answer is $n+1$, take

$$
\begin{gathered}
x_{1}=1, \\
\vdots \\
x_{n}=1, \\
x_{1}+\cdots+x_{n}=1 .
\end{gathered}
$$

Covering the cube twice

Question (Bukh's homework assignment at CMU)

What happens if we would like to cover the vertices of Q^{n} at least twice, with one vertex uncovered?

Clearly, $2 n$ is possible, by taking two copies of $x_{i}=1$ for every i. But can we do better?

Yes! The actual answer is $n+1$, take

$$
\begin{gathered}
x_{1}=1, \\
\vdots \\
x_{n}=1, \\
x_{1}+\cdots+x_{n}=1 .
\end{gathered}
$$

Such cover is best possible, since removing one affine hyperplane still gives a cover of $Q^{n}-\{\overrightarrow{0}\}$.

Covering the cube k times

Denote by $f(n, k)$ the minimum number of affine hyperplanes needed to cover every vertex of Q^{n} at least k times (except for $\overrightarrow{0}$ which is not covered at all).

We call such a cover an almost k-cover of the n-cube.

$$
\begin{gathered}
f(n, 1)=n \\
f(n, 2)=n+1
\end{gathered}
$$

What is the next?

Upper and lower bounds

$$
f(n, k) \leq n+\binom{k}{2}
$$

Take

$$
\begin{gathered}
x_{1}=1, \cdots, x_{n}=1 \\
x_{1}+\cdots+x_{n}=1 \text { for } k-1 \text { times } \\
\vdots \\
x_{1}+\cdots+x_{n}=k-1 \text { for } 1 \text { time. }
\end{gathered}
$$

$f(n, k) \geq n+k-1$
Note that removing $k-1$ planes from an almost k-cover still gives an almost 1-cover.

$$
n+2 \leq f(n, 3) \leq n+3
$$

The $k=3$ case and a natural conjecture

Theorem (H., Clifton 2019)

For $n \geq 2$,

$$
f(n, 3)=n+3 .
$$

For $n \geq 3$,

$$
f(n, 4) \in\{n+5, n+6\} .
$$

Conjecture (H., Clifton 2019)

For fixed integer $k \geq 1$ and sufficiently large n,

$$
f(n, k)=n+\binom{k}{2} .
$$

Hilbert's and Combinatorial Nullstellensatz

The Nullstellensatz

If \mathbb{F} is an algebraically closed field, and $f, g_{1}, \cdots, g_{m} \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$, where f vanishes over all common zeros of g_{1}, \cdots, g_{m}, then there exists an integer k, and polynomials $h_{1}, \cdots, h_{m} \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$, such that

$$
f^{k}=\sum_{i=1}^{m} h_{i} g_{i} .
$$

When $m=n$, and $g_{i}=\prod_{s \in S_{i}}\left(x_{i}-s\right)$, for some $S_{1}, \cdots, S_{n} \subset \mathbb{F}$, a stronger result holds: there are polynomials h_{1}, \cdots, h_{n} with $\operatorname{deg} h_{i} \leq \operatorname{deg} f-\operatorname{deg} g_{i}$, such that

$$
f=\sum_{i=1}^{n} h_{i} g_{i} .
$$

Punctured Combinatorial Nullstellensatz

We say $\vec{a}=\left(a_{1}, \cdots, a_{n}\right)$ is a zero of multiplicity t of $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$, if t is the minimum degree of the terms in $f\left(x_{1}+a_{1}, \cdots, x_{n}+a_{n}\right)$.
For $i=1, \cdots, n$, let

$$
D_{i} \subset S_{i} \subset \mathbb{F} . \quad g_{i}=\prod_{s \in S_{i}}\left(x_{i}-s\right) . \quad \ell_{i}=\prod_{d \in D_{i}}\left(x_{i}-d\right) .
$$

Theorem (Ball, Serra 2009)

If f has a zero of multiplicity at least t at all the common zeros of g_{1}, \cdots, g_{n}, except at least one point of $D_{1} \times \cdots \times D_{n}$ where it has a zero of multiplicity less than t, then there are polynomials h_{τ} satisfying $\operatorname{deg}\left(h_{\tau}\right) \leq \operatorname{deg}(f)-\sum_{i \in \tau} \operatorname{deg}\left(g_{i}\right)$, and a non-zero polynomial u satisfying $\operatorname{deg}(u) \leq \operatorname{deg}(f)-\sum_{i=1}^{n}\left(\operatorname{deg}\left(g_{i}\right)-\operatorname{deg}\left(\ell_{i}\right)\right)$, such that

$$
f=\sum_{\tau \in T(n, t)} g_{\tau(1)} \cdots g_{\tau(t)} h_{\tau}+u \prod_{i=1}^{n} \frac{g_{i}}{\ell_{i}} .
$$

$T(n, t)$ consists of all non-decreasing sequences of length t on [n].

Outline of our proof using the PCN $(k=3)$

We prove by contradiction. Suppose H_{1}, \cdots, H_{n+2} form an almost 3 -cover of Q^{n}, and the equation of H_{i} is $\left\langle\vec{x}, \vec{a}_{i}\right\rangle=1$. Let $P_{i}(\vec{x})=\left\langle\vec{x}, \vec{a}_{i}\right\rangle-1$, and

$$
f=P_{1} \cdots P_{n+2} .
$$

The Punctured Combinatorial Nullstellensatz gives

$$
f=\sum_{1 \leq i \leq j \leq k \leq n} x_{i}\left(x_{i}-1\right) x_{j}\left(x_{j}-1\right) x_{k}\left(x_{k}-1\right) h_{i j k}+u \prod_{i=1}^{n}\left(x_{i}-1\right),
$$

with $\operatorname{deg}(u) \leq \operatorname{deg}(f)-n=2$.
The j-th order derivatives of f vanish on $Q^{n}-\{\overrightarrow{0}\}$ for $j=0,1,2$
$\Longrightarrow u\left(e_{i}\right)=0, u\left(e_{i}+e_{j}\right)=0, \partial u / \partial x_{i}\left(e_{j}\right)=0$.
$\Longrightarrow u \equiv 0$, contradicting $f(\overrightarrow{0}) \neq 0$.

