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Introduction of optimal liquidation in target zone model

Optimal liquidation in target zone model

We study the optimal buying and selling strategies when the price of an asset is in
a target zone.

Price is modelled by a diffusion process which is reflected at one barrier or
two.

Reflected stochastic differential equation with a pair of solutions (y., L.)
y0,y
r = y +

∫ r

0

βs(y
0,y
s ) ds+

∫ r

0

σs(y
0,y
s ) dWs + Lr, r ∈ [0, T ],

yr ≥ a, a.s. for all r ∈ [0, T ].∫ T

0

(y0,a
s − a) dLs = 0, (Skorohod condition)

The process L. is endogenous. It is a nondecreasing process with L0 = 0.

Refer to: Andrey Pilipenko, An Introduction to Stochastic Differential Equations
with Reflection, Potsdam University Press, 2014
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Introduction of optimal liquidation in target zone model

EUR/CHF

EUR/CHF exchange rate from Sep. 1, 2011 through Dec. 31, 2012

On Sept. 6, 2011, the Swiss National Bank announced that it would enforce
a minimum exchange rate of 1.20 EUR/CHF.
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Introduction of optimal liquidation in target zone model

USD/HKD

USD/HKD exchange rate from Sep. 2009- Sep, 2019

The prices are in [7.75, 7.85]
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Introduction of optimal liquidation in target zone model

Optimal liquidation in target zone model (Continue)

An agent try to close a position of x shares of asset before the terminal time
T. x

0,x
r = x−

∫ r

0

ξs ds−
∫ r

0

∫
Z
ρs(z)π(dz, ds), r ∈ [0, T ],

x0,x
T = 0

{ξs, s ∈ [0, T ]}: trading continuously with rate ξ, such as high frequency
trading
{ρs, s ∈ [0, T ]}: transact large blocks of shares at discrete time. e.g, trading
in the dark pool
π Poisson random measure: Dark pool executions
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Introduction of optimal liquidation in target zone model

Optimal Liquidation in target zone model (Continue)

Assume that the transactions (HFT and dark pool) of agent has no effect on
the price

Then the overall liquidity costs entailed by the liquidation strategy can be
written as

J(x, y; ξ, ρ) =E

[ ∫ T

0

(
ηs(y

0,y
s )|ξs|q + λs(y

0,y
s )|x0,x,ξ,ρ

s |q
)
ds

+

∫ T

0

∫
Z
γs(y

0,y
s , z)|ρs(z)|q µ(dz)ds

]
where q ≥ 1.
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Introduction of optimal liquidation in target zone model
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Introduction of optimal liquidation in target zone model

Optimal Liquidation in target zone

(Ω, F̄ , (F̄t)t∈[0,T ],P) be a complete filtered probability space

two independent Wiener processes W and B.

an point process J̃ on a non-empty Borel set Z ⊂ Rl with finite characteristic
measure µ(dz)

x0,x,ξ,ρ
r = x−

∫ r

0

ξs ds−
∫ r

0

∫
Z
ρs(z)π(dz, ds), r ∈ [0, T ],

x0,x,ξ,ρ
T = 0,

y0,y
r = y +

∫ r

0

βs(y
0,y
s ) ds+

∫ r

0

σs(y
0,y
s ) dWs +

∫ r

0

σ̄s(y
0,y
s ) dBs + Lr,

yr ≥ a, a.s. for all r ∈ [0, T ].∫ T

0

(y0,a
s − a) dLs = 0, (Skorohod condition)
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Introduction of optimal liquidation in target zone model

Dynamic System

To use the dynamic program principle, we consider the dynamic system, for
t ∈ [0, T ],

xt,x;ξ,ρ
r = x−

∫ r

t

ξs ds−
∫ r

t

∫
Z
ρs(z)π(dz, ds), r ∈ [t, T ],

xt,x;ξ,ρ
T = 0,

yt,yr = y +

∫ r

t

βs(y
t,y
s ) ds+

∫ r

t

σs(y
t,y
s ) dWs +

∫ r

t

σ̄s(y
t,y
s ) dBs + Lr,

yr ≥ a, a.s. for all r ∈ [t, T ].∫ T

t

(y0,a
s − a) dLs = 0, (Skorohod condition)

Denote by (Ft)t∈[0,T ] the augmented filtration generated by W .

β, σ, σ̄ are all adapted to (Ft)t∈[0,T ].
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Introduction of optimal liquidation in target zone model

Value function

Define the dynamical cost function

Jt(x, y; ξ, ρ) = E

[∫ T

t

(
ηs(y

t,y
s )|ξs|q + λs(y

t,y
s )|xt,x;ξ,ρ

s |q
)
ds

+

∫ T

t

∫
Z
γs(y

t,y
s , z)|ρs(z)|q µ(dz)ds

∣∣∣F̄t

]
, t ∈ [0, T ],

where the coefficients ηs(y), λs(y) and γs(y, z) are F -adapted.

