On the quasirandomness of projective norm graphs

Tibor Szabó (Freie Universität Berlin) joint work with Tomas Bayer, Tamás Mészáros, and Lajos Rónyai

BIRS Workshop on Probabilistic and Extremal Combinatorics September 5th, 2019, Banff

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Definition

For $n \in \mathbb{N}$ the **Turán number** ex(n, H) of a simple graph H counts the maximum possible number of edges in an *n*-vertex H-free simple graph.

Definition

For $n \in \mathbb{N}$ the **Turán number** ex(n, H) of a simple graph H counts the maximum possible number of edges in an *n*-vertex H-free simple graph.

• Mantel:
$$ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$$

Definition

For $n \in \mathbb{N}$ the **Turán number** ex(n, H) of a simple graph H counts the maximum possible number of edges in an *n*-vertex H-free simple graph.

Definition

For $n \in \mathbb{N}$ the **Turán number** ex(n, H) of a simple graph H counts the maximum possible number of edges in an *n*-vertex H-free simple graph.

• Mantel:
$$ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$$

► Turán:
$$ex(n, K_r) = \left(1 - \frac{1}{r-1}\right) \binom{n}{2} + o(n^2)$$

Frdős-Stone-Simonovits:

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2)$$

Definition

For $n \in \mathbb{N}$ the **Turán number** ex(n, H) of a simple graph H counts the maximum possible number of edges in an *n*-vertex H-free simple graph.

• Mantel:
$$ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$$

► Turán:
$$ex(n, K_r) = \left(1 - \frac{1}{r-1}\right) \binom{n}{2} + o(n^2)$$

Frdős-Stone-Simonovits:

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2)$$

Solves the question asymptotically unless H is bipartite.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Even cycles: order of magnitude known for C_4 , C_6 , C_{10} .

- Even cycles: order of magnitude known for C_4 , C_6 , C_{10} .
- Complete bipartite graphs Kővári-Sós-Turán:

$$\operatorname{ex}(n, K_{t,s}) \leq \frac{1}{2}\sqrt[t]{s-1} \cdot n^{2-\frac{1}{t}} + \frac{t-1}{2}n$$

・ロト・日本・モート モー うへぐ

- Even cycles: order of magnitude known for C_4 , C_6 , C_{10} .
- Complete bipartite graphs Kővári-Sós-Turán:

$$\exp(n, K_{t,s}) \leq \frac{1}{2} \sqrt[t]{s-1} \cdot n^{2-\frac{1}{t}} + \frac{t-1}{2} n$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture

$$ext{ex}(n, extsf{K}_{t,s}) = \Theta \Big(n^{2-rac{1}{t}} \Big) extsf{ for } t \leq s$$

- Even cycles: order of magnitude known for C_4 , C_6 , C_{10} .
- Complete bipartite graphs Kővári-Sós-Turán:

$$\exp(n, K_{t,s}) \leq \frac{1}{2}\sqrt[t]{s-1} \cdot n^{2-\frac{1}{t}} + \frac{t-1}{2}n$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture

$$ext{ex}(n, extsf{K}_{t,s}) = \Thetaig(n^{2-rac{1}{t}}ig)$$
 for $t \leq s$

- Even cycles: order of magnitude known for C_4 , C_6 , C_{10} .
- Complete bipartite graphs Kővári-Sós-Turán:

$$\exp(n, K_{t,s}) \leq \frac{1}{2}\sqrt[t]{s-1} \cdot n^{2-\frac{1}{t}} + \frac{t-1}{2}n$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture

$$ext{ex}(n, extsf{K}_{t,s}) = \Theta \Big(n^{2-rac{1}{t}} \Big) extsf{ for } t \leq s$$

- Even cycles: order of magnitude known for C_4 , C_6 , C_{10} .
- Complete bipartite graphs Kővári-Sós-Turán:

$$\exp(n, K_{t,s}) \leq \frac{1}{2}\sqrt[t]{s-1} \cdot n^{2-\frac{1}{t}} + \frac{t-1}{2}n$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture

$$ext{ex}(n, extsf{K}_{t,s}) = \Theta \Big(n^{2-rac{1}{t}} \Big) extsf{ for } t \leq s$$

- ▶ Klein: *K*_{2,2}
- ▶ Brown: *K*_{3,3}

- Even cycles: order of magnitude known for C_4 , C_6 , C_{10} .
- Complete bipartite graphs Kővári-Sós-Turán:

$$\operatorname{ex}(n, K_{t,s}) \leq \frac{1}{2}\sqrt[t]{s-1} \cdot n^{2-\frac{1}{t}} + \frac{t-1}{2}n$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conjecture

$$\exp(n, K_{t,s}) = \Theta\left(n^{2-rac{1}{t}}
ight)$$
 for $t \leq s$

- ▶ Klein: *K*_{2,2}
- ▶ Brown: *K*_{3,3}
- Kollár-Rónyai-Sz. (norm graph): $s \ge t! + 1$

- Even cycles: order of magnitude known for C_4 , C_6 , C_{10} .
- Complete bipartite graphs Kővári-Sós-Turán:

$$\operatorname{ex}(n, K_{t,s}) \leq \frac{1}{2}\sqrt[t]{s-1} \cdot n^{2-\frac{1}{t}} + \frac{t-1}{2}n$$

Conjecture

$$ext{ex}(n, extsf{K}_{t,s}) = \Theta \Big(n^{2-rac{1}{t}} \Big) extsf{ for } t \leq s$$

Matching lower bounds:

- ▶ Klein: *K*_{2,2}
- ▶ Brown: *K*_{3,3}
- ▶ Kollár-Rónyai-Sz. (norm graph): s ≥ t! + 1
- Alon-Rónyai-Sz. (projective norm graph): $s \ge (t-1)! + 1$

- Even cycles: order of magnitude known for C_4 , C_6 , C_{10} .
- Complete bipartite graphs Kővári-Sós-Turán:

$$\exp(n, K_{t,s}) \leq \frac{1}{2}\sqrt[t]{s-1} \cdot n^{2-\frac{1}{t}} + \frac{t-1}{2}n$$

Conjecture

$$ext{ex}(\textit{n},\textit{K}_{t,s}) = \Theta\!\left(\textit{n}^{2-rac{1}{t}}
ight)$$
 for $t \leq s$

Matching lower bounds:

- ▶ Klein: *K*_{2,2}
- ▶ Brown: *K*_{3,3}
- Kollár-Rónyai-Sz. (norm graph): $s \ge t! + 1$
- Alon-Rónyai-Sz. (projective norm graph): $s \ge (t-1)! + 1$

Bukh (random algebraic construction): s ≥ f(t) ≫ (t − 1)! + 1

Let $q = p^k$, $t \ge 2$ and consider the field extension $\mathbb{F}_{q^{t-1}}/\mathbb{F}_q$.

