## How redundant is Mantel's Theorem?

Shagnik Das
Freie Universität Berlin

Extremal \& probabilistic combinatorics Banff, 5 ${ }^{\text {th }}$ September 2019

Results presented today are joint work with


Ander Lamaison


Tuan Tran

## Extremal combinatorics

## General extremal problem

Optimise an objective function subject to certain constraints.

## Extremal combinatorics

## General extremal problem

Optimise an objective function subject to certain constraints.
A real-world example

## Extremal combinatorics

## General extremal problem

Optimise an objective function subject to certain constraints.

## A real-world example

How entertaining can my talk be without the following items?
Forbidden dangerous items


## Extremal combinatorics

## General extremal problem

Optimise an objective function subject to certain constraints.

## A real-world example

How entertaining can my talk be without the following items?
Forbidden dangerous items


An origin story

Theorem (Mantel, 1907)
An n-vertex triangle-free graph can have at most $\left\lfloor n^{2} / 4\right\rfloor$ edges.

An origin story

Theorem (Mantel, 1907)
An n-vertex triangle-free graph can have at most $\left\lfloor n^{2} / 4\right\rfloor$ edges.

- Bound is best possible


An origin story

Theorem (Mantel, 1907)
An n-vertex triangle-free graph can have at most $\left\lfloor n^{2} / 4\right\rfloor$ edges.

- Bound is best possible
- Several extensions, e.g.:
- Other forbidden graphs


An origin story

Theorem (Mantel, 1907)
An n-vertex triangle-free graph can have at most $\left\lfloor n^{2} / 4\right\rfloor$ edges.

- Bound is best possible
- Several extensions, e.g.:
- Other forbidden graphs

- Stability and enumeration

An origin story

Theorem (Mantel, 1907)
An n-vertex triangle-free graph can have at most $\left\lfloor n^{2} / 4\right\rfloor$ edges.

- Bound is best possible
- Several extensions, e.g.:
- Other forbidden graphs

- Stability and enumeration
- Supersaturation

An origin story

Theorem (Mantel, 1907)
An n-vertex triangle-free graph can have at most $\left\lfloor n^{2} / 4\right\rfloor$ edges.

- Bound is best possible
- Several extensions, e.g.:
- Other forbidden graphs

- Stability and enumeration
- Supersaturation
- Triangle-free subgraphs of $G(n, p)$

Polygona non grata


Polygona non grata


Polygona non grata


Question (Kalai)
Do we need to forbid all these triangles to achieve Mantel's bound?

## Related research

Kneser's Conjecture

- Can bound $\chi(K G(n, k))$ by considering an induced subgraph on $\binom{n-k+1}{k}$ vertices [Schrijver, 1979]


## Related research

Kneser's Conjecture

- Can bound $\chi(K G(n, k))$ by considering an induced subgraph on $\binom{n-k+1}{k}$ vertices
[Schrijver, 1979]
Erdős-Ko-Rado
- Sparse random (edge-)subgraphs of $K G(n, k)$ still satisfy $\alpha\left(K G(n, k)_{p}\right)=\binom{n-1}{k-1} \quad$ [Bollobás-Narayanan-Raigorodskii, Balogh-Bollobás-Narayanan, D.-Tran, Devlin-Kahn, 2015-16]
- Sparsest subgraphs with $\alpha(G)=\binom{n-1}{k-1}$ have $\frac{n-k}{2 k}\binom{n}{k}$ edges
[D.-Tran, 2016]


## Related research

Kneser's Conjecture

- Can bound $\chi(K G(n, k))$ by considering an induced subgraph on $\binom{n-k+1}{k}$ vertices
[Schrijver, 1979]
Erdős-Ko-Rado
- Sparse random (edge-)subgraphs of $K G(n, k)$ still satisfy $\alpha\left(K G(n, k)_{p}\right)=\binom{n-1}{k-1} \quad$ [Bollobás-Narayanan-Raigorodskii, Balogh-Bollobás-Narayanan, D.-Tran, Devlin-Kahn, 2015-16]
- Sparsest subgraphs with $\alpha(G)=\binom{n-1}{k-1}$ have $\frac{n-k}{2 k}\binom{n}{k}$ edges
[D.-Tran, 2016]
Hales-Jewett
- Find monochromatic combinatorial lines in $r$-colourings of $[3]^{n}$ whose active sets are unions of few intervals
[Shelah, 1988;
Conlon-Kamčev, Leader-Räty, Kamčev-Spiegel, 2018]

A formal restatement

## Definition

Let $\mathcal{K}_{3}(G) \subseteq\binom{[n]}{3}$ be the family of triangles in a graph $G$.
Given $\mathcal{T} \subseteq\binom{[n]}{3}$, say a graph $G$ is $\mathcal{T}$-avoiding if $\mathcal{K}_{3}(G) \cap \mathcal{T}=\emptyset$.

