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Transient dynamics

Illustration of transient dynamics (from R. Capeáns, J. Sabuco and
M. A. F. Sanjuán, DCDS-B, 2018)



Transient dynamics

Illustration of the flow at a circular pier (from B.W. Melville and
S.E. Coleman, Bridge Scour Water, 2000)



Transient dynamics

Three-species food chain model with cooperative hunting (from J.
Duarte, C. Januário, N. Martins and J. Sardanyés, Chaos, 2009):

(Resource) Ṙ = R

(
1− R

K

)
− xcycCR

R + R0
,

(Consumer) Ċ = −xcC +
xcycCR

R + R0
− φ(P)

xpypC

C + C0
,

(Predator) Ṗ = −xpP + φ(P)
xpypC

C + C0
,

where
φ(P) = (1− σ)P + σP2.

I σ ∈ [0, 1] is a measure of the degree of cooperation inside the
population of predators.
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Transient dynamics

Figure: (a) σ = 0, McCann-Yodzis model; (b) (c) 0 < σ � 1



Transient dynamics

More examples:
I Dispersion of volcanic ash;

I Pollutant spreading in the atmosphere;
I Process of decision making.

Traditional approaches:

I normally hyperbolic invariant manifold;

I identifying the time scales;
I perturbing chaotic systems + measure of complexity

(Lyapunov exponent, entropy, dimension, etc.).
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Stochastic chemical reaction models

Chemical reactions:

A + X
k1−−⇀↽−−
k−1

2X , X
k2−→ C ,

I reaction rates: k1, k−1, k2,

I open system, the number of A molecules held fixed nA,

I scaling parameter V = volume× Avogadro number.

Continuous-time Markov jump process:

I XV
t : the process counting the number of X molecules,

I
XV
t

V : the process for the concentration.
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Stochastic chemical reaction models
Master equation for XV

t
V :

d
dt
p(t, n

V
)=λn−1,V p(t,

n−1
V

)−(λn,V+µn,V )p(t, nV )+µn+1,V p(t,
n+1
V

),

where p(t, n
V ) = P

[
XV
t
V = n

V

]
, and λn,V , µn,V are determined by

law of mass action.

0 1 n n + 1

k2

λn,V := k1nAn
V

µn+1,V := k−1n(n+1)
V + k2(n + 1)

k−1n(n + 1)

V
=

k−1
V 2−1 2!

(
n + 1

2

)
,

A + X
k1−−⇀↽−−
k−1

2X , X
k2−→ C .



Stochastic chemical reaction models

Mean-field approximation of XV
t
V :

ẋ = b(x), x ∈ [0,∞)

where

b(x) = k1xAx − k−1x
2 − k2x = k−1x

(
k1xA − k2

k−1
− x

)
.

I xA is concentration of A molecules (nAV → xA as V →∞).

I Assume k1xA > k2. Positive equilibrium xe := k1xA−k2
k−1

.

I Dynamics:

x(t)→ xe exponentially as t →∞.
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Stochastic chemical reaction models

Diffusion approximation of XV
t
V :

dx = b(x)dt + ε
√
a(x)dWt , x ∈ [0,∞),

where ε = 1√
V

and

a(x) = k1xAx + k−1x
2 + k2x .

I Extinction state 0 is an absorbing state.

I δ0 is the unique stationary distribution.
I Long time dynamics:

I xε(t)→ δ0 in distribution as t →∞,
I Extinction time Tε satisfies E [Tε] <∞.

I Stochastic stability: small noise stabilizes/de-stabilizes the
unstable/stable equilibrium.
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Stochastic chemical reaction models
Two-scale dynamics of the diffusion approximation

dx = b(x)dt + ε
√

a(x)dWt ,

I Eventual extinction dynamics.

I Transient dynamics: stay near xe for a (long) finite time
period.

I Large deviation. For each T > 0,

SDEε ≈ ODE on [0,T ]

for all 0 < ε� 1.
I Beyond large deviation. For each 0 < ε� 1, there is Tε such

that

SDEε ≈ ODE on [0,Tε],

SDEε 6≈ ODE on (Tε,∞).
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Stochastic chemical reaction models

Questions:

I How to rigorously characterize the transient dynamics?
Is it a corresponding state, called transient state?
What properties does the transient state have?

I How long do solutions stay with the transient state?
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QSDs and transient states

Quasi-stationary distribution: a QSD µε is a probability measure
on (0,∞) s.t.

Pµε [xε(t) ∈ •|Tε > t] = µε, ∀t > 0.

Stationary distribution for the conditioned process; expect to capture the dynamics before the extinction.

I existence, uniqueness and regularity of QSD

dµε = uεdx ;

I principal eigen-pair:

Lεuε = −λεuε,

where λε > 0 and Lεu = ε2

2 (au)xx − (bu)x ;
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QSDs and transient states

I extinction time:

Pµε [Tε > t] = e−λεt , ∀t > 0;

I conditioned dynamics:

P [xε(t) ∈ •|Tε > t]
t→∞−−−→ µε exponentially with rate ηε,

where ηε is the gap between −λε and the second eigenvalue.

I due to P. Cattiaux, P. Collet, A. Lambert, S. Martinez, S.
Meleard and J. San Martin, Ann. Probab., 2009.

Problem: λε Vs ηε.

I λε > ηε =⇒ extinction ahead of QSD;
I λε < ηε =⇒ QSD ahead of extinction.
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QSDs and transient states

Theorem (Z. Shen, S. Wang and Y. Yi, 2019)

I For each O ⊂⊂ (0,∞) \ {xe}, there are γO and εO s.t.

µε(O) ≤ e−
γO
ε2 , ∀ε ∈ (0, εO).

I The family {µε}ε is tight. Hence, µε → δxe as ε→ 0.

Commutative diagram:

x̃ε(t) µε

x(t) δe

t →∞

ε→ 0 ε→ 0

t →∞
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Conclusion and vision

Conclusion:
I use QSDs to capture the transient states;
I study the concentration of QSDs;
I obtain results that are compatible with the intuition.

Vision: stochastic model + QSD.

Advantages of stochastic theory of complicated transient dynamics:

I modeling: closer to reality;
I math theory: could be simpler and more informative;
I computation: could be more stable and accurate.
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Thank you for your attention!
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