Let $q = p^k$, $t \ge 2$ and consider the field extension $\mathbb{F}_{q^{t-1}}/\mathbb{F}_q$. Definition

Frobenius automorphism: for $A \in \mathbb{F}_{q^{t-1}}$ we set $\phi(A) = A^q$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $q = p^k$, $t \ge 2$ and consider the field extension $\mathbb{F}_{q^{t-1}}/\mathbb{F}_q$. Definition

Frobenius automorphism: for $A \in \mathbb{F}_{q^{t-1}}$ we set $\phi(A) = A^q$.

 ϕ is an automorphism of $\mathbb{F}_{q^{t-1}}$ that pointwise fixes \mathbb{F}_q .

Let $q = p^k$, $t \ge 2$ and consider the field extension $\mathbb{F}_{q^{t-1}}/\mathbb{F}_q$. Definition

Frobenius automorphism: for $A \in \mathbb{F}_{q^{t-1}}$ we set $\phi(A) = A^q$.

 ϕ is an automorphism of $\mathbb{F}_{q^{t-1}}$ that pointwise fixes \mathbb{F}_q .

Definition

Norm function of the extension $\mathbb{F}_{q^{t-1}}/\mathbb{F}_q$: for $A \in \mathbb{F}_{q^{t-1}}$ we set

$$\mathsf{N}(\mathsf{A}) = \mathsf{A} \cdot \phi(\mathsf{A}) \cdot \phi^{(2)}(\mathsf{A}) \cdots \phi^{(t-2)}(\mathsf{A}) = \mathsf{A} \cdot \mathsf{A}^{q} \cdot \mathsf{A}^{q^{2}} \cdots \mathsf{A}^{q^{t-2}}$$

Let $q = p^k$, $t \ge 2$ and consider the field extension $\mathbb{F}_{q^{t-1}}/\mathbb{F}_q$. Definition

Frobenius automorphism: for $A \in \mathbb{F}_{q^{t-1}}$ we set $\phi(A) = A^q$.

 ϕ is an automorphism of $\mathbb{F}_{q^{t-1}}$ that pointwise fixes \mathbb{F}_q .

Definition

Norm function of the extension $\mathbb{F}_{q^{t-1}}/\mathbb{F}_q$: for $A \in \mathbb{F}_{q^{t-1}}$ we set

$$\mathsf{N}(A) = A \cdot \phi(A) \cdot \phi^{(2)}(A) \cdots \phi^{(t-2)}(A) = A \cdot A^q \cdot A^{q^2} \cdots A^{q^{t-2}}$$

N is a multiplicative \mathbb{F}_q -linear $\mathbb{F}_{q^{t-1}} \to \mathbb{F}_q$ function

Let $q = p^k$, $t \ge 2$ and consider the field extension $\mathbb{F}_{q^{t-1}}/\mathbb{F}_q$. Definition

Frobenius automorphism: for $A \in \mathbb{F}_{q^{t-1}}$ we set $\phi(A) = A^q$.

 ϕ is an automorphism of $\mathbb{F}_{q^{t-1}}$ that pointwise fixes \mathbb{F}_q .

Definition

Norm function of the extension $\mathbb{F}_{q^{t-1}}/\mathbb{F}_q$: for $A\in\mathbb{F}_{q^{t-1}}$ we set

$$\mathsf{N}(A) = A \cdot \phi(A) \cdot \phi^{(2)}(A) \cdots \phi^{(t-2)}(A) = A \cdot A^q \cdot A^{q^2} \cdots A^{q^{t-2}}.$$

N is a multiplicative $\mathbb{F}_q\text{-linear}\ \mathbb{F}_{q^{t-1}}\to \mathbb{F}_q$ function and for $a\in \mathbb{F}_q^*$

$$\left|\mathsf{N}^{-1}(a)\right| = \frac{q^{t-1}-1}{q-1}.$$

Definition

Let $q = p^k$ be a prime power and $t \ge 2$ an integer. The **projective** norm graph NG(q, t) has vertex set $\mathbb{F}_{q^{t-1}} \times \mathbb{F}_q^*$ and vertices (A, a)and (B, b) are adjacent iff N(A + B) = ab.

Definition

Let $q = p^k$ be a prime power and $t \ge 2$ an integer. The **projective** norm graph NG(q, t) has vertex set $\mathbb{F}_{q^{t-1}} \times \mathbb{F}_q^*$ and vertices (A, a)and (B, b) are adjacent iff N(A + B) = ab.

•
$$n = v(NG(q, t)) = q^{t-1}(q-1) = (1+o(1))q^t$$

Definition

Let $q = p^k$ be a prime power and $t \ge 2$ an integer. The **projective** norm graph NG(q, t) has vertex set $\mathbb{F}_{q^{t-1}} \times \mathbb{F}_q^*$ and vertices (A, a)and (B, b) are adjacent iff N(A + B) = ab.

$$n = v(NG(q, t)) = q^{t-1}(q-1) = (1 + o(1))q^t$$
 $deg(A, a) =
 \begin{cases}
 q^{t-1} - 2 & \text{if } char(\mathbb{F}_q) \neq 2 \text{ and } N(2A) = a^2 \\
 q^{t-1} - 1 & \text{otherwise}
 \end{cases}$

Definition

Let $q = p^k$ be a prime power and $t \ge 2$ an integer. The **projective** norm graph NG(q, t) has vertex set $\mathbb{F}_{q^{t-1}} \times \mathbb{F}_q^*$ and vertices (A, a)and (B, b) are adjacent iff N(A + B) = ab.

•
$$n = v(NG(q, t)) = q^{t-1}(q-1) = (1 + o(1))q^t$$

• $deg(A, a) = \begin{cases} q^{t-1} - 2 & \text{if } char(\mathbb{F}_q) \neq 2 \text{ and } N(2A) = a^2 \\ q^{t-1} - 1 & \text{otherwise} \end{cases}$
• $e(NG(q, t)) = (\frac{1}{2} + o(1))q^{2t-1} - \frac{1}{2}n^{2-\frac{1}{t}}$

•
$$e(NG(q, t)) = (\frac{1}{2} + o(1))q^{2t-1} = \frac{1}{2}n^{2t}$$

Definition

Let $q = p^k$ be a prime power and $t \ge 2$ an integer. The **projective** norm graph NG(q, t) has vertex set $\mathbb{F}_{q^{t-1}} \times \mathbb{F}_q^*$ and vertices (A, a)and (B, b) are adjacent iff N(A + B) = ab.