A formal restatement

## Definition

Let $\mathcal{K}_{3}(G) \subseteq\binom{[n]}{3}$ be the family of triangles in a graph $G$.
Given $\mathcal{T} \subseteq\binom{[n]}{3}$, say a graph $G$ is $\mathcal{T}$-avoiding if $\mathcal{K} 3(G) \cap \mathcal{T}=\emptyset$.
Triangle-free $\Leftrightarrow\binom{[n]}{3}$-avoiding

A formal restatement

## Definition

Let $\mathcal{K}_{3}(G) \subseteq\binom{[n]}{3}$ be the family of triangles in a graph $G$.

Triangle-free $\Leftrightarrow\binom{[n]}{3}$-avoiding

## Definition

For $\mathcal{T} \subseteq\binom{[n]}{3}$, define

$$
\operatorname{av}(\mathcal{T})=\max \{e(G): G \text { is } \mathcal{T} \text {-avoiding }\}
$$

## A formal restatement

## Definition

Let $\mathcal{K}_{3}(G) \subseteq\binom{[n]}{3}$ be the family of triangles in a graph $G$.
Given $\mathcal{T} \subseteq\binom{[n])}{3}$, say a graph $G$ is $\mathcal{T}$-avoiding if $\mathcal{K}_{3}(G) \cap \mathcal{T}=\emptyset$.
Triangle-free $\Leftrightarrow\left(\begin{array}{c}{\left[\begin{array}{c}{[n]} \\ 3\end{array}\right) \text {-avoiding } . \text {. }}\end{array}\right.$

## Definition

For $\mathcal{T} \subseteq\binom{[n]}{3}$, define

$$
\operatorname{av}(\mathcal{T})=\max \{e(G): G \text { is } \mathcal{T} \text {-avoiding }\}
$$

and, for $0 \leq m \leq\binom{ n}{3}$, define

$$
\operatorname{av}(n, m)=\min \{\operatorname{av}(\mathcal{T}):|\mathcal{T}|=m\} .
$$

## A formal restatement

## Definition

Let $\mathcal{K}_{3}(G) \subseteq\binom{[n]}{3}$ be the family of triangles in a graph $G$.
Given $\mathcal{T} \subseteq\binom{[n])}{3}$, say a graph $G$ is $\mathcal{T}$-avoiding if $\mathcal{K}_{3}(G) \cap \mathcal{T}=\emptyset$.
Triangle-free $\Leftrightarrow\binom{[n]}{3}$-avoiding

## Definition

For $\mathcal{T} \subseteq\binom{[n]}{3}$, define

$$
\operatorname{av}(\mathcal{T})=\max \{e(G): G \text { is } \mathcal{T} \text {-avoiding }\}
$$

and, for $0 \leq m \leq\binom{ n}{3}$, define

$$
\operatorname{av}(n, m)=\min \{\operatorname{av}(\mathcal{T}):|\mathcal{T}|=m\} .
$$

Mantel: $\operatorname{av}\left(\binom{[n]}{3}\right)=\operatorname{av}\left(n,\binom{n}{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$

A formal restatement

## Definition

For $\mathcal{T} \subseteq\binom{[n]}{3}$, define

$$
\operatorname{av}(\mathcal{T})=\max \{e(G): G \text { is } \mathcal{T} \text {-avoiding }\}
$$

and, for $0 \leq m \leq\binom{ n}{3}$, define

$$
\operatorname{av}(n, m)=\min \{\operatorname{av}(\mathcal{T}):|\mathcal{T}|=m\} .
$$

## Questions

A formal restatement

## Definition

For $\mathcal{T} \subseteq\binom{[n]}{3}$, define

$$
\operatorname{av}(\mathcal{T})=\max \{e(G): G \text { is } \mathcal{T} \text {-avoiding }\}
$$

and, for $0 \leq m \leq\binom{ n}{3}$, define

$$
\operatorname{av}(n, m)=\min \{\operatorname{av}(\mathcal{T}):|\mathcal{T}|=m\} .
$$

## Questions

1 What is the smallest $m_{0}$ for which av $\left(n, m_{0}\right)=\left\lfloor n^{2} / 4\right\rfloor$ ? Which triangles should we forbid?

