$\begin{array}{c} {\rm Introduction}\\ {\rm Recurrence} \mbox{ and transience on } \mathbb{T}_d\\ {\rm The \ Poisson \ frog \ model \ on \ Galton-Watson \ trees}\\ {\rm Bibliography} \end{array}$

The Poisson frog model on Galton-Watson trees

Josh Rosenberg with Marcus Michelen

University of Washington

September 2019

Introduction Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Contents

1 Introduction

- Background on the frog model
- 2 Recurrence and transience on \mathbb{T}_d
 - The results of Hoffman, Johnson, and Junge
 - Transience on \mathbb{T}_d
 - Recurrence on \mathbb{T}_d
 - Extending the results to GW trees?
- 3 The Poisson frog model on Galton-Watson trees
 - Main results
 - 0-1 law and transience
 - The proof of recurrence

4 Bibliography

Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Background on the frog model

Contents

1 Introduction

- Background on the frog model
- 2 Recurrence and transience on \mathbb{T}_d
 - The results of Hoffman, Johnson, and Junge
 - Transience on \mathbb{T}_d
 - Recurrence on \mathbb{T}_d
 - Extending the results to GW trees?
- 3 The Poisson frog model on Galton-Watson trees
 - Main results
 - 0-1 law and transience
 - The proof of recurrence

4 Bibliography

Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Background on the frog model

A D

Definition

The frog model refers to a system of interacting random walks on a rooted graph.

Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Background on the frog model

Definition (continued)

Specific properties associated with the model include the following:

- Begins with one active particle (i.e. frog) at the root and some distribution of sleeping particles among the non-root vertices.
- The active particle performs a discrete time nearest neighbor random walk (biased or unbiased) on the graph.
- Any time an active particle lands on a vertex containing a sleeping particle(s), the sleeping particle(s) wakes up and begins performing its own discrete time nearest neighbor random walk (independent of those of other active particles).

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Recurrence and transience on \mathbb{T}_d} \\ \mbox{The Poisson frog model on Galton-Watson trees} \\ \mbox{Bibliography} \end{array}$

Versions previously examined

Versions of the frog model which have already been looked at include the following:

- The infinite d-ary tree \mathbb{T}_d with one sleeping particle at every non-root vertex (Hoffman, Johnson, and Junge, 2017).
- The d-dimensional Euclidean lattice Z^d with one sleeping particle at every non-root vertex (Telcs and Wormald, 1999).
- T_d with i.i.d. Poisson many sleeping particles at the non-root vertices (Hoffman, Johnson, and Junge, 2016).
- Z with i.i.d. particles per non-root vertex where particles perform random walk with drift (Gantert and Schmidt, 2009).

Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Background on the frog model

Existing results

Existing results on the frog model include

- Theorems related to cover times.
- Shape theorems.
- Results pertaining to questions of recurrence vs. transience (i.e. whether the probability that the root is visited by infinitely many particles is equal to 1 or 0 respectively).

 $\begin{array}{c} \\ Introduction\\ \textbf{Recurrence and transience on } \mathbb{T}_d\\ \text{The Poisson frog model on Galton-Watson trees}\\ Bibliography \end{array}$

The results of Hoffman, Johnson, and Junge Transience on \mathbb{T}_d Recurrence on \mathbb{T}_d Extending the results to GW trees?

Contents

- 1 Introduction
 - Background on the frog model
- 2 Recurrence and transience on \mathbb{T}_d
 - The results of Hoffman, Johnson, and Junge
 - Transience on \mathbb{T}_d
 - Recurrence on \mathbb{T}_d
 - Extending the results to GW trees?
- 3 The Poisson frog model on Galton-Watson trees
 - Main results
 - 0-1 law and transience
 - The proof of recurrence

4 Bibliography

Setup of the model

Define a version of the frog model on \mathbb{T}_d (the d-ary tree) with the following properties:

- Each non-root vertex begins with $Poiss(\lambda)$ sleeping particles.
- Upon activation, particles perform unbiased nearest-neighbor random walks on the tree.