$f(n, k)$ for fixed n and large k

For small $n, f(n, k) \neq n+\binom{k}{2}$. Actually,

Theorem (H., Clifton 2019)

For fixed n, and k tends to infinity,

$$
f(n, k)=\left(1+\frac{1}{2}+\cdots+\frac{1}{n}+o(1)\right) k
$$

- Upper bound: use every hyperplane

$$
x_{i_{1}}+\cdots+x_{i_{j}}=1
$$

a total of $\frac{k}{j\binom{n}{j}}$ times. e.g.

$f(n, k)$ for fixed n and large k (ctd.)

- Lower bound: (e.g. $n=3$) assign weights to vertices:

Every affine plane covers vertices of total weight at most 1. Therefore one needs at least

$$
k \cdot\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{3}\right)=\frac{11}{6} k
$$

hyperplanes.
For general n, assign weight $1 /\left(j\binom{n}{j}\right)$ to vertices whose sum of coordinate is j.

$f(n, k)$ for fixed n and large k (ctd.)

- Lower bound: (e.g. $n=3$) assign weights to vertices:

Every affine plane covers vertices of total weight at most 1. Therefore one needs at least

$$
k \cdot\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{3}\right)=\frac{11}{6} k
$$

hyperplanes.
For general n, assign weight $1 /\left(j\binom{n}{j}\right)$ to vertices whose sum of coordinate is j.

$f(n, k)$ for fixed n and large k (ctd.)

- Lower bound: (e.g. $n=3$) assign weights to vertices:

Every affine plane covers vertices of total weight at most 1. Therefore one needs at least

$$
k \cdot\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{3}\right)=\frac{11}{6} k
$$

hyperplanes.
For general n, assign weight $1 /\left(j\binom{n}{j}\right)$ to vertices whose sum of coordinate is j.

$f(n, k)$ for fixed n and large k (ctd.)

- Lower bound: (e.g. $n=3$) assign weights to vertices:

Every affine plane covers vertices of total weight at most 1. Therefore one needs at least

$$
k \cdot\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{3}\right)=\frac{11}{6} k
$$

hyperplanes.
For general n, assign weight $1 /\left(j\binom{n}{j}\right)$ to vertices whose sum of coordinate is j.

An LYM-like inenquality

The Lubell-Yamato-Meshalkin inequality

Let \mathcal{F} be a family of subsets in which no set contains another, then

$$
\sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}} \leq 1 .
$$

Lemma (H., Clifton 2019)

Given n real numbers a_{1}, \cdots, a_{n}, let

$$
\mathcal{F}=\left\{S: \varnothing \neq S \subset[n], \sum_{i \in S} a_{i}=1\right\}
$$

then

$$
\sum_{S \in \mathcal{F}} \frac{1}{|S|\binom{n}{|S|}} \leq 1
$$

The inequality is tight for all non-zero binary $\left(a_{1}, \cdots, a_{n}\right)$.

We associate every $S \in \mathcal{F}$ (binary vector covered by the plane) with some permutations in $\mathcal{P}_{S} \subset S_{n}$.
e.g. When $n=5, S=\{1,3,4\}$, it means $a_{1}+a_{3}+a_{4}=1$, take all permutations in S_{5} with prefix $\left(i_{1}, i_{2}, i_{3}\right)$ satisfying

$$
\left\{i_{1}, i_{2}, i_{3}\right\}=\{1,3,4\}, \quad a_{i_{1}}<1, \quad a_{i_{1}}+a_{i_{2}}<1 .
$$

We can show:

- \mathcal{P}_{S} are pairwise disjoint.
- $\left|\mathcal{P}_{S}\right| \geq(|S|-1)!(n-|S|)$! (the proof uses the lorry driver puzzle.)
- Therefore

$$
n!\geq \sum_{S \in \mathcal{F}}\left|\mathcal{P}_{S}\right|=\sum_{S \in \mathcal{F}}(|S|-1)!(n-|S|)!
$$

which simplifies to our desired result.

Future research problems (I)

Problem 1

Prove $f(n, k)=n+\binom{k}{2}$ for large n.

Alon (private communication): for large n, if the almost k-cover contains $x_{1}=1, \cdots, x_{n}=1$, then it contains at least $n+\binom{k}{2}$ affine hyperplanes in total.

Problem 2

Let $g(n, m, k)$ be the minimum number of vertices covered less than k times by m affine hyperplanes not passing through $\overrightarrow{0}$.
Determine $g(n, m, k)$.

Alon, Füredi 1993: $g(n, m, 1)=2^{n-m}$.

Future research problems (II)

Question: Is it true that for all n, m, k :

$$
g(n, m, k)=2^{n-d}
$$

where d is the maximum integer such that $f(d, k) \leq m$?

Problem 3

Does there exist an absolute constant $C>0$, which does not depend on n, such that for a fixed integer n, there exists M_{n}, so that whenever $k \geq M_{n}$,

$$
f(n, k) \leq\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) k+C ?
$$

Thank you!