## A formal restatement

## Definition

For $\mathcal{T} \subseteq\binom{[n]}{3}$, define

$$
\operatorname{av}(\mathcal{T})=\max \{e(G): G \text { is } \mathcal{T} \text {-avoiding }\}
$$

and, for $0 \leq m \leq\binom{ n}{3}$, define

$$
\operatorname{av}(n, m)=\min \{\operatorname{av}(\mathcal{T}):|\mathcal{T}|=m\} .
$$

## Questions

11 What is the smallest $m_{0}$ for which av $\left(n, m_{0}\right)=\left\lfloor n^{2} / 4\right\rfloor$ ? Which triangles should we forbid?
2 How does av $(n, m)$ grow as $m$ shrinks below $m_{0}$ ?

## A modest first step

Is $m_{0}=\binom{n}{3}$ ?

A modest first step
Is $m_{0}=\binom{n}{3}$ ? No, in fact ...
Observation
For any $\mathcal{T}$ with $|\mathcal{T}|>\binom{n}{3}-\lfloor n / 2\rfloor, \operatorname{av}(\mathcal{T})=\left\lfloor n^{2} / 4\right\rfloor$.

A modest first step
Is $m_{0}=\binom{n}{3}$ ? No, in fact ...

## Observation

For any $\mathcal{T}$ with $|\mathcal{T}|>\binom{n}{3}-\lfloor n / 2\rfloor$, av $(\mathcal{T})=\left\lfloor n^{2} / 4\right\rfloor$.
This follows immediately from
Theorem (Rademacher)
Any graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges has at least $\lfloor n / 2\rfloor$ triangles.


## Trotting along

Theorem (Edwards, 1977)
In any graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, there is an edge contained in at least $n / 6$ triangles.

## Trotting along

Theorem (Edwards, 1977)
In any graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, there is an edge contained in at least $n / 6$ triangles.

Corollary
$m_{0}(n) \leq\left(\frac{5}{6}+o(1)\right) n$.

## Trotting along

Theorem (Edwards, 1977)
In any graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, there is an edge contained in at least $n / 6$ triangles.

Corollary

$$
m_{0}(n) \leq\left(\frac{5}{6}+o(1)\right) n .
$$

## Proof.

- Take $\mathcal{T}=\mathcal{G}^{(3)}\left(n, \frac{5}{6}+o(1)\right)$, a random set of triangles of density $\frac{5}{6}+o(1)$


## Trotting along

## Theorem (Edwards, 1977)

In any graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, there is an edge contained in at least $n / 6$ triangles.

## Corollary

$$
m_{0}(n) \leq\left(\frac{5}{6}+o(1)\right) n .
$$

## Proof.

- Take $\mathcal{T}=\mathcal{G}^{(3)}\left(n, \frac{5}{6}+o(1)\right)$, a random set of triangles of density $\frac{5}{6}+o(1)$
- W.h.p., every pair misses fewer than $n / 6$ triangles


## Trotting along

## Theorem (Edwards, 1977)

In any graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, there is an edge contained in at least $n / 6$ triangles.

## Corollary

$$
m_{0}(n) \leq\left(\frac{5}{6}+o(1)\right) n .
$$

## Proof.

- Take $\mathcal{T}=\mathcal{G}^{(3)}\left(n, \frac{5}{6}+o(1)\right)$, a random set of triangles of density $\frac{5}{6}+o(1)$
- W.h.p., every pair misses fewer than $n / 6$ triangles
- In any graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, $\mathcal{T}$ contains one of the triangles on Edwards' edge


## Hitting our stride

Theorem (Mubayi, 2012)
If $G$ is a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, then either
(i) G has an edge in at least $\left(\frac{1}{4}+o(1)\right) n$ edges, or
(ii) $G$ has $\Omega\left(n^{3}\right)$ triangles.

Hitting our stride

## Theorem (Mubayi, 2012)

If $G$ is a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, then either
(i) $G$ has an edge in at least $\left(\frac{1}{4}+o(1)\right) n$ edges, or
(ii) $G$ has $\Omega\left(n^{3}\right)$ triangles.

## Corollary

$$
m_{0}(n) \leq\left(\frac{3}{4}+o(1)\right) n
$$

Hitting our stride

## Theorem (Mubayi, 2012)

If $G$ is a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, then either
(i) $G$ has an edge in at least $\left(\frac{1}{4}+o(1)\right) n$ edges, or
(ii) $G$ has $\Omega\left(n^{3}\right)$ triangles.

## Corollary

$$
m_{0}(n) \leq\left(\frac{3}{4}+o(1)\right) n .
$$

## Proof.

- Take $\mathcal{T}=\mathcal{G}^{(3)}\left(n, \frac{3}{4}+o(1)\right)$
- Let $G$ be a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges

Hitting our stride

## Theorem (Mubayi, 2012)

If $G$ is a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, then either
(i) $G$ has an edge in at least $\left(\frac{1}{4}+o(1)\right) n$ edges, or
(ii) $G$ has $\Omega\left(n^{3}\right)$ triangles.