Recurrence and transience on \mathbb{T}_d

In 2016 Hoffman, Johnson, and Junge proved that for every $d \ge 2$, there exists $\lambda_c(d) \in (0, \infty)$ such that this version of the frog model on \mathbb{T}_d is recurrent for $\lambda > \lambda_c(d)$ and transient for $\lambda < \lambda_c(d)$.

Dominating the model

- Define a BRW model on T_d where an active particle gives birth to Poiss(λ) active particles *every* time it steps away from the root.
- Show, via a coupling, that this model dominates the frog model w.r.t. the number of returns to the root.
- To establish transience for the frog model, it suffices to do so for the branching model.

Setting up a weight function

Select a constant $lpha \in (0,1)$ and define

$$X_n := \sum_{f_i} \alpha^{|f_i|},$$

where the f_i 's range over all active particles at time n, and |f| denotes the level at which the active particle f resides.

Completing the proof of transience

Show that for λ sufficiently small, and a suitable choice of α , X_n is a supermartingale. This implies convergence of X_n , which implies transience of the branching model, and thus the frog model as well.

Introduction	The results of Hoffman, Johnson, and Junge
Recurrence and transience on \mathbb{T}_d	Transience on \mathbb{T}_d
The Poisson frog model on Galton-Watson trees	Recurrence on \mathbb{T}_d
Bibliography	Extending the results to GW trees?

The non-backtracking frog model

Define the non-backtracking frog model, where activated particles perform non-backtracking (i.e. loop-erased) random walks on \mathbb{T}_d that are stopped at the root.

The self-similar frog model

The self-similar frog model is defined by making the following modifications to the non-backtracking model.

- After the first time a vertex v is landed on by a particle, all other particles that jump from ∀ to v are stopped upon hitting v.
- If v is hit for the first time by more than one particle simultaneously, then all but one (chosen randomly) are stopped.

Introduction Recurrence and transience on T _d The Poisson frog model on Galton-Watson trees Bibliography	The results of Hoffman, Johnson, and Junge Transience on \mathbb{T}_d Recurrence on \mathbb{T}_d Extending the results to GW trees?
--	---

Coupling the models

Let Z represent the number of times the root is hit in the ordinary frog model on \mathbb{T}_d , and let Z' represent the number of times it is hit in the self-similar frog model. The two models can be coupled so that $Z \ge Z'$.

Introduction **Recurrence and transience on T_d** The Poisson frog model on Galton-Watson trees Bibliography The results of Hoffman, Johnson, and Junge Transience on \mathbb{T}_d **Recurrence** on \mathbb{T}_d Extending the results to GW trees?

Illustration of the self-similar model using star graph on \mathbb{T}_d

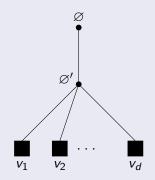


Figure: The number of particles from the subtree rooted at v_i that hit \emptyset' (conditioned on v_i being hit) is treated as a *black box* random variable. Has same distribution as number of active particles that hit \emptyset .

Constructing the recursion

We can think of the system as an operator ${\mathcal A}$ acting on the distribution $\pi.$

- Let π represent the distribution of the number of active particles from the box v_i that hit \emptyset (conditioned on v_i being activated).
- Let $\mathcal{A}\pi$ represent the distribution of the number of active particles that hit \varnothing .

Introduction	The results of Hoffman, Johnson, and Junge
Recurrence and transience on \mathbb{T}_d	Transience on \mathbb{T}_d
The Poisson frog model on Galton-Watson trees	Recurrence on \mathbb{T}_d
Bibliography	Extending the results to GW trees?

Completing the proof

A bootstrapping argument in order to establish recurrence of the self-similar model can be constructed as follows.

- Show that for λ sufficiently large, we have $\mathcal{A}(\text{Poiss}(\mu)) \succeq \text{Poiss}(\mu + \epsilon)$ for every $\mu \ge 0$ (for some $\epsilon > 0$).
- Establish monotonicity of \mathcal{A} i.e. $\pi_1 \succeq \pi_2 \implies \mathcal{A}\pi_1 \succeq \mathcal{A}\pi_2$.
- Conclude, based on the fact that $\eta = \mathcal{A}^n \eta \succeq \mathcal{A}^n (\text{Poiss}(0)) \to \infty \text{ as } n \to \infty$, that the distribution η is concentrated at ∞ .

