A cocycle Perron-Frobenius theorem for random dynamical systems on Banach spaces

Joseph Horan
University of Victoria

BIRS Retreat for Young Researchers in
Probability and Areas of Application

Banff, AB September 28, 2019

Outline

Motivation: Markov Chains

Generalized Perron-Frobenius Theorem (for Cocycles)

Paired Tent Maps Example

Classical Perron-Frobenius Theorem

Theorem (Perron 1908, Frobenius 1912)
Let $P \in M_{d}\left(\mathbb{R}_{\geq 0}\right)$ be such that there exists $n \geq 1$ with $\left(P^{n}\right)_{i j}>0$ for all i, j (P is primitive). Then:

1. the spectral radius $\rho(P)$ of P is a simple eigenvalue of P, no other eigenvalues of modulus $\rho(P)$;
2. the eigenvector v corresponding to $\rho(P)$ is positive (that is, has all positive entries);
3. if w is the left-eigenvector for P corresponding to $\rho(P)$ (with $w \cdot v=1)$, then $\rho(P)^{-n} P^{n} x \underset{n \rightarrow \infty}{\longrightarrow}(w \cdot x) v$ for all $x \in \mathbb{R}^{d}$.

Markov Chain Example

$$
P=\left[\begin{array}{llll}
0.5 & 0.2 & 0.1 & 0.1 \\
0.3 & 0.6 & 0.1 & 0.1 \\
0.1 & 0.1 & 0.4 & 0.4 \\
0.1 & 0.1 & 0.4 & 0.4
\end{array}\right]
$$

Markov Chain Example

$$
\begin{aligned}
& \sigma(P)=\left\{1, \frac{3}{5}, \frac{3}{10}, 0\right\} \\
& v=\left[\begin{array}{c}
3 / 14 \\
2 / 7 \\
1 / 4 \\
1 / 4
\end{array}\right], w=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
P=\left[\begin{array}{llll}
0.5 & 0.2 & 0.1 & 0.1 \\
0.3 & 0.6 & 0.1 & 0.1 \\
0.1 & 0.1 & 0.4 & 0.4 \\
0.1 & 0.1 & 0.4 & 0.4
\end{array}\right]
$$

If $w \cdot x=0$, then

$$
\left\|P^{n} x\right\|_{1}=O\left(\left(\frac{3}{5}\right)^{n}\right)
$$

Definitions

(Ω, μ, σ) an invertible, ergodic probability-preserving transformation: "base dynamics".

Cocycle: $A_{\omega} \in M_{d}(\mathbb{R})$ or $\mathcal{B}(X), A_{\omega}^{(n)}=A_{\sigma^{n-1}(\omega)} \cdots A_{\sigma(\omega)} A_{\omega}$.

Definitions

(Ω, μ, σ) an invertible, ergodic probability-preserving transformation: "base dynamics".

Cocycle: $A_{\omega} \in M_{d}(\mathbb{R})$ or $\mathcal{B}(X), A_{\omega}^{(n)}=A_{\sigma^{n-1}(\omega)} \cdots A_{\sigma(\omega)} A_{\omega}$.
Lyapunov exponents: exponential growth rates for the cocycle.

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|A_{\omega}^{(n)} x\right\|=\lambda(x, \omega)
$$

(Multiplicative Ergodic Theorem: actually discrete! Like eigenvalues.)

Definitions

Cone: $\mathcal{C} \subset \mathbb{R}^{d}$ or X, closed, convex, $\mathcal{C} \cap-\mathcal{C}=\{0\}$.
Generating: $\mathcal{C}-\mathcal{C}=X$.
Partial order: $x \preceq y$ if and only if $y-x \in \mathcal{C}$.
D-adapted: $-y \preceq x \preceq y$ implies $\|x\| \leq D\|y\|$ (a.k.a. "normal").

