Extremal problems concerning cycles in tournaments

Dan Král'
Masaryk University, Brno
University of Warwick

Turán Problems

- Maximum edge-density of H-free graph
- Mantel's Theorem (1907): $\frac{1}{2}$ for $H=K_{3}\left(K_{\frac{n}{2}, \frac{n}{2}}\right)$
- Turán's Theorem (1941): $\frac{\ell-2}{\ell-1}$ for $H=K_{\ell}\left(K_{\frac{n}{\ell-1}, \ldots, \frac{n}{\ell-1}}\right)$
- Erdős-Stone Theorem (1946): $\frac{\chi(H)-2}{\chi(H)-1}$
- extremal examples unique up to $o\left(n^{2}\right)$ edges

ERDŐS-RADEMACHER PROBLEM

- Turán's Theorem: edge-density $\leq 1 / 2 \Leftrightarrow$ minimum triangle density $=0$
- What happens if edge-density $>1 / 2$?
- minimum attained by $K_{n, \ldots, n}$ for edge-density $\frac{k-1}{k}$
- smooth transformation from $K_{n, n}$ for $K_{n, n, n}$, from $K_{n, n, n}$ to $K_{n, n, n, n}$, etc.

Erdős-Rademacher problem

solved by Razborov in 2008

Tournaments

- tournament $=$ orientation of a complete graph
- analogue of Erdős-Rademacher Problem minimum density of C_{4} for a fixed density of C_{3}
- Conjecture of Linial and Morgenstern (2014) blow-up of a transitive tournament (random inside) with all but one equal parts and a smaller part transitive orientation of $K_{n, \ldots, n, \alpha n}$, random inside parts

ToURNAMENTS

- minimum density of C_{4} for a fixed density of C_{3}
- Conjecture of Linial and Morgenstern (2014) blow-up of a transitive tournament (random inside) with all but one equal parts and a smaller part

OUR RESULTS

joint work with Chan, Grzesik and Noel

Approach to the problem

- linear algebra tools
adjacency matrix $A \in\{0,1\}^{V(G) \times V(G)}$
$\operatorname{Tr} A^{k}=$ number of closed k-walks
- regularity method
approximation by an $(n \times n)$-matrix A rows and columns \approx parts in regularity decomposition $A_{i j} \geq 0$ and $A_{i j}+A_{j i}=1$ for all $i, j \in\{1, \ldots, n\}$

Cases of two and three parts

- non-negative matrix A, s.t. $A+A^{T}=\mathbb{J}$
- properties of the spectrum of A :
$\operatorname{Tr} A=\lambda_{1}+\ldots+\lambda_{k}=1 / 2$
Perron-Frobenius $\Rightarrow \exists \rho \in \mathbb{R}: \rho=\lambda_{1}$ and $\left|\lambda_{i}\right| \leq \lambda_{1}$ $v^{*}\left(A+A^{T}\right) v=v^{*}\left(\lambda_{i}+\overline{\lambda_{i}}\right) v=v^{*} \mathbb{J} v \geq 0 \Rightarrow \operatorname{Re} \lambda_{i} \geq 0$
- fix $\operatorname{Tr} A^{3}=\lambda_{1}^{3}+\ldots+\lambda_{k}^{3} \in[1 / 36,1 / 8]$
minimize $\operatorname{Tr} A^{4}=\lambda_{1}^{4}+\ldots+\lambda_{k}^{4}$
- optimum $\lambda_{\leq k-1}=\rho$ and $\lambda_{k}=1 / 2-(k-1) \rho, k \in\{2,3\}$

CASE OF TWO PARTS-STRUCTURE

- $A=(\mathbb{J}+B) / 2, B$ is antisymmetric, i.e. $B=-B^{T}$ analysis of antisymmetric matrix B
- assign $p_{v} \in[0,1 / 2]$ to each vertex v orient from v to w with probability $1 / 2+\left(p_{v}-p_{w}\right)$
- conjectured construction: $p_{v} \in\{0,1 / 2\}$