## Corollary

$$
m_{0}(n) \leq\left(\frac{3}{4}+o(1)\right) n .
$$

## Proof.

- Take $\mathcal{T}=\mathcal{G}^{(3)}\left(n, \frac{3}{4}+o(1)\right)$
- Let $G$ be a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges
- Case (i): handle as before

Hitting our stride

## Theorem (Mubayi, 2012)

If $G$ is a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, then either
(i) $G$ has an edge in at least $\left(\frac{1}{4}+o(1)\right) n$ edges, or
(ii) $G$ has $\Omega\left(n^{3}\right)$ triangles.

## Corollary

$$
m_{0}(n) \leq\left(\frac{3}{4}+o(1)\right) n .
$$

## Proof.

- Take $\mathcal{T}=\mathcal{G}^{(3)}\left(n, \frac{3}{4}+o(1)\right)$
- Let $G$ be a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges
- Case (ii): $\mathbb{P}\left(\mathcal{T} \cap \mathcal{K}_{3}(G)=\emptyset\right)=(1-p)^{\left|\mathcal{K}_{3}(G)\right|}=\exp \left(-\Omega\left(n^{3}\right)\right)$


## Hitting our stride

## Theorem (Mubayi, 2012)

If $G$ is a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges, then either
(i) $G$ has an edge in at least $\left(\frac{1}{4}+o(1)\right) n$ edges, or
(ii) $G$ has $\Omega\left(n^{3}\right)$ triangles.

## Corollary

$$
m_{0}(n) \leq\left(\frac{3}{4}+o(1)\right) n .
$$

## Proof.

- Take $\mathcal{T}=\mathcal{G}^{(3)}\left(n, \frac{3}{4}+o(1)\right)$
- Let $G$ be a graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges
- Case (ii): $\mathbb{P}\left(\mathcal{T} \cap \mathcal{K}_{3}(G)=\emptyset\right)=(1-p)^{\left|\mathcal{K}_{3}(G)\right|}=\exp \left(-\Omega\left(n^{3}\right)\right)$
- Can take a union bound over all $2\binom{n}{2}=2^{O\left(n^{2}\right)}$ graphs


## Speed check

Claim $m_{0}(n) \geq \frac{1}{2}\binom{n}{3}$.

## Speed check

Claim
$m_{0}(n) \geq \frac{1}{2}\binom{n}{3}$.

## Proof.

- Suppose $\mathcal{T} \subseteq\binom{[n]}{3},|\mathcal{T}|<\frac{1}{2}\binom{n}{3}$


## Speed check

Claim
$m_{0}(n) \geq \frac{1}{2}\binom{n}{3}$.

## Proof.

- Suppose $\mathcal{T} \subseteq\binom{[n]}{3},|\mathcal{T}|<\frac{1}{2}\binom{n}{3}$
- Averaging $\Rightarrow$ there is a pair $\{u, v\}$ contained in at most $\frac{1}{2} n-2$ triangles of $\mathcal{T}$


## Speed check

Claim
$m_{0}(n) \geq \frac{1}{2}\binom{n}{3}$.

## Proof.

- Suppose $\mathcal{T} \subseteq\binom{[n]}{3},|\mathcal{T}|<\frac{1}{2}\binom{n}{3}$
- Averaging $\Rightarrow$ there is a pair $\{u, v\}$ contained in at most $\frac{1}{2} n-2$ triangles of $\mathcal{T}$
- Equipartition the vertices $[n]=X \cup Y$ so that $\{u, v\} \cup N_{\mathcal{T}}(u, v) \subseteq X$


## Speed check

Claim

$$
m_{0}(n) \geq \frac{1}{2}\binom{n}{3}
$$

## Proof.

- Suppose $\mathcal{T} \subseteq\binom{[n]}{3},|\mathcal{T}|<\frac{1}{2}\binom{n}{3}$
- Averaging $\Rightarrow$ there is a pair $\{u, v\}$ contained in at most $\frac{1}{2} n-2$ triangles of $\mathcal{T}$
- Equipartition the vertices $[n]=X \cup Y$ so that $\{u, v\} \cup N_{\mathcal{T}}(u, v) \subseteq X$
- The complete bipartite graph with the edge $\{u, v\}$ has no triangles from $\mathcal{T}$