The value function is given by

Vt(x, y) = ess inf
(ξ,ρ)∈A

Jt(x, y; ξ, ρ) t ∈ [0, T ),

where A is the set of admissible controls.
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Introduction of optimal liquidation in target zone model

Admissible control

An admissible controls is (ξ, ρ) ∈ Lq
F̄

(0, T ;R)× Lq
F̄

(0, T ;Lq(Z)) (q ∈ (1,∞))
that satisfy almost surely the terminal state constraint

xt,x;ξ,ρ
T = 0

Lemma

Given any admissible control pair (ξ, ρ) ∈ Lq
F̄

(0, T )× Lq
F̄

(0, T ;Lq(Z)), we may

find a corresponding admissible control pair (ξ̂, ρ̂) ∈ Lq
F̄

(0, T )× Lq
F̄

(0, T ;Lq(Z))
satisfying:

(i) the cost associated to (ξ̂, ρ̂) is no more than that of (ξ, ρ);

(ii) the corresponding state process x0,x;ξ̂,ρ̂ is a.s. monotone;

(iii) it holds that for each t ∈ [0, T ],

E

[
sup
s∈[t,T ]

|x0,x;ξ̂,ρ̂
s |q

∣∣∣∣∣ F̄t

]
= |x0,x;ξ̂,ρ̂

t |q ≤ C(T − t)q−1E

[∫ T

t

|ξ̂s|q ds

∣∣∣∣∣ F̄t

]
.

where the constant C > 0 is independent of (x, ξ̂, ρ̂).
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Hamilton Jacobi Bellmann (HJB) equation

HJB equation for the Value function

The qth-power structure of the cost functional suggests a multiplicative
decomposition of the value function of the form

Vt(x, y) = ut(y)|x|q.

Here the processes u, together with another adapted process ψ, satisfies the
following backward SPDE of Neumann type with singular terminal term:

−dut(y) =

[
αD2u+ σTDψ + βDu+ λ− |u|q∗

(q∗ − 1)|η|q∗−1
− µ(Z)u

+

∫
Z

γ·(·, z)u
(|γ·(·, z)|q∗−1 + |u|q∗−1)q−1

µ(dz)

]
(t, y) dt− ψt(y)dWt,

Dut(a) = 0, t ∈ [0, T ).

uT (y) =∞, y ∈ D,

(1)

where q∗ = q
q−1 is the Hölder conjugate of q and

αt(y) :=
1

2

[
σTt (y)σt(y) + σ̄Tt (y)σ̄t(y)

]
.
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Hamilton Jacobi Bellmann (HJB) equation

Notations

we denote by S p
F (s, t;H) the set of all the H-valued and Fr-adapted continuous

processes (Xr)r∈[s,t] such that

‖X‖S p
F (s,t;H) :=

∥∥∥∥∥ sup
r∈[s,t]

‖Xr‖H

∥∥∥∥∥
Lp(Ω)

<∞.

By L p
F (s, t;H) we denote the class of H-valued Fr-adapted processes (ur)r∈[s,t]

such that

‖u‖L p
F (s,t;H) := ‖‖u(·)‖H‖Lp(Ω×[s,t]) <∞.

Hk([s, t]×O) :=
(
S 2

F (s, t;Hk(O)) ∩L 2
F (s, t;Hk+1(O))

)
×L 2

F (s, t;Hk(O)),

where O ⊂ D, and Hk(O) being Sobolev space.
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Hamilton Jacobi Bellmann (HJB) equation

Definition of the strong solution

A pair of processes (u, ψ) is a strong solution to equation (1) if for all τ ∈ (0, T )
and b ∈ R with b > a, it holds that (u, ψ)1[0,τ ]×[a,b] ∈ H1([0, τ ]× [a, b]), and with
probability 1, for all t ∈ [0, τ ],

ut(y) = uτ (y) +

∫ τ

t

[
1

2
αD2u+ σTDψ + βDu+ λ− |u|q∗

(q∗ − 1)|η|q∗−1
− µ(Z)u

+

∫
Z

γ·(·, z)u
(|γ·(·, z)|q∗−1 + |u|q∗−1)q−1

µ(dz)

]
(s, y) ds−

∫ τ

t

ψs(y)dWs, dy-a.e.,

with

Dut(a) = 0, for t ∈ [0, τ ], and lim
τ→T

uτ (y) =∞, for all y ∈ D, a.s.

We would note that the zero Neumann boundary condition is holding in the sense
that with probability 1, for each t ∈ [0, T ),

lim
δ→0+

1

δ

∫ a+δ

a

Dut(x) dx = 0.
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Hamilton Jacobi Bellmann (HJB) equation

Assumptions

(Measurability and boundedness) The function
γ : Ω× [0, T ]× Rd ×Z −→ [0,+∞] is P ×B(Rd)×Z -measurable, and
the functions

β, σ, σ̄, η, λ : Ω× [0, T ]× R −→ R× Rd × Rm × R+ × R+

are P ×B(Rd)-measurable and essentially bounded by Λ > 0.