- $e(NG(q,t)) = (\frac{1}{2} + o(1))q^{2t-1} = \frac{1}{2}n^{2-\frac{1}{t}}$
- Alon-Rónyai-Sz.: NG(q, t) is $K_{t,(t-1)!+1}$ -free

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

 $K_{t,s}$ -free

 $K_{t,s}$ -free \iff Any t vertices have < s common neighbours.

・ロト・日本・モート モー うへぐ

 $K_{t,s}$ -free \iff Any t vertices have < s common neighbours. \iff Given any t vertices (A_i, a_i) , i = 1, ..., t there are < s vertices (X, x) so that

$$N(A_i + X) = a_i x$$
 for $i = 1, \dots, t$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $K_{t,s}$ -free \iff Any t vertices have < s common neighbours. \iff Given any t vertices (A_i, a_i) , i = 1, ..., t there are < s vertices (X, x) so that

$$N(A_i + X) = a_i x$$
 for $i = 1, \dots, t$.

Dividing the first t - 1 equations by the last one and for i = 1, ..., t - 1 also by $N(A_i - A_t)$:

$$\mathsf{N}\left(\frac{1}{A_t+X}+\frac{1}{A_i-A_t}\right)=\frac{a_i}{a_t\,\mathsf{N}\,(A_i-A_t)}$$

 $K_{t,s}$ -free \iff Any t vertices have < s common neighbours. \iff Given any t vertices (A_i, a_i) , i = 1, ..., t there are < s vertices (X, x) so that

$$N(A_i + X) = a_i x$$
 for $i = 1, \dots, t$.

Dividing the first t - 1 equations by the last one and for i = 1, ..., t - 1 also by $N(A_i - A_t)$:

$$N\left(\frac{1}{A_t + X} + \frac{1}{A_i - A_t}\right) = \frac{a_i}{a_t N (A_i - A_t)}.$$

utting $Y = \frac{1}{A_t + X}$ and $B_i = \frac{1}{A_i - A_t}$, $b_i = \frac{a_i}{a_t N (A_i - A_t)}$:
 $N(Y + B_i) = b_i.$

Ρ

 $K_{t,s}$ -free \iff Any t vertices have < s common neighbours. \iff Given any t vertices (A_i, a_i) , i = 1, ..., t there are < s vertices (X, x) so that

$$N(A_i + X) = a_i x$$
 for $i = 1, \dots, t$.

Dividing the first t - 1 equations by the last one and for i = 1, ..., t - 1 also by $N(A_i - A_t)$:

$$\mathsf{N}\left(rac{1}{A_t+X}+rac{1}{A_i-A_t}
ight)=rac{a_i}{a_t\,\mathsf{N}\,(A_i-A_t)}$$

Putting $Y = \frac{1}{A_t + X}$ and $B_i = \frac{1}{A_i - A_t}$, $b_i = \frac{a_i}{a_t \operatorname{N}(A_i - A_t)}$:

$$N(Y + B_i) = (Y + B_i)(Y + B_i)^q \cdots (Y + B_i)^{q^{t-2}} = b_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$(Y + B_i)(Y^q + B_i^q) \cdots (Y^{q^{t-2}} + B_i^{q^{t-2}}) = b_i \quad i = 1, \dots, t-1$$

$$(Y + B_i)(Y^q + B_i^q) \cdots (Y^{q^{t-2}} + B_i^{q^{t-2}}) = b_i \quad i = 1, \dots, t-1$$

Lemma (Kollár-Rónyai-Sz.)

Let \mathbb{F} be a field, $\ell \in \mathbb{N}$, $a_{ij}, b_i \in \mathbb{F}$ for $1 \leq i, j \leq \ell$ such that $a_{i_1j} \neq a_{i_2j}$ for all j and $i_1 \neq i_2$. Then the system

$$\begin{aligned} & (x_1 - a_{11}) \cdot (x_2 - a_{12}) \cdots (x_{\ell} - a_{1\ell}) = b_1 \\ & (x_1 - a_{21}) \cdot (x_2 - a_{22}) \cdots (x_{\ell} - a_{2\ell}) = b_2 \\ & \vdots \\ & (x_1 - a_{\ell 1}) \cdot (x_2 - a_{\ell 2}) \cdots (x_{\ell} - a_{\ell \ell}) = b_\ell \end{aligned}$$

has at most $\ell!$ solutions $(x_1, \ldots, x_\ell) \in \mathbb{F}^\ell$.

$$(Y + B_i)(Y^q + B_i^q) \cdots (Y^{q^{t-2}} + B_i^{q^{t-2}}) = b_i \quad i = 1, \dots, t-1$$

Lemma (Kollár-Rónyai-Sz.)

Let \mathbb{F} be a field, $\ell \in \mathbb{N}$, $a_{ij}, b_i \in \mathbb{F}$ for $1 \leq i, j \leq \ell$ such that $a_{i_1i} \neq a_{i_2i}$ for all j and $i_1 \neq i_2$. Then the system

$$\begin{aligned} & (x_1 - a_{11}) \cdot (x_2 - a_{12}) \cdots (x_{\ell} - a_{1\ell}) = b_1 \\ & (x_1 - a_{21}) \cdot (x_2 - a_{22}) \cdots (x_{\ell} - a_{2\ell}) = b_2 \\ & \vdots \\ & (x_1 - a_{\ell 1}) \cdot (x_2 - a_{\ell 2}) \cdots (x_{\ell} - a_{\ell \ell}) = b_\ell \end{aligned}$$

has at most $\ell!$ solutions $(x_1, \ldots, x_\ell) \in \mathbb{F}^\ell$.

▶ It is applied for $\ell = t - 1$ in a very, very, very special setting:

$$\mathbb{F} = \mathbb{F}_{q^{t-1}}, \quad a_{ij} = -B_i^{q^{j-1}}, \quad b_i \in \mathbb{F}_q \subseteq \mathbb{F}_{q^{t-1}}, \quad x_j = Y^{q^{j-1}}.$$

(Non-)existence of further complete bipartite subgraphs

Question

For $t \ge 2$ what is the largest s_t such that NG(q, t) contains K_{t,s_t} for every large enough prime power q? Does $s_t < (t-1)!$ hold?
Question

For $t \ge 2$ what is the largest s_t such that NG(q, t) contains K_{t,s_t} for every large enough prime power q? Does $s_t < (t - 1)!$ hold?