## Speed check

Claim

$$
m_{0}(n) \geq \frac{1}{2}\binom{n}{3}
$$

## Proof.

- Suppose $\mathcal{T} \subseteq\binom{[n]}{3},|\mathcal{T}|<\frac{1}{2}\binom{n}{3}$
- Averaging $\Rightarrow$ there is a pair $\{u, v\}$ contained in at most $\frac{1}{2} n-2$ triangles of $\mathcal{T}$
- Equipartition the vertices $[n]=X \cup Y$ so that $\{u, v\} \cup N_{\mathcal{T}}(u, v) \subseteq X$
- The complete bipartite graph with the edge $\{u, v\}$ has no triangles from $\mathcal{T}$

$$
\Rightarrow \operatorname{av}(\mathcal{T}) \geq\left\lfloor n^{2} / 4\right\rfloor+1
$$

## Closing the gap

Theorem (D.-Lamaison-Tran, 2019+)

$$
m_{0}(n)=\left(\frac{1}{2}+o(1)\right)\binom{n}{3} .
$$

## Closing the gap

Theorem (D.-Lamaison-Tran, 2019+)

$$
m_{0}(n)=\left(\frac{1}{2}+o(1)\right)\binom{n}{3} .
$$

## Proof sketch

- Goal: with high probability, $\left(\frac{1}{2}+o(1)\right)$-random set $\mathcal{T}$ of triangles meets $\mathcal{K}_{3}(G)$ for every graph $G$ with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges


## Closing the gap

Theorem (D.-Lamaison-Tran, 2019+)

$$
m_{0}(n)=\left(\frac{1}{2}+o(1)\right)\binom{n}{3} .
$$

## Proof sketch

- Goal: with high probability, $\left(\frac{1}{2}+o(1)\right)$-random set $\mathcal{T}$ of triangles meets $\mathcal{K}_{3}(G)$ for every graph $G$ with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges
- Idea: use stability for dense graphs with few triangles


## Closing the gap

Theorem (D.-Lamaison-Tran, 2019+)

$$
m_{0}(n)=\left(\frac{1}{2}+o(1)\right)\binom{n}{3} .
$$

## Proof sketch

- Goal: with high probability, $\left(\frac{1}{2}+o(1)\right)$-random set $\mathcal{T}$ of triangles meets $\mathcal{K}_{3}(G)$ for every graph $G$ with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges
- Idea: use stability for dense graphs with few triangles
- Most dense graphs have many triangles - apply union bound


## Closing the gap

Theorem (D.-Lamaison-Tran, 2019+)

$$
m_{0}(n)=\left(\frac{1}{2}+o(1)\right)\binom{n}{3} .
$$

## Proof sketch

- Goal: with high probability, $\left(\frac{1}{2}+o(1)\right)$-random set $\mathcal{T}$ of triangles meets $\mathcal{K}_{3}(G)$ for every graph $G$ with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges
- Idea: use stability for dense graphs with few triangles
- Most dense graphs have many triangles - apply union bound
- Few triangles $\Rightarrow$ close to bipartite - exploit this structure


## Robust stability

## Theorem (Füredi, 2015)

An n-vertex triangle-free graph $G$ with $\left\lfloor n^{2} / 4\right\rfloor-t$ edges can be made bipartite by removing at most $t$ edges.

## Robust stability

## Theorem

An n-vertex graph $G$ with $m \geq n^{2} / 4$ edges and $t$ triangles can be made bipartite by removing at most $72 t / n$ edges.

## Robust stability

## Theorem

An n-vertex graph $G$ with $m \geq n^{2} / 4$ edges and $t$ triangles can be made bipartite by removing at most $72 t / n$ edges.

Proven by analysing the identity

$$
3 t=\sum_{\{x, y\} \in E(G)} d_{G}(x, y)
$$

## Robust stability

## Theorem

An n-vertex graph $G$ with $m \geq n^{2} / 4$ edges and $t$ triangles can be made bipartite by removing at most $72 t / n$ edges.

Proven by analysing the identity

$$
3 t=\sum_{\{x, y\} \in E(G)} d_{G}(x, y)
$$

## Corollary

The number of $n$-vertex graphs $G$ with $m \geq n^{2} / 4$ edges and $t$ triangles is at most

$$
2^{n}\binom{n^{2} / 4}{\leq 72 t / n}\binom{n^{2} / 4}{\leq 72 t / n}=2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}
$$

## Upper bound - a few more details

## Theorem + Corollary

An $n$-vertex graph $G$ with $m \geq n^{2} / 4$ edges and $t$ triangles can be made bipartite by removing at most $72 t / n$ edges, and there are at most $2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}$ such graphs.

## Upper bound - a few more details

## Theorem + Corollary

An $n$-vertex graph $G$ with $m \geq n^{2} / 4$ edges and $t$ triangles can be made bipartite by removing at most $72 t / n$ edges, and there are at most $2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}$ such graphs.