Definitions

Cone: $\mathcal{C} \subset \mathbb{R}^{d}$ or X, closed, convex, $\mathcal{C} \cap-\mathcal{C}=\{0\}$.
Generating: $\mathcal{C}-\mathcal{C}=X$.
Partial order: $x \preceq y$ if and only if $y-x \in \mathcal{C}$.
D-adapted: $-y \preceq x \preceq y$ implies $\|x\| \leq D\|y\|$ (a.k.a. "normal").
Hilbert projective metric: For a cone \mathcal{C} and $v, w \in \mathcal{C}$, define:

$$
\begin{gathered}
\alpha(v, w)=\sup \{\lambda>0: \lambda v \preceq w\}, \\
\beta(v, w)=\inf \{\mu>0: w \leq \mu v\}, \\
\theta(v, w)=\log \left(\frac{\beta(v, w)}{\alpha(v, w)}\right) .
\end{gathered}
$$

History

- M. Krein, M. Rutman, 1948: Compact linear operators preserving a cone
- Ga. Birkhoff, 1957: Operator on vector lattice preserving a cone
- I. Evstigneev, 1974: Cocycles of positive matrices
- P. Ferrero and B. Schmitt, 1988: Cocycles of Ruelle-P-F operators

History

- M. Krein, M. Rutman, 1948: Compact linear operators preserving a cone
- Ga. Birkhoff, 1957: Operator on vector lattice preserving a cone
- I. Evstigneev, 1974: Cocycles of positive matrices
- P. Ferrero and B. Schmitt, 1988: Cocycles of Ruelle-P-F operators
- L. Arnold et al, 1994: Cocycles of positive matrices
- C. Liverani, 1995: Cone technique for a dynamical P-F operator
- J. Buzzi, 1999: Cone technique for cocycle of dynamical P-F operators

History

- M. Krein, M. Rutman, 1948: Compact linear operators preserving a cone
- Ga. Birkhoff, 1957: Operator on vector lattice preserving a cone
- I. Evstigneev, 1974: Cocycles of positive matrices
- P. Ferrero and B. Schmitt, 1988: Cocycles of Ruelle-P-F operators
- L. Arnold et al, 1994: Cocycles of positive matrices
- C. Liverani, 1995: Cone technique for a dynamical P-F operator
- J. Buzzi, 1999: Cone technique for cocycle of dynamical P-F operators
- I. Evstigneev and S. Pirogov, 2009: Cocycles of non-linear positive operators on \mathbb{R}^{d}
- J. Mierczynski and W. Shen, 2013: Cocycles of positive linear operators

Main Theorem

Matrix Cocycle Version
Cocycle $A_{\omega}^{(n)} \in M_{d}\left(\mathbb{R}^{d}\right)$ over base dynamics (Ω, μ, σ). $\int_{\Omega} \log ^{+}\left\|A_{\omega}\right\|_{\text {op }} d \mu(\omega)<\infty$. Cone $\mathcal{C}=\mathbb{R}_{\geq 0}^{d}$.

Main Theorem

Matrix Cocycle Version
Cocycle $A_{\omega}^{(n)} \in M_{d}\left(\mathbb{R}^{d}\right)$ over base dynamics (Ω, μ, σ). $\int_{\Omega} \log ^{+}\left\|A_{\omega}\right\|_{\text {op }} d \mu(\omega)<\infty$. Cone $\mathcal{C}=\mathbb{R}_{\geq 0}^{d}$.
Suppose that there is $k_{P} \in \mathbb{Z}_{\geq 1}, G_{P} \subset \Omega$ with $\mu\left(G_{P}\right)>0$, and $D_{P} \in \mathbb{R}_{>0}$ such that for all $\omega \in G_{P}, \operatorname{diam}_{\theta}\left(A_{\omega}^{k_{P}}(\mathcal{C})\right) \leq D_{P}$. Then:

Main Theorem

Matrix Cocycle Version

Cocycle $A_{\omega}^{(n)} \in M_{d}\left(\mathbb{R}^{d}\right)$ over base dynamics (Ω, μ, σ).
$\int_{\Omega} \log ^{+}\left\|A_{\omega}\right\|_{\text {op }} d \mu(\omega)<\infty$. Cone $\mathcal{C}=\mathbb{R}_{\geq 0}^{d}$.
Suppose that there is $k_{P} \in \mathbb{Z}_{\geq 1}, G_{P} \subset \Omega$ with $\mu\left(G_{P}\right)>0$, and $D_{P} \in \mathbb{R}_{>0}$ such that for all $\omega \in G_{P}, \operatorname{diam}_{\theta}\left(A_{\omega}^{k_{P}}(\mathcal{C})\right) \leq D_{P}$. Then:

1. there is $v(\omega) \in \mathcal{C}$ with $\|v(\omega)\|=1$ and $\phi(\omega)>0$ such that $A_{\omega} v(\omega)=\phi(\omega) v(\sigma(\omega)) ;$
2. $\int_{\Omega} \log (\phi) d \mu=\lambda_{1}$ (the largest Lyapunov exponent for $A_{\omega}^{(n)}$) and the top Oseledets space is one-dimensional;
3. $\lambda_{2} \leq \lambda_{1}-\frac{\mu\left(G_{P}\right)}{k_{P}} \log \left(\tanh \left(\frac{D_{P}}{4}\right)^{-1}\right)<\lambda_{1}$.

Main Theorem

Matrix Cocycle Version

Cocycle $A_{\omega}^{(n)} \in M_{d}\left(\mathbb{R}^{d}\right)$ over base dynamics (Ω, μ, σ).
$\int_{\Omega} \log ^{+}\left\|A_{\omega}\right\|_{\text {op }} d \mu(\omega)<\infty$. Cone $\mathcal{C}=\mathbb{R}_{\geq 0}^{d}$.
Suppose that there is $k_{P} \in \mathbb{Z}_{\geq 1}, G_{P} \subset \Omega$ with $\mu\left(G_{P}\right)>0$, and $D_{P} \in \mathbb{R}_{>0}$ such that for all $\omega \in G_{P}, \operatorname{diam}_{\theta}\left(A_{\omega}^{k_{P}}(\mathcal{C})\right) \leq D_{P}$. Then:

1. there is $v(\omega) \in \mathcal{C}$ with $\|v(\omega)\|=1$ and $\phi(\omega)>0$ such that $A_{\omega} v(\omega)=\phi(\omega) v(\sigma(\omega)) ;$
2. $\int_{\Omega} \log (\phi) d \mu=\lambda_{1}$ (the largest Lyapunov exponent for $A_{\omega}^{(n)}$) and the top Oseledets space is one-dimensional;
3. $\lambda_{2} \leq \lambda_{1}-\frac{\mu\left(G_{P}\right)}{k_{P}} \log \left(\tanh \left(\frac{D_{P}}{4}\right)^{-1}\right)<\lambda_{1}$.

Moreover, k_{P}, G_{P}, and D_{P} exist if and only if $n_{P}(\omega):=\inf \left\{k \geq 1: \operatorname{diam}_{\theta}\left(A_{\omega}^{(k)}(\mathcal{C})\right)<\infty\right\}$ is finite on a set of positive measure.

Main Theorem

Cocycle of Linear Operators Version

Cocycle $A_{\omega}^{(n)} \in \mathcal{B}(X)$ over base dynamics (Ω, μ, σ).
$\int_{\Omega} \log ^{+}\left\|A_{\omega}\right\|_{\text {op }} d \mu(\omega)<\infty, A_{\omega}$ "nice". Cone $\mathcal{C} \subset X, D$-adapted.
Suppose that there is $k_{P} \in \mathbb{Z}_{\geq 1}, G_{P} \subset \Omega$ with $\mu\left(G_{P}\right)>0$, and $D_{P} \in \mathbb{R}_{>0}$ such that for all $\omega \in G_{P}, \operatorname{diam}_{\theta}\left(A_{\omega}^{k_{P}}(\mathcal{C})\right) \leq D_{P}$. Then:

1. there is $v(\omega) \in \mathcal{C}$ with $\|v(\omega)\|=1$ and $\phi(\omega)>0$ such that $A_{\omega} v(\omega)=\phi(\omega) v(\sigma(\omega)) ;$
2. $\int_{\Omega} \log (\phi) d \mu=\lambda_{1}$ (the largest Lyapunov exponent for $A_{\omega}^{(n)}$) and the top Oseledets space is one-dimensional;
3. $\lambda_{2} \leq \lambda_{1}-\frac{\mu\left(G_{P}\right)}{k_{P}} \log \left(\tanh \left(\frac{D_{P}}{4}\right)^{-1}\right)<\lambda_{1}$.

Moreover, k_{P}, G_{P}, and D_{P} exist if and only if $n_{P}(\omega):=\inf \left\{k \geq 1: \operatorname{diam}_{\theta}\left(A_{\omega}^{(k)}(\mathcal{C})\right)<\infty\right\}$ is finite on a set of positive measure.