Introduction	The results of Hoffman, Johnson, and Junge
Recurrence and transience on \mathbb{T}_d	
The Poisson frog model on Galton-Watson trees	
Bibliography	Extending the results to GW trees?

Questions posed by Hoffman, Johnson, and Junge

Question 1: Does there also exist a critical value $\lambda_c \in (0, \infty)$ separating recurrent and transient regimes for the Poisson frog model on Galton-Watson trees?

Question 2: If so, does the value of λ_c depend only on the maximum value attainable by the offspring distribution Z, or on the entire distribution?

 $\begin{array}{c} Introduction \\ Recurrence and transience on <math display="inline">\mathbb{T}_d \\ \textbf{The Poisson frog model on Galton-Watson trees} \\ Bibliography \end{array}$

Main results)-1 law and transience The proof of recurrence

Contents

1 Introduction

Background on the frog model

2 Recurrence and transience on \mathbb{T}_d

- The results of Hoffman, Johnson, and Junge
- Transience on \mathbb{T}_d
- Recurrence on \mathbb{T}_d
- Extending the results to GW trees?

3 The Poisson frog model on Galton-Watson trees

- Main results
- 0-1 law and transience
- The proof of recurrence

4 Bibliography

Introduction Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Main results 0-1 law and transience The proof of recurrence

Image: A = A

λ_c

Theorem. Let GW be the measure on Galton-Watson trees induced by an offspring distribution Z for which $(Z \ge 2) = 1$ and $[Z^{4+\epsilon}] < \infty$ for some $\epsilon > 0$. Then there exists a constant $\lambda_c \in (0, \infty)$ such that, for GW-a.s. every **T**, the frog model with i.i.d. Poiss(λ) particles per non-root vertex is transient for every $\lambda < \lambda_c$, and recurrent for every $\lambda > \lambda_c$.

Introduction Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Main results 0-1 law and transience The proof of recurrence

No intermediate regime

To prove the theorem we need to rule out the possibility of an intermediate regime. This means showing that

 $\mathsf{FM}_{\lambda}(\mathsf{recurrence}) > 0 \implies \mathsf{FM}_{\lambda}(\mathsf{recurrence}) = 1.$

Proof involves establishing ergodicity of the random shift operator.

 $\begin{array}{c} Introduction \\ Recurrence and transience on <math display="inline">\mathbb{T}_d \\ \textbf{The Poisson frog model on Galton-Watson trees} \\ Bibliography \end{array}$

Main results 0-1 law and transience The proof of recurrence

A 1

Transience

The proof of transience on non-regular trees of degree 3 or higher is nearly the same as the proof for regular trees.

Introduction Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Main results 0-1 law and transience The proof of recurrence

The truncated frog model

Define the truncated frog model to be a model where activated particles perform loop-erased walks that are stopped at the root, and where only one particle can jump to a vertex v from its parent without being stopped.

 $\begin{array}{c} Introduction \\ Recurrence and transience on <math display="inline">\mathbb{T}_d \\ \textbf{The Poisson frog model on Galton-Watson trees} \\ Bibliography \end{array}$

Main results 0-1 law and transience The proof of recurrence

< □ > <

Bootstrapping

Let $\text{TFM}_{T}^{(\lambda)}$ denote law of truncated frog model on T with $\text{Poiss}(\lambda)$ particles per non-root vertex. To prove recurrence, bootstrap is performed on the following quantity:

$$\mathbb{E}_{\mathsf{AGW}\times\mathsf{HARM}_{\mathsf{T}}}\left[\mathsf{TFM}_{\mathsf{T}(v_n)}^{(\lambda)}(v_{n+1} \text{ is activated})\right]$$

Introduction Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Main results 0-1 law and transience The proof of recurrence

Illustration of random path

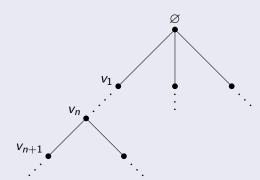


Figure: We choose a non-backtracking path from the root v_0, v_1, \ldots . Look at probability v_{n+1} is activated, conditioned on v_n being activated. Then take expectation w.r.t. AGW × HARM_T. Introduction Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Main results 0-1 law and transience The proof of recurrence