- Expected number of graphs with $t$ triangles avoiding $\mathcal{T}$ :

$$
2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}(1-p)^{t}=2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)-\Omega(t)}
$$

- Union bound: can cover all graphs except those with $t=O(n)$

Upper bound - a few more details

## Theorem + Corollary

An $n$-vertex graph $G$ with $m \geq n^{2} / 4$ edges and $t$ triangles can be made bipartite by removing at most $72 t / n$ edges, and there are at most $2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}$ such graphs.

- Expected number of graphs with $t$ triangles avoiding $\mathcal{T}$ :

$$
2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}(1-p)^{t}=2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)-\Omega(t)}
$$

- Union bound: can cover all graphs except those with $t=O(n)$
- Stability $\Rightarrow O(1)$ edges away from bipartite, classes $X \cup Y$

Upper bound - a few more details

## Theorem + Corollary

An $n$-vertex graph $G$ with $m \geq n^{2} / 4$ edges and $t$ triangles can be made bipartite by removing at most $72 t / n$ edges, and there are at most $2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}$ such graphs.

- Expected number of graphs with $t$ triangles avoiding $\mathcal{T}$ :

$$
2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}(1-p)^{t}=2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)-\Omega(t)}
$$

- Union bound: can cover all graphs except those with $t=O(n)$
- Stability $\Rightarrow O(1)$ edges away from bipartite, classes $X \cup Y$
- Since $m>\left\lfloor n^{2} / 4\right\rfloor$, there is an internal edge $e \subseteq X$

Upper bound - a few more details

## Theorem + Corollary

An $n$-vertex graph $G$ with $m \geq n^{2} / 4$ edges and $t$ triangles can be made bipartite by removing at most $72 t / n$ edges, and there are at most $2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}$ such graphs.

- Expected number of graphs with $t$ triangles avoiding $\mathcal{T}$ :

$$
2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)}(1-p)^{t}=2^{n+O\left(\frac{t}{n} \log \frac{n^{3}}{t}\right)-\Omega(t)}
$$

- Union bound: can cover all graphs except those with $t=O(n)$
- Stability $\Rightarrow O(1)$ edges away from bipartite, classes $X \cup Y$
- Since $m>\left\lfloor n^{2} / 4\right\rfloor$, there is an internal edge $e \subseteq X$
- $d_{\mathcal{T}}(e) \gtrsim\left(\frac{1}{2}+o(1)\right) n \Rightarrow$ miss many edges between $e$ and $Y$

Fewer forbidden triangles

## Question

What is av $(n, m)$ for $m<\frac{1}{2}\binom{n}{3}$ ?

Fewer forbidden triangles

## Question

What is av $(n, m)$ for $m<\frac{1}{2}\binom{n}{3}$ ?
Theorem (D.-Lamaison-Tran, 2019+)
For $0 \leq k=o\left((n / \log n)^{1 / 3}\right)$,

$$
\operatorname{av}\left(n, p\binom{n}{3}\right)=\left\lfloor n^{2} / 4\right\rfloor+k
$$

when $2^{-1 / k} \lesssim 1-p \lesssim 2^{-1 /(k+1)}$.

Fewer forbidden triangles

## Question

What is av $(n, m)$ for $m<\frac{1}{2}\binom{n}{3}$ ?
Theorem (D.-Lamaison-Tran, 2019+)
For $0 \leq k=o\left((n / \log n)^{1 / 3}\right)$,

$$
\operatorname{av}\left(n, p\binom{n}{3}\right)=\left\lfloor n^{2} / 4\right\rfloor+k
$$

when $2^{-1 / k} \lesssim 1-p \lesssim 2^{-1 /(k+1)}$.
Gives precise result for $m=\tilde{\Omega}\left(n^{8 / 3}\right)$
Also obtain meaningful bounds for smaller values of $m$

## The very sparse setting

## Question

What happens when we can only forbid very few triangles?

## The very sparse setting

## Question

What happens when we can only forbid very few triangles?
Observation
$\operatorname{av}(n, m) \geq\binom{ n}{2}-m$.

## The very sparse setting

## Question

What happens when we can only forbid very few triangles?

## Observation

$\operatorname{av}(n, m) \geq\binom{ n}{2}-m$.

## Proof.



- For each triangle in $\mathcal{T}$, delete one of its edges from $K_{n}$
- Gives a $\mathcal{T}$-avoiding graph with at least $\binom{n}{2}-m$ edges


## The very sparse setting

## Question

What happens when we can only forbid very few triangles?

## Observation

$\operatorname{av}(n, m) \geq\binom{ n}{2}-m$.