Definition and Background

A paired tent map is a map $T_{\epsilon_{1}, \epsilon_{2}}:[-1,1] \rightarrow[-1,1]$, with $\epsilon_{1}, \epsilon_{2} \in[0,1]$, that looks like:

Figure: $T_{\epsilon_{1}, \epsilon_{2}}$, with parameters $\epsilon_{1}=0.3$ and $\epsilon_{2}=0.7$.

Definition and Background

C. Gonzalez Tokman, B. Hunt, and P. Wright (2011) studied invariant densities for C^{2} perturbations of maps like $T_{0,0}$ that "leak" between $[-1,0]$ and $[0,1]$.

Definition and Background

C. Gonzalez Tokman, B. Hunt, and P. Wright (2011) studied invariant densities for C^{2} perturbations of maps like $T_{0,0}$ that "leak" between $[-1,0]$ and $[0,1]$.

What are the more in-depth spectral properties; what about cocycles?

Application of Generalized P-F Theorem to Paired Tent Maps

Theorem
Base dynamics $(\Omega, \mu, \sigma), \epsilon_{1}, \epsilon_{2}: \Omega \rightarrow[0,1]$ both not 0 , countable range. Consider the cocycle of P-F operators $P_{\omega}^{(n)}$ associated to $T_{\omega}:=T_{\epsilon_{1}(\omega), \epsilon_{2}(\omega)}$.

Then there is an explicitly computable $C=C\left(\epsilon_{1}, \epsilon_{2}\right)>0$ with $\lambda_{2} \leq-C<0=\lambda_{1}$, where λ_{1} and λ_{2} are the largest and second largest Lyapunov exponents for $P_{\omega}^{(n)}$.

Application of Generalized P-F Theorem to Paired Tent Maps

Theorem
Base dynamics $(\Omega, \mu, \sigma), \epsilon_{1}, \epsilon_{2}: \Omega \rightarrow[0,1]$ both not 0 , countable range. Consider the cocycle of P-F operators $P_{\omega}^{(n)}$ associated to $T_{\omega}:=T_{\epsilon_{1}(\omega), \epsilon_{2}(\omega)}$.

Then there is an explicitly computable $C=C\left(\epsilon_{1}, \epsilon_{2}\right)>0$ with $\lambda_{2} \leq-C<0=\lambda_{1}$, where λ_{1} and λ_{2} are the largest and second largest Lyapunov exponents for $P_{\omega}^{(n)}$.

Proposition (New Lasota-Yorke Inequality)
Inequality of the form $\operatorname{Var}\left(P_{\omega}(f)\right) \leq a_{1} \operatorname{Var}(f)+a_{2}\|f\|_{1}$ that can hold uniformly in ω.

Asymptotic Properties of $\lambda_{2}(\kappa)$

Theorem
Consider $T_{\omega, \kappa}=T_{\kappa \epsilon_{1}(\omega), \kappa \epsilon_{2}(\omega)}$. For $\epsilon_{1}, \epsilon_{2}$ both not 0 , countable range, there is $c>0$ such that $\lambda_{2}(\kappa) \lesssim-c \kappa$ for sufficiently small κ.

Asymptotic Properties of $\lambda_{2}(\kappa)$

Theorem
Consider $T_{\omega, \kappa}=T_{\kappa \epsilon_{1}(\omega), \kappa \epsilon_{2}(\omega)}$. For $\epsilon_{1}, \epsilon_{2}$ both not 0 , countable range, there is $c>0$ such that $\lambda_{2}(\kappa) \lesssim-c \kappa$ for sufficiently small κ.

Proposition

There is a decreasing sequence $\left\{\kappa_{j}\right\} \subset(0,1]$ with $\kappa_{j} \xrightarrow[j \rightarrow \infty]{\longrightarrow} 0$ such that the maps $T_{\kappa_{j}, \kappa_{j}}$ are Markov. Set $P_{j}=P_{T_{\kappa_{j}, \kappa_{j}}}$; the cocycles of P-F operators $P_{\omega}^{(n)}=P_{j}^{n}$ have $\lambda_{2}(j) \sim-2 \kappa_{j}$.

The End

Thank you!