Bayer (2016): physicist's proof of s₄ = 6 (i.e. K_{4,6} in NG(q, 4) for 5 ≤ q ≤ 151)

Question

For $t \ge 2$ what is the largest s_t such that NG(q, t) contains K_{t,s_t} for every large enough prime power q? Does $s_t < (t-1)!$ hold?

- Bayer (2016): physicist's proof of s₄ = 6 (i.e. K_{4,6} in NG(q, 4) for 5 ≤ q ≤ 151)
- ► Grosu (2016): There is a sequence of primes of density ¹/₉ such that NG(p, 4) does contain a K_{4,6}.

Question

For $t \ge 2$ what is the largest s_t such that NG(q, t) contains K_{t,s_t} for every large enough prime power q? Does $s_t < (t-1)!$ hold?

- Bayer (2016): physicist's proof of s₄ = 6 (i.e. K_{4,6} in NG(q, 4) for 5 ≤ q ≤ 151)
- ► Grosu (2016): There is a sequence of primes of density ¹/₉ such that NG(p, 4) does contain a K_{4,6}.

▶ Ball, Pepe: NG(q, t) is $K_{t+1,(t-1)!-1}$ -free.

Question

For $t \ge 2$ what is the largest s_t such that NG(q, t) contains K_{t,s_t} for every large enough prime power q? Does $s_t < (t-1)!$ hold?

- Bayer (2016): physicist's proof of s₄ = 6 (i.e. K_{4,6} in NG(q, 4) for 5 ≤ q ≤ 151)
- ► Grosu (2016): There is a sequence of primes of density ¹/₉ such that NG(p, 4) does contain a K_{4,6}.
- ▶ Ball, Pepe: NG(q, t) is $K_{t+1,(t-1)!-1}$ -free.

Theorem (BMRSz (2017+), MRSz (2019+))

NG(q, 4) contains $K_{4,6}$ as a subgraph for every $q \ge 5$ prime power.

Question

For $t \ge 2$ what is the largest s_t such that NG(q, t) contains K_{t,s_t} for every large enough prime power q? Does $s_t < (t-1)!$ hold?

- Bayer (2016): physicist's proof of s₄ = 6 (i.e. K_{4,6} in NG(q, 4) for 5 ≤ q ≤ 151)
- ► Grosu (2016): There is a sequence of primes of density ¹/₉ such that NG(p, 4) does contain a K_{4,6}.
- ▶ Ball, Pepe: NG(q, t) is $K_{t+1,(t-1)!-1}$ -free.

Theorem (BMRSz (2017+), MRSz (2019+))

NG(q, 4) contains $K_{4,6}$ as a subgraph for every $q \ge 5$ prime power.

• We actually find $(1 + o(1))q^7$ copies of $K_{4,6}$.

Question

For $t \ge 2$ what is the largest s_t such that NG(q, t) contains K_{t,s_t} for every large enough prime power q? Does $s_t < (t-1)!$ hold?

- Bayer (2016): physicist's proof of s₄ = 6 (i.e. K_{4,6} in NG(q, 4) for 5 ≤ q ≤ 151)
- ► Grosu (2016): There is a sequence of primes of density ¹/₉ such that NG(p, 4) does contain a K_{4,6}.
- ▶ Ball, Pepe: NG(q, t) is $K_{t+1,(t-1)!-1}$ -free.

Theorem (BMRSz (2017+), MRSz (2019+))

NG(q, 4) contains $K_{4,6}$ as a subgraph for every $q \ge 5$ prime power.

- We actually find $(1 + o(1))q^7$ copies of $K_{4,6}$.
- This shows $s_4 = 6$.

Recall: A vertex (X, x) is a common neighbor of a set $T = \{(A_i, a_i) : i = 1, ..., t\}$ of vertices iff

$$N(A_i + X) = a_i x \qquad \text{for } i = 1, \dots, t. \tag{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall: A vertex (X, x) is a common neighbor of a set $T = \{(A_i, a_i) : i = 1, ..., t\}$ of vertices iff

$$N(A_i + X) = a_i x \qquad \text{for } i = 1, \dots, t. \tag{1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► *T* is called **generic** if all the first coordinates are distinct.

Recall: A vertex (X, x) is a common neighbor of a set $T = \{(A_i, a_i) : i = 1, ..., t\}$ of vertices iff

$$N(A_i + X) = a_i x \qquad \text{for } i = 1, \dots, t. \tag{1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

➤ T is called generic if all the first coordinates are distinct. If T is not generic ⇒ no common neighbours.

Recall: A vertex (X, x) is a common neighbor of a set $T = \{(A_i, a_i) : i = 1, ..., t\}$ of vertices iff

$$N(A_i + X) = a_i x \qquad \text{for } i = 1, \dots, t. \tag{1}$$

- ➤ T is called generic if all the first coordinates are distinct. If T is not generic ⇒ no common neighbours.
- ► *T* is called **aligned** if all the second coordinates are the same.

$$\xi(T) = \begin{cases} 1 & \text{if } T \text{ is aligned} \\ 0 & \text{if } T \text{ is not aligned} \end{cases}$$

Recall: A vertex (X, x) is a common neighbor of a set $T = \{(A_i, a_i) : i = 1, ..., t\}$ of vertices iff

$$N(A_i + X) = a_i x \qquad \text{for } i = 1, \dots, t. \tag{1}$$

- ➤ T is called generic if all the first coordinates are distinct. If T is not generic ⇒ no common neighbours.
- ► *T* is called **aligned** if all the second coordinates are the same.

$$\xi(T) = \begin{cases} 1 & \text{if } T \text{ is aligned} \\ 0 & \text{if } T \text{ is not aligned} \end{cases}$$

$$N(Y + B_i) = b_i$$
, for $i = 1, ..., t - 1$. (2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition. $|Solutions((1))| = |Solutions((2))| - \xi(T)$

Pair degrees

Solution set of $N(Y + B_1) = b_1$ is the translate $N^{-1}(b_1) - B_1$. Hence

Proposition (2-neighbourhoods) Let T be a generic pair of vertices in NG(q, t). Then

$$\deg(T) = \frac{q^{t-1}-1}{q-1} - \xi(T) = (1+o(1))q^{t-2}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$N(Y+B_1)=b_1$$
 and $N(Y+B_2)=b_2$,

$$N(Y+B_1) = b_1$$
 and $N(Y+B_2) = b_2$,

Change of the variable gives the equivalent form

$$N(Z) = c_1$$
 and $N(Z+1) = c_2$. (3)

$$N(Y+B_1) = b_1$$
 and $N(Y+B_2) = b_2$,

Change of the variable gives the equivalent form

$$N(Z) = c_1$$
 and $N(Z+1) = c_2$. (3)

Theorem For $t \ge 3$ let $S_t(c_1, c_2)$ be the solution set of (3). Then $|S_t(c_1, c_2)| = \begin{cases} 1 - \eta_{\mathbb{F}_q} ((1 + c_1 - c_2)^2 - 4c_1) & \text{if } t = 3, \\ 2q + 1 - \eta_{\mathbb{F}_q}(-3) & \text{if } t = 4 \text{ and} \\ (c_1, c_2) = (1, -1), \\ q^{t-3} + O(q^{t-3.5}) & \text{otherwise,} \end{cases}$

where $\eta_{\mathbb{F}_q}$ is the quadratic character of \mathbb{F}_q .