## Proof.

- Suppose we have $\mathcal{T} \subseteq\left(\begin{array}{c}{\left[\begin{array}{c}n] \\ 3\end{array}\right),|\mathcal{T}|=m, ~(t)}\end{array}\right.$
- For each triangle in $\mathcal{T}$, delete one of its edges from $K_{n}$
- Gives a $\mathcal{T}$-avoiding graph with at least $\binom{n}{2}-m$ edges

Bound is tight if triangles in $\mathcal{T}$ are edge-disjoint $\rightarrow$ partial Steiner Triple System $\rightarrow m \leq \frac{1}{3}\binom{n}{2}$

## Beyond the Steiner range

Claim
For $t \geq 0$,

$$
\operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \geq \frac{2}{3}\binom{n}{2}-t .
$$

## Beyond the Steiner range

Claim
For $t \geq 0$,

$$
\operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \geq \frac{2}{3}\binom{n}{2}-\frac{2}{5} t .
$$

## Beyond the Steiner range

Claim
For $t \geq 0$,

$$
\operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \geq \frac{2}{3}\binom{n}{2}-\frac{2}{5} t .
$$

## Proof.

- In this range, must have edges in multiple trianges of $\mathcal{T}$


## Beyond the Steiner range

## Claim

For $t \geq 0$,

$$
\operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \geq \frac{2}{3}\binom{n}{2}-\frac{2}{5} t .
$$

## Proof.

- In this range, must have edges in multiple trianges of $\mathcal{T}$
- Greedily remove such edges one at a time
- Destroy at least two triangles of $\mathcal{T}$ in each step


## Beyond the Steiner range

## Claim

For $t \geq 0$,

$$
\operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \geq \frac{2}{3}\binom{n}{2}-\frac{2}{5} t .
$$

## Proof.

- In this range, must have edges in multiple trianges of $\mathcal{T}$
- Greedily remove such edges one at a time
- Destroy at least two triangles of $\mathcal{T}$ in each step
- Left with a partial Steiner Triple System
- Cannot be too large - gained in previous stage


## Upper bounds

## Question

Can we find matching constructions?

## Upper bounds

## Question

Can we find matching constructions?
Greedy argument worst-case: every edge in at most two triangles

## Upper bounds

## Question

Can we find matching constructions?
Greedy argument worst-case: every edge in at most two triangles
But placing a partial STS over an STS doesn't work:

- Hall $\Rightarrow$ can cover both systems with just $\frac{1}{3}\binom{n}{2}$ edges


## Upper bounds

## Question

Can we find matching constructions?
Greedy argument worst-case: every edge in at most two triangles
But placing a partial STS over an STS doesn't work:

- Hall $\Rightarrow$ can cover both systems with just $\frac{1}{3}\binom{n}{2}$ edges

Theorem (D.-Lamaison-Tran, 2019+)
Let $0 \leq t \leq \frac{7}{15}\binom{n}{2}$. Then

$$
\frac{2}{3}\binom{n}{2}-\frac{2}{5} t \leq \operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \leq \frac{2}{3}\binom{n}{2}-\frac{1}{7} t+O(n) .
$$

## Blending designs

## Theorem (D.-Lamaison-Tran, 2019+)

$$
\begin{aligned}
& \text { Let } 0 \leq t \leq \frac{7}{15}\binom{n}{2} . \text { Then } \\
& \qquad \operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \leq \frac{2}{3}\binom{n}{2}-\frac{1}{7} t+O(n) .
\end{aligned}
$$

## Proof idea

- We would like most edges to be covered by a partial STS


## Blending designs

## Theorem (D.-Lamaison-Tran, 2019+)

$$
\begin{aligned}
& \text { Let } 0 \leq t \leq \frac{7}{15}\binom{n}{2} \text {. Then } \\
& \qquad \quad \operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \leq \frac{2}{3}\binom{n}{2}-\frac{1}{7} t+O(n) .
\end{aligned}
$$

## Proof idea

- We would like most edges to be covered by a partial STS
- Try to cluster the remaining triangles in an efficient dense way
- Use av $(5,8)=6$


## Blending designs

Theorem (D.-Lamaison-Tran, 2019+)

$$
\begin{aligned}
& \text { Let } 0 \leq t \leq \frac{7}{15}\binom{n}{2} \text {. Then } \\
& \qquad \quad \operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \leq \frac{2}{3}\binom{n}{2}-\frac{1}{7} t+O(n) .
\end{aligned}
$$

## Proof idea

- We would like most edges to be covered by a partial STS
- Try to cluster the remaining triangles in an efficient dense way
- Use av $(5,8)=6$
- Decompose $K_{n}$ into edge-disjoint copies of $K_{21}$


## Blending designs

Theorem (D.-Lamaison-Tran, 2019+)

$$
\begin{aligned}
& \text { Let } 0 \leq t \leq \frac{7}{15}\binom{n}{2} \text {. Then } \\
& \qquad \quad \operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \leq \frac{2}{3}\binom{n}{2}-\frac{1}{7} t+O(n) .
\end{aligned}
$$