Case of Two parts-structure

- $A=(\mathbb{J}+B) / 2, B$ is antisymmetric, i.e. $B=-B^{T}$ A is non-negative and $A+A^{T}=\mathbb{J}$
- analysis of antisymmetric matrix B σ_{i} and α_{i} for matrix B with $\sum_{i} \cos ^{2} \alpha_{i}=1$

$$
B=U^{T}\left(\begin{array}{cccc}
0 & \sigma_{1} & 0 & 0 \\
-\sigma_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma_{2} \\
0 & 0 & -\sigma_{2} & 0
\end{array}\right) U
$$

Case of Two parts-structure

- $A=(\mathbb{J}+B) / 2, B$ is antisymmetric, i.e. $B=-B^{T}$ A is non-negative and $A+A^{T}=\mathbb{J}$
- analysis of antisymmetric matrix B σ_{i} and α_{i} for matrix B with $\sum_{i} \cos ^{2} \alpha_{i}=1$
- $\operatorname{Tr} A^{3} \approx \operatorname{Tr} \mathbb{J}^{3}+\operatorname{Tr} \mathbb{J} B^{2}=\sum_{i} \sigma_{i}^{2} \cos ^{2} \alpha_{i}$ $\operatorname{Tr} A^{4} \approx \operatorname{Tr} \mathbb{J}^{4}+\operatorname{Tr} \mathbb{J}^{2} B^{2}+\operatorname{Tr} B^{4} \approx \operatorname{Tr} \mathbb{J} B^{2}+\sum_{i} \sigma_{i}^{4}$
- optimum for $\alpha_{1}=0, \alpha_{\geq 2}=\pi / 2$ and $\sigma_{\geq 2}=0$

Case of two parts-STRUCTURE

- $A=(\mathbb{J}+B) / 2, B$ is antisymmetric, i.e. $B=-B^{T}$ σ_{i} and α_{i} for matrix B with $\sum_{i} \cos ^{2} \alpha_{i}=1$ optimum for $\alpha_{1}=0, \alpha_{\geq 2}=\pi / 2$ and $\sigma_{\geq 2}=0$
- \Rightarrow there exist $\beta_{1}, \beta_{2}, \ldots$ such that $B_{i j}=\beta_{i}-\beta_{j}$
- $\Rightarrow \operatorname{assign} p_{v} \in[0,1 / 2]$ to each vertex v orient from v to w with probability $1 / 2+\left(p_{v}-p_{w}\right)$
- conjectured construction: $p_{v} \in\{0,1 / 2\}$

Maximum density of cycles

- work in progress with Grzesik, Lovász Jr. and Volec
- What is maximum density of cycles of length k ?
$k \equiv 1 \bmod 4 \Leftrightarrow$ regular tournament
$k \equiv 2 \bmod 4 \Leftrightarrow$ quasirandom tournament
$k \equiv 3 \bmod 4 \Leftrightarrow$ regular tournament
$k \equiv 4 \bmod 4 \Leftrightarrow$????
- "cyclic" tournament for $k=4$ and $k=8$

QUASIRANDOM TOURNAMENTS

- When does a tournament look random? random tournament $=$ orient each edge randomly
- When does a graph look random?
- Thomason, and Chung, Graham and Wilson (1980's) density of K_{2} is p, density of C_{4} is p^{4} equivalent subgraph density conditions equivalent uniform density conditions equivalent spectral conditions
-••

QUASIRANDOM TOURNAMENTS

- When does a tournament look random?
- Coregliano, Razborov (2017)
density of T_{4} is $4!/ 2^{6}$ (unique minimizer) density of T_{k} is $k!/ 2 \begin{gathered}\binom{k}{2} \\ \text { for } k \geq 4\end{gathered}$
- Other tournaments forcing quasirandom? Coregliano, Parente, Sato (2019)
unique maximizer of a 5 -vertex tournament

Thank you for your attention!