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

$$N(Y + B_1) = b_1$$
 and $N(Y + B_2) = b_2$,

Change of the variable gives the equivalent form

$$N(Z) = c_1$$
 and $N(Z+1) = c_2$. (3)

Theorem For $t \ge 3$ let $S_t(c_1, c_2)$ be the solution set of (3). Then $|S_t(c_1, c_2)| = \begin{cases} 1 - \eta_{\mathbb{F}_q} ((1 + c_1 - c_2)^2 - 4c_1) & \text{if } t = 3, \\ 2q + 1 - \eta_{\mathbb{F}_q}(-3) & \text{if } t = 4 \text{ and} \\ (c_1, c_2) = (1, -1), \\ q^{t-3} + O(q^{t-3.5}) & \text{otherwise,} \end{cases}$

where $\eta_{\mathbb{F}_q}$ is the quadratic character of \mathbb{F}_q . In particular, for $t \ge 4$ we have $\deg(T) = (1 + o(1))q^{t-3}$, unless t = 4 and $(c_1, c_2) = (1, -1)$.

Proof ideas

Define the auxiliary polynomial

$$f_{t,c_1,c_2}(Z) = N_{t-2}(Z+1)N_{t-2}(Z) + c_1N_{t-2}(Z+1) + c_2N_{t-2}(Z)$$

of degree $2(q^{t-3} + \cdots + q + 1)$ and show that for its set $R_t(c_1, c_2)$ of roots and set $R_t^*(c_1, c_2)$ of multiple roots in $\overline{\mathbb{F}_q}$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\bullet S_t(c_1,c_2) \subseteq R_t(c_1,c_2)$$

$$\blacktriangleright S_t(c_1,c_2) \cap \mathbb{F}_q \subseteq R_t^*(c_1,c_2)$$

►
$$|S_t(c_1, c_2)| + |R_t(c_1, c_2) \cap \mathbb{F}_{q^{t-2}}| = 2(q^{t-3} + \cdots + 1)$$

Proof ideas

Define the auxiliary polynomial

$$f_{t,c_1,c_2}(Z) = N_{t-2}(Z+1)N_{t-2}(Z) + c_1N_{t-2}(Z+1) + c_2N_{t-2}(Z)$$

of degree $2(q^{t-3} + \cdots + q + 1)$ and show that for its set $R_t(c_1, c_2)$ of roots and set $R_t^*(c_1, c_2)$ of multiple roots in $\overline{\mathbb{F}_q}$:

$$\bullet S_t(c_1,c_2) \subseteq R_t(c_1,c_2)$$

$$\blacktriangleright S_t(c_1,c_2) \cap \mathbb{F}_q \subseteq R_t^*(c_1,c_2)$$

► $|S_t(c_1, c_2)| + |R_t(c_1, c_2) \cap \mathbb{F}_{q^{t-2}}| = 2(q^{t-3} + \cdots + 1)$

Consequently: every root of f_{t,c_1,c_2} is contained in $\mathbb{F}_{q^{t-1}} \cup \mathbb{F}_{q^{t-2}}$, multiple roots are contained in \mathbb{F}_q and all have multiplicity two. Then some double counting, averaging, counting $|R_t(c_1,c_2) \cap \mathbb{F}_{q^{t-2}}|$ classified via the N_{t-2} -norm, more double counting, Weil character sum estimate, finish with induction ...

Bonus from the proof

- The special case $f_{4,1,-1} = h_1 \cdot h_2$ factors over \mathbb{F}_q : where $h_1(Z) = Z^{q+1} + Z + 1$ and $h_2(Z) = Z^{q+1} + Z^q + 1$.
- The sets H_i = {Z ∈ F_{q³} : h_i(Z) = 0} are inverses of each other: H₂ = H₁⁻¹.
- ▶ \mathcal{H}_1 and \mathcal{H}_2 are difference sets¹ in the multiplicative group $N_3^{-1}(1)$. In particular h_1 and h_2 factor over \mathbb{F}_{q^3} .

Corollary

$$\{Z \in \mathbb{F}_{q^3} : N_3(Z) = 1, \ N_3(Z+1) = -1\} = \mathcal{H}_1 \cup \mathcal{H}_2$$

¹Set $D \subseteq G$ is a *difference set* of a multiplicative group of G is every $g \in G \setminus \{1\}$ has a unique representation as a product $d_1 \cdot d_2 = g$, where $d_1 \in D$ and $d_2 \in D^{-1}$.

Theorem (4-neighbourhoods)

Let $q = p^k$ be a prime power, $t \ge 2$ an integer, and T a generic set of 4 vertices in NG(q, t). Then

$$\deg(T) \le 6(q^{t-4} + q^{t-5} + \dots + q + 1).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (4-neighbourhoods)

Let $q = p^k$ be a prime power, $t \ge 2$ an integer, and T a generic set of 4 vertices in NG(q, t). Then

$$\deg(T) \le 6(q^{t-4} + q^{t-5} + \dots + q + 1).$$

This also gives a new, commutive algebra-free/more elementary proof of the K_{4,7}-freeness of NG(q, 4).

Theorem (4-neighbourhoods)

Let $q = p^k$ be a prime power, $t \ge 2$ an integer, and T a generic set of 4 vertices in NG(q, t). Then

$$\deg(T) \le 6(q^{t-4} + q^{t-5} + \dots + q + 1).$$

- This also gives a new, commutive algebra-free/more elementary proof of the K_{4,7}-freeness of NG(q, 4).
- For t ≥ 5 this was not known to follow from the commutative algebraic proof.