## Proof idea

- We would like most edges to be covered by a partial STS
- Try to cluster the remaining triangles in an efficient dense way
- Use av $(5,8)=6$
- Decompose $K_{n}$ into edge-disjoint copies of $K_{21}$
- Take a STS on most of these 21-cliques


## Blending designs

Theorem (D.-Lamaison-Tran, 2019+)

$$
\begin{aligned}
& \text { Let } 0 \leq t \leq \frac{7}{15}\binom{n}{2} \text {. Then } \\
& \qquad \quad \operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right) \leq \frac{2}{3}\binom{n}{2}-\frac{1}{7} t+O(n) .
\end{aligned}
$$

## Proof idea

- We would like most edges to be covered by a partial STS
- Try to cluster the remaining triangles in an efficient dense way
- Use av $(5,8)=6$
- Decompose $K_{n}$ into edge-disjoint copies of $K_{21}$
- Take a STS on most of these 21-cliques
- Decompose the remaining 21-cliques into copies of $K_{5}$
- Take eight triangles from each 5 -clique


## Redundancy in Turán's Theorem

## Theorem (D.-Lamaison-Tran, 2019+)

For fixed $r \geq 3$, there are constants $c, C>0$ such that, when $m=\alpha n^{2}$ :
(i) If $\alpha \lesssim \frac{1}{r(r-1)}$, then $\mathrm{av}_{r}(n, m)=\binom{n}{2}-m$.
(ii) If $\alpha \geq \frac{1}{2 r(r-1)}$, then $\mathrm{av}_{r}(n, m) \gtrsim t_{r-1}(n)+\max \left\{\frac{c n}{\alpha}, n^{2} e^{-C \alpha}\right\}$.
(iii) $\operatorname{av}_{r}(n, m) \leq t_{r-1}(n)+\max \left\{\frac{C n}{\alpha}, n^{2} e^{-c \alpha}\right\}$.

## Redundancy in Turán's Theorem

## Theorem (D.-Lamaison-Tran, 2019+)

For fixed $r \geq 3$, there are constants $c, C>0$ such that, when $m=\alpha n^{2}$ :
(i) If $\alpha \lesssim \frac{1}{r(r-1)}$, then $\mathrm{av}_{r}(n, m)=\binom{n}{2}-m$.
(ii) If $\alpha \geq \frac{1}{2 r(r-1)}$, then $\mathrm{av}_{r}(n, m) \gtrsim t_{r-1}(n)+\max \left\{\frac{c n}{\alpha}, n^{2} e^{-C \alpha}\right\}$.
(iii) $\operatorname{av}_{r}(n, m) \leq t_{r-1}(n)+\max \left\{\frac{C_{n}}{\alpha}, n^{2} e^{-c \alpha}\right\}$.

## Corollary

We only need to forbid $O\left(n^{3}\right)$ copies of $K_{r}$ to achieve Turán's bound.

## Some open problems

Mantel in the sparse range
What is the correct constant $c$ such that $\operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right)=\frac{2}{3}\binom{n}{2}-c t$ ?

## Some open problems

## Mantel in the sparse range

What is the correct constant $c$ such that $\operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right)=\frac{2}{3}\binom{n}{2}-c t$ ?

Turán in the dense range
For $r \geq 4$, what is the correct constant $D=D(r)$ such that, for all $m \geq D n^{3}$, we have $\mathrm{av}_{r}(n, m)=t_{r-1}(n)$ ?

## Some open problems

## Mantel in the sparse range

What is the correct constant $c$ such that $\operatorname{av}\left(n, \frac{1}{3}\binom{n}{2}+t\right)=\frac{2}{3}\binom{n}{2}-c t$ ?

## Turán in the dense range

For $r \geq 4$, what is the correct constant $D=D(r)$ such that, for all $m \geq D n^{3}$, we have $\mathrm{av}_{r}(n, m)=t_{r-1}(n)$ ?

## Further generalisations

What happens for other extremal problems? For instance, what if we can only forbid a limited number of four-cycles?

## Some open problems

Mantel in the sparse range
What is the correct constant $c$ such that av $\left(n, \frac{1}{3}\binom{n}{2}+t\right)=\frac{2}{3}\binom{n}{2}-c t$ ?

## Turán in the dense range

For $r \geq 4$, what is the correct constant $D=D(r)$ such that, for all $m \geq D n^{3}$, we have $\mathrm{av}_{r}(n, m)=t_{r-1}(n)$ ?

Further generalisations
What happens for other extremal problems? For instance, what if we can only forbid a limited number of four-cycles?

## Thank you!