< A > <

Main step

h

Proposition. There exist constants q, α_o , and λ_o in $(0, \infty)$ such that, for all $\alpha > \alpha_o$ and $\lambda > \lambda_o$, the inequality

$$\mathbb{E}_{\mathsf{AGW}\times\mathsf{HARM}_{\mathsf{T}}}\left[\mathsf{TFM}_{\mathsf{T}(v_n)}^{(\lambda)}(v_{n+1} \text{ is activated})\right] \geq 1 - e^{-\alpha}$$

holding for all $n \ge 1$ in fact implies that the inequality

$$\mathbb{E}_{\mathsf{AGW}\times\mathsf{HARM}_{\mathsf{T}}}\left[\mathsf{TFM}_{\mathsf{T}(v_n)}^{(\lambda)}(v_{n+1} \text{ is activated})\right] \geq 1 - e^{-(\alpha+q)}$$

olds for every $n \geq 1$.

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Recurrence and transience on \mathbb{T}_d} \\ \mbox{The Poisson frog model on Galton-Watson trees} \\ \mbox{Bibliography} \end{array}$

Main results 0-1 law and transience The proof of recurrence

Steps in proving the proposition

- If no particles from v_n hit v_{n+1}, then let v^{*} be sibling of v_{n+1} hit by one of these particles.
- Using induction hypothesis, we know large portion (w.r.t. harmonic measure) of *m*th generation descendants of v* are activated with high probability.
- Use fact that HARM_T(v) ≈ p(v, Ø) to estimate number of activated particles from descendants of v* that come back and hit v*.
- With high likelihood, one of these will then go from v* to v_n, and then to v_{n+1}, thus activating it. This allows us to bootstrap quantity

$$\mathbb{E}_{\mathsf{AGW}\times\mathsf{HARM}_{\mathsf{T}}}\left[\mathsf{TFM}_{\mathsf{T}(v_n)}^{(\lambda)}(v_{n+1} \text{ is activated})\right]$$

Introduction Recurrence and transience on \mathbb{T}_d The Poisson frog model on Galton-Watson trees Bibliography

Main results 0-1 law and transience The proof of recurrence

Completing the proof of recurrence

 Combining proposition with bootstrap implies that for all n, and λ large enough,

$$\mathbb{E}_{\mathsf{AGW}\times\mathsf{HARM}_{\mathsf{T}}}\left[\mathsf{TFM}_{\mathsf{T}(\nu_n)}^{(\lambda)}(\nu_{n+1} \text{ is activated})\right] = 1.$$

- This then implies all vertices of **T** are activated almost surely.
- Then once again use fact that HARM_T(v) ≈ p(v, Ø) to complete proof.

Introduction Recurrence and transience on T_de The Poisson frog model on Galton-Watson trae **Bibliography**

Contents

1 Introduction

Background on the frog model

2 Recurrence and transience on \mathbb{T}_d

- The results of Hoffman, Johnson, and Junge
- Transience on \mathbb{T}_d
- Recurrence on \mathbb{T}_d
- Extending the results to GW trees?

3 The Poisson frog model on Galton-Watson trees

- Main results
- 0-1 law and transience
- The proof of recurrence

4 Bibliography

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Recurrence and transience on $$\mathbb{T}_d$} \\ \mbox{The Poisson frog model on Galton-Watson trees} \\ \mbox{Bibliography} \end{array}$

Bibliography

- Nina Gantert and Phillip Schmidt, Recurrence for the frog model with drift on Z. Markov Process. Related Fields 15(1) (2009), 51-58.
- Christopher Hoffman, Tobias Johnson, and Matthew Junge, From transience to recurrence with Poisson tree frogs, Ann. Appl. Probab. 26(3) (2016), 1620-1635.
- Christopher Hoffman, Tobias Johnson, and Matthew Junge, Recurrence and transience for the frog model on trees, Ann. Probab. 45(5) (2017), 2826-2854.
- András Telcs and Nicholas C. Wormald, Branching and tree indexed random walks on fractals, J. Appl. Probab. 36(4) (1999), 999-1011.