Theorem (4-neighbourhoods)

Let $q = p^k$ be a prime power, $t \ge 2$ an integer, and T a generic set of 4 vertices in NG(q, t). Then

$$\deg(T) \le 6(q^{t-4} + q^{t-5} + \dots + q + 1).$$

- This also gives a new, commutive algebra-free/more elementary proof of the K_{4,7}-freeness of NG(q, 4).
- For t ≥ 5 this was not known to follow from the commutative algebraic proof.
- Full characterization of the 4-neighbourhoods as we did for 2and 3-neighbourhoods seems difficult.

Finding a $K_{4,6}$ in NG(q, 4): an idea

We hope to find $B_1, B_2, B_3 \in \mathbb{F}_{q^3}$ and $b_1, b_2, b_3 \in \mathbb{F}_q^*$ such that

 $N_3(Y + B_1) = b_1$, $N_3(Y + B_2) = b_2$, $N_3(Y + B_3) = b_3$,

has 6 solutions.

Finding a $K_{4,6}$ in NG(q, 4): an idea

We hope to find $B_1, B_2, B_3 \in \mathbb{F}_{q^3}$ and $b_1, b_2, b_3 \in \mathbb{F}_q^*$ such that

 $N_3(Y + B_1) = b_1$, $N_3(Y + B_2) = b_2$, $N_3(Y + B_3) = b_3$,

has 6 solutions.

Idea: We characterized those (rare) triples which had twice as many common neighbors as the average. Their corresponding system is: $N_3(Y) = 1$, $N_3(Y + 1) = -1$.

We try to combine two such triples into a quadruple and hope for the best. The corresponding system becomes

$$N_3(Y) = 1,$$
 $N_3(Y+1) = -1,$ $N_3(Y+A) = -1,$

where $A \in \mathbb{F}_{q^3}$ and $N_3(A) = 1$.

$$\begin{aligned} \mathsf{N}_3(Y) &= 1, & \mathsf{N}_3(Y+1) = -1 & (4) \\ \mathsf{N}_3(Y) &= 1, & \mathsf{N}_3(Y+1) = -1, & \mathsf{N}_3(Y+A) = -1 & (5) \end{aligned}$$

<□ > < @ > < E > < E > E のQ @

$$\begin{aligned} \mathsf{N}_3(Y) &= 1, & \mathsf{N}_3(Y+1) = -1 & (4) \\ \mathsf{N}_3(Y) &= 1, & \mathsf{N}_3(Y+1) = -1, & \mathsf{N}_3(Y+A) = -1 & (5) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition $Y \in \mathbb{F}_{q^3}$ solves (5) iff both Y and $\frac{A}{Y}$ solve (4).

$$\begin{aligned} \mathsf{N}_3(Y) &= 1, & \mathsf{N}_3(Y+1) = -1 & (4) \\ \mathsf{N}_3(Y) &= 1, & \mathsf{N}_3(Y+1) = -1, & \mathsf{N}_3(Y+A) = -1 & (5) \end{aligned}$$

Proposition

 $Y \in \mathbb{F}_{q^3}$ solves (5) iff both Y and $\frac{A}{Y}$ solve (4). Then by our characterization of (4), solutions of (5) come in pairs Y_1, Y_2 such that $A = Y_1Y_2$ and $Y_1, Y_2 \in \mathcal{H}_1 \cup \mathcal{H}_2$.

$$\begin{aligned} \mathsf{N}_3(Y) &= 1, & \mathsf{N}_3(Y+1) = -1 & (4) \\ \mathsf{N}_3(Y) &= 1, & \mathsf{N}_3(Y+1) = -1, & \mathsf{N}_3(Y+A) = -1 & (5) \end{aligned}$$

Proposition

 $Y \in \mathbb{F}_{q^3}$ solves (5) iff both Y and $\frac{A}{Y}$ solve (4). Then by our characterization of (4), solutions of (5) come in pairs Y_1, Y_2 such that $A = Y_1Y_2$ and $Y_1, Y_2 \in \mathcal{H}_1 \cup \mathcal{H}_2$.

 $\mathcal{H}_1, \mathcal{H}_2$ are difference sets, so

- ► there exists a unique *mixed* product representation A = Y₁Y₂ such that Y_i ∈ H_i
- there exists at most one \mathcal{H}_i -product representation for each *i*

Finding a $K_{4,6}$ in NG(q, 4): the finish

For 6 solutions we need an A with \mathcal{H}_i -product representation for both i = 1 and 2 that are all distinct.

Let $\mathcal{P}_i := \{hh' : h, h' \in \mathcal{H}_i, h \neq h'\}$, If $\mathcal{P}_1 \cap \mathcal{P}_2 \neq \emptyset$, we found an appropriate A.

Finding a $K_{4,6}$ in NG(q, 4): the finish

For 6 solutions we need an A with \mathcal{H}_i -product representation for both i = 1 and 2 that are all distinct.

Let $\mathcal{P}_i := \{hh' : h, h' \in \mathcal{H}_i, h \neq h'\}$, If $\mathcal{P}_1 \cap \mathcal{P}_2 \neq \emptyset$, we found an appropriate A.

Finish for $q \equiv 2 \pmod{3}$. Then $\mathcal{H}_1 \cap \mathcal{H}_2 = \emptyset$.

Was $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$, then \mathcal{P}_1 and \mathcal{P}_2 partition $N_3^{-1}(1) \setminus \{1\}$. And then

$$-1 = \sum_{N^{-1}(1) \setminus \{1\}} = \sum_{\mathcal{P}_1} + \sum_{\mathcal{P}_2} = 0 + 0$$

A contradiction.

A (sequence of) roughly d = d(n)-regular graph(s) G on n vertices is **quasirandom** if it satisfies certain properties of the Erdős-Rényi random graph $G(n, \frac{d}{n})$ with probability tending to 1 as $n \to \infty$.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

A (sequence of) roughly d = d(n)-regular graph(s) G on n vertices is **quasirandom** if it satisfies certain properties of the Erdős-Rényi random graph $G(n, \frac{d}{n})$ with probability tending to 1 as $n \to \infty$.

P1 For any two large enough subsets V_1 and V_2 of vertices the number of edges going between them is $\approx \frac{d}{n}|V_1||V_2|$.

A (sequence of) roughly d = d(n)-regular graph(s) G on n vertices is **quasirandom** if it satisfies certain properties of the Erdős-Rényi random graph $G(n, \frac{d}{n})$ with probability tending to 1 as $n \to \infty$.

P1 For any two large enough subsets V_1 and V_2 of vertices the number of edges going between them is $\approx \frac{d}{p}|V_1||V_2|$.