(Lipschitz-continuity) For h = λ, η, β, σi, σ̄j , i = 1, . . . , d, j = 1 . . . ,m, it
holds that for all y1, y2 ∈ R and (ω, t) ∈ Ω× [0, T ],

|ht(y1)− ht(y2)|+ ess sup
z∈Z

|γt(y1, z)− γt(y2, z)| ≤ Λ |y1 − y2| ,

where Λ is the constant in (A1).

There exist constants κ > 0 and κ0 > 0 such that ηs(y) ≥ κ0 and

(Superparabolicity)
m∑
i=1

∣∣σ̄is(y)
∣∣2 ≥ κ, a.s., ∀ (s, y) ∈ [0, T ]× R.
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Neumann problem of semilinear BSPDEs
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Neumann problem of semilinear BSPDEs

Newmann problems

For any y ∈ [a,+∞), ut(y) is bounded. To consider it in Sobolev space
Hk([a,+∞)), we introduce a weight function

θ : R→ R, y 7→
(
1 + |y − a|2

)−1
,

and we may analyze θu instead of u.
(u, ψ) is a solution to (1) if and only if (v, ζ) := (θu, θψ) solves

−dvt(y) =

[
αD2v + σTDζ + λθ − |v|q∗

(q∗ − 1)|θη|q∗−1
− µ(Z)v

+

∫
Z

θγ(·, z)v
(|θγ(·, z)|q∗−1 + |v|q∗−1)q−1

µ(dz) + f(t, y,Dv, v, ζ)

]
(t, y) dt

− ζt(y) dWt, (t, y) ∈ (0, T )×D,
Dvt(a) = 0, for t ∈ [0, T ],

vT (y) =∞,
(2)

with f being linear.
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Neumann problem of semilinear BSPDEs

Solution of (2)

Two difficulties:

q∗th-power growth in v in the drift term

the terminal term is ∞
To deal with them

Step 1: Lipschitz continuous equation with finite terminal condition

Step 2: truncations on the quadratic growth and the infinite terminal value
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Neumann problem of semilinear BSPDEs


−dvt(y) =

[
αD2v + σTDψ + F (t, y,Dv, v, ψ)

]
dt− ψt(y) dWt,

(t, y) ∈ (0, T )×D,
Dvt(a) = 0, t ∈ [0, T ],

vT (y) = G(y), ∀y ∈ D̄.

(3)

Existence and Uniqueness theorem

The BSPDE (3) admits a unique strong solution (v, ζ) lying in M1, and

‖(v, ζ)‖H1 ≤ C
(
‖G‖L∞(Ω;H1(D)) + ‖F0‖M2

F (0,T ;L2(D))

)
,

with the constant C depending on κ,Λ, T and K.

Comparison theorem

Suppose that (v1, ψ1) and (v2, ψ2) are strong solutions of (3) with (G1, F 1) and
(G2, F 2), If G1 ≤ G2 and F 1(t, y,Dv1, v1, ψ1) ≤ F 2(t, y,Dv1, v1, ψ1), then

v1
t (y) ≤ v2

t (y), a.s.
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Neumann problem of semilinear BSPDEs

Step 2: Truncation of the q∗-power term in the drift term

−
∣∣(θ−1|v|

)
∧N

∣∣q∗−1

(q∗ − 1)|η|q∗−1
|v| instead of

θ−1|v|q∗

(q∗ − 1)|η|q∗
.

Let N → +∞.

Step 3: Truncation of the singular terminal term

vT (y) = Mθ(y) instead of VT (y) = +.

Let M → +∞.
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Verification theorem and feedback control
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Verification theorem and feedback control

Verification theorem and optimal feedback control

Theorem

Suppose that (u, ψ) is a strong solution to BSPDE (1) that

(θu, θψ)1[0,t] ∈ H1([0, t]×D), t ∈ (0, T ), (4)

and
c0

(T − t)q−1
≤ ut(y) ≤ c1

(T − t)q−1
, a.s. ∀(t, y) ∈ [0, T )×D, (5)

with c0 and c1 being two positive constants. Then,

V (t, y, x) := ut(y)|x|q, (t, x, y) ∈ [0, T ]× R× R,

coincides with the value function. Moreover, the optimal (feedback) control is
given by

(ξ∗t , ρ
∗
t (z)) =

(
|ut(yt)|q

∗−1
xt

|ηt(yt)|q
∗−1 ,

|ut(yt)|q
∗−1

xt−

|γt(yt, z)|q
∗−1

+ |ut(yt)|q
∗−1

)
, for t ∈ [0, T ).

(6)
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Verification theorem and feedback control

Thank you for your attention!
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