P2 For any fixed graph H, the number of labeled copies of H is

$$X_H(G) \approx n^{\nu(H)} \left(\frac{d}{n}\right)^{e(H)}$$
 (*H*-quasirandomness).

A (sequence of) roughly d = d(n)-regular graph(s) G on n vertices is **quasirandom** if it satisfies certain properties of the Erdős-Rényi random graph $G(n, \frac{d}{n})$ with probability tending to 1 as $n \to \infty$.

P1 For any two large enough subsets V_1 and V_2 of vertices the number of edges going between them is $\approx \frac{d}{n}|V_1||V_2|$.

P2 For any fixed graph H, the number of labeled copies of H is

$$X_H(G) \approx n^{\nu(H)} \left(\frac{d}{n}\right)^{e(H)}$$
 (*H*-quasirandomness).

P3 The second largest among the absolute values of eigenvalues of G is of smaller order than the degree d.
For dense graphs (when ^d/_n is constant) these properties are known to be equivalent.

- For dense graphs (when ^d/_n is constant) these properties are known to be equivalent.
- In general P3 always implies P1: Expander Mixing Lemma (EML).

- ► For dense graphs (when ^d/_n is constant) these properties are known to be equivalent.
- In general P3 always implies P1: Expander Mixing Lemma (EML).

How quasirandom is the projective norm graph?

- For dense graphs (when ^d/_n is constant) these properties are known to be equivalent.
- In general P3 always implies P1: Expander Mixing Lemma (EML).

How quasirandom is the projective norm graph?

Alon-Rödl and Sz.: The projective norm graph satisfies P3.

- ► For dense graphs (when ^d/_n is constant) these properties are known to be equivalent.
- In general P3 always implies P1: Expander Mixing Lemma (EML).

How quasirandom is the projective norm graph?

Alon-Rödl and Sz.: The projective norm graph satisfies P3.

► For **P2**: $n \approx q^t$, $\frac{d}{n} \approx \frac{1}{q} \Rightarrow X_H(NG(q, t))$ should be $\approx q^{t\nu(H)-e(H)}$.

- ► For dense graphs (when ^d/_n is constant) these properties are known to be equivalent.
- In general P3 always implies P1: Expander Mixing Lemma (EML).

How quasirandom is the projective norm graph?

- Alon-Rödl and Sz.: The projective norm graph satisfies P3.
- ► For **P2**: $n \approx q^t$, $\frac{d}{n} \approx \frac{1}{q} \Rightarrow X_H(NG(q, t))$ should be $\approx q^{t\nu(H)-e(H)}$.
- Alon-Rónyai-Sz.: NG(q, t) is not $K_{t,(t-1)!+1}$ -quasirandom.

- ► For dense graphs (when ^d/_n is constant) these properties are known to be equivalent.
- In general P3 always implies P1: Expander Mixing Lemma (EML).

How quasirandom is the projective norm graph?

- Alon-Rödl and Sz.: The projective norm graph satisfies P3.
- ► For **P2**: $n \approx q^t$, $\frac{d}{n} \approx \frac{1}{q} \Rightarrow X_H(NG(q, t))$ should be $\approx q^{t\nu(H)-e(H)}$.
- Alon-Rónyai-Sz.: NG(q, t) is not $K_{t,(t-1)!+1}$ -quasirandom.
- ► Alon-Pudlák: If $\Delta(H) < \frac{t+1}{2}$ then the EML shows that NG(q, t) is *H*-quasirandom. E.g. for $H = K_4$ this works when $t \ge 6$.

- ► For dense graphs (when ^d/_n is constant) these properties are known to be equivalent.
- In general P3 always implies P1: Expander Mixing Lemma (EML).

How quasirandom is the projective norm graph?

- Alon-Rödl and Sz.: The projective norm graph satisfies P3.
- ► For **P2**: $n \approx q^t$, $\frac{d}{n} \approx \frac{1}{q} \Rightarrow X_H(NG(q, t))$ should be $\approx q^{t\nu(H)-e(H)}$.
- Alon-Rónyai-Sz.: NG(q, t) is not $K_{t,(t-1)!+1}$ -quasirandom.
- Alon-Pudlák: If ∆(H) < t+1/2 then the EML shows that NG(q, t) is H-quasirandom. E.g. for H = K₄ this works when t ≥ 6.

Theorem

For $t \ge 4$ the projective norm graph NG(q, t) is H-quasirandom whenever H is a 3-degenerate simple graph.

Definition

For $n \in \mathbb{N}$ and simple graphs T and H the **generalized Turán number** ex(n, T, H) counts the maximum possible number of unlabeled copies of T in an H-free graph on n vertices.

Definition

For $n \in \mathbb{N}$ and simple graphs T and H the **generalized Turán number** ex(n, T, H) counts the maximum possible number of unlabeled copies of T in an H-free graph on n vertices.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Here we deal with the case $H = K_{t,s}$, $2 \le t \le s$.

Definition

For $n \in \mathbb{N}$ and simple graphs T and H the **generalized Turán number** ex(n, T, H) counts the maximum possible number of unlabeled copies of T in an H-free graph on n vertices.

Here we deal with the case $H = K_{t,s}$, $2 \le t \le s$.

► General upper bound - Alon-Shikhelman: $ex(n, T, K_{t,s}) =$ $O\left(n^{v(T)-\frac{e(T)}{t}}\right)$ if $\begin{array}{c} T = K_m, m \leq t+1 \\ T = K_{a,b}, a \leq b < s, a \leq t \end{array}$

Definition

For $n \in \mathbb{N}$ and simple graphs T and H the **generalized Turán number** ex(n, T, H) counts the maximum possible number of unlabeled copies of T in an H-free graph on n vertices.

Here we deal with the case $H = K_{t,s}$, $2 \le t \le s$.

- ► General upper bound Alon-Shikhelman: $ex(n, T, K_{t,s}) =$ $O\left(n^{\nu(T)-\frac{e(T)}{t}}\right)$ if $\begin{array}{c} T = K_m, m \leq t+1 \\ T = K_{a,b}, a \leq b < s, a \leq t \end{array}$
- ► EML: If s > (t − 1)! then matching lower bound using NG(q, t)

(日) (同) (三) (三) (三) (○) (○)

- for
$$T = K_m$$
 when $m < \frac{t+3}{2}$,
- for $T = K_{a,b}$ when $a \le b \le \frac{t+1}{2}$.

Kostochka-Mubayi-Verstraëte, Alon-Shikhelman: s > (t − 1)!, T = K₃ ⇒ matching lower bound for t ≥ 2.

- Kostochka-Mubayi-Verstraëte, Alon-Shikhelman: s > (t − 1)!, T = K₃ ⇒ matching lower bound for t ≥ 2.
- ► Ma-Yuan-Zhang: Bukh's random algebraic construction gives a matching lower bound when T = K_m, m ≤ t + 1 and s ≥ f(t); or T = K_{a,b}, a ≤ b, a < t,b ≤ t and s ≥ f(t).</p>

- Kostochka-Mubayi-Verstraëte, Alon-Shikhelman: s > (t − 1)!, T = K₃ ⇒ matching lower bound for t ≥ 2.
- Ma-Yuan-Zhang: Bukh's random algebraic construction gives a matching lower bound when T = K_m, m ≤ t + 1 and s ≥ f(t); or T = K_{a,b}, a ≤ b, a < t,b ≤ t and s ≥ f(t).</p>

Combining our theorem with the upper bound of Alon and Shikhelman:

Corollary

Let $t \ge 4$ and s > (t - 1)!. Then $ex(n, T, K_{t,s}) = \Theta\left(n^{v(T) - \frac{e(T)}{t}}\right)$, whenever $T = K_4$ or $T = K_{a,b}$ with $a \le 3$, $a \le b < s$.

- Kostochka-Mubayi-Verstraëte, Alon-Shikhelman: s > (t − 1)!, T = K₃ ⇒ matching lower bound for t ≥ 2.
- Ma-Yuan-Zhang: Bukh's random algebraic construction gives a matching lower bound when T = K_m, m ≤ t + 1 and s ≥ f(t); or T = K_{a,b}, a ≤ b, a < t,b ≤ t and s ≥ f(t).</p>

Combining our theorem with the upper bound of Alon and Shikhelman:

Corollary

Let $t \ge 4$ and s > (t - 1)!. Then $ex(n, T, K_{t,s}) = \Theta\left(n^{v(T) - \frac{e(T)}{t}}\right)$, whenever $T = K_4$ or $T = K_{a,b}$ with $a \le 3$, $a \le b < s$.

- Kostochka-Mubayi-Verstraëte, Alon-Shikhelman: s > (t − 1)!, T = K₃ ⇒ matching lower bound for t ≥ 2.
- Ma-Yuan-Zhang: Bukh's random algebraic construction gives a matching lower bound when T = K_m, m ≤ t + 1 and s ≥ f(t); or T = K_{a,b}, a ≤ b, a < t,b ≤ t and s ≥ f(t).</p>

Combining our theorem with the upper bound of Alon and Shikhelman:

Corollary

Let $t \ge 4$ and s > (t - 1)!. Then $ex(n, T, K_{t,s}) = \Theta\left(n^{\nu(T) - \frac{e(T)}{t}}\right)$, whenever $T = K_4$ or $T = K_{a,b}$ with $a \le 3$, $a \le b < s$.

-
$$T = K_4$$
 and $t = 4, 5$, $(t - 1)! < s < f(t)$,

- Kostochka-Mubayi-Verstraëte, Alon-Shikhelman: s > (t − 1)!, T = K₃ ⇒ matching lower bound for t ≥ 2.
- Ma-Yuan-Zhang: Bukh's random algebraic construction gives a matching lower bound when T = K_m, m ≤ t + 1 and s ≥ f(t); or T = K_{a,b}, a ≤ b, a < t, b ≤ t and s ≥ f(t).</p>

Combining our theorem with the upper bound of Alon and Shikhelman:

Corollary

Let $t \ge 4$ and s > (t - 1)!. Then $ex(n, T, K_{t,s}) = \Theta\left(n^{v(T) - \frac{e(T)}{t}}\right)$, whenever $T = K_4$ or $T = K_{a,b}$ with $a \le 3$, $a \le b < s$.

-
$$T = K_4$$
 and $t = 4, 5$, $(t - 1)! < s < f(t)$,
- $T = K_{a,b}$ with $a \le 3$, $\frac{t+1}{2} < b < s$ and $t \ge 4$
 $(t - 1)! < s < f(t)$,

- Kostochka-Mubayi-Verstraëte, Alon-Shikhelman: s > (t − 1)!, T = K₃ ⇒ matching lower bound for t ≥ 2.
- Ma-Yuan-Zhang: Bukh's random algebraic construction gives a matching lower bound when T = K_m, m ≤ t + 1 and s ≥ f(t); or T = K_{a,b}, a ≤ b, a < t, b ≤ t and s ≥ f(t).</p>

Combining our theorem with the upper bound of Alon and Shikhelman:

Corollary

Let $t \ge 4$ and s > (t - 1)!. Then $ex(n, T, K_{t,s}) = \Theta\left(n^{\nu(T) - \frac{e(T)}{t}}\right)$, whenever $T = K_4$ or $T = K_{a,b}$ with $a \le 3$, $a \le b < s$.

-
$$T = K_4$$
 and $t = 4, 5, (t-1)! < s < f(t)$,
- $T = K_{a,b}$ with $a \le 3$, $\frac{t+1}{2} < b < s$ and $t \ge 4$,
 $(t-1)! < s < f(t)$,
- $T = K_{a,b}$ with $a \le 3$, $t < b < s$ and $t \ge 4$, $s \ge f(t)$.

Conjecture The number of copies of $K_{4,6}$ in NG(q, 4) is $\Theta(q^{16})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conjecture The number of copies of $K_{4,6}$ in NG(q,4) is $\Theta(q^{16})$.

Question

For $t \geq 5$:

Is there a $K_{t,(t-1)!}$ in NG(q, t) for every large enough q? Is there a $K_{t,t}$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture The number of copies of $K_{4,6}$ in NG(q,4) is $\Theta(q^{16})$.

Question

For $t \geq 5$:

Is there a $K_{t,(t-1)!}$ in NG(q, t) for every large enough q? Is there a $K_{t,t}$?

Conjecture

There is a copy of $K_{4,6}$ in NG(\mathbb{F}, \mathbb{K}) for every infinite field \mathbb{F} and degree three Galois extension \mathbb{K} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture The number of copies of $K_{4,6}$ in NG(q,4) is $\Theta(q^{16})$.

Question

For $t \geq 5$:

Is there a $K_{t,(t-1)!}$ in NG(q, t) for every large enough q? Is there a $K_{t,t}$?

Conjecture

There is a copy of $K_{4,6}$ in NG(\mathbb{F}, \mathbb{K}) for every infinite field \mathbb{F} and degree three Galois extension \mathbb{K} .

Conjecture

 $ex(n, K_{4,6}) = o(n^{7/4})$