A cocycle Perron-Frobenius theorem for random dynamical systems on Banach spaces

Joseph Horan

University of Victoria

BIRS Retreat for Young Researchers in Probability and Areas of Application

Banff, AB September 28, 2019

Motivation: Markov Chains

Generalized Perron-Frobenius Theorem (for Cocycles)

Paired Tent Maps Example

Classical Perron-Frobenius Theorem

Theorem (Perron 1908, Frobenius 1912)

Let $P \in M_d(\mathbb{R}_{\geq 0})$ be such that there exists $n \geq 1$ with $(P^n)_{ij} > 0$ for all i, j (P is primitive). Then:

- 1. the spectral radius $\rho(P)$ of P is a simple eigenvalue of P, no other eigenvalues of modulus $\rho(P)$;
- 2. the eigenvector v corresponding to $\rho(P)$ is positive (that is, has all positive entries);
- 3. if w is the left-eigenvector for P corresponding to $\rho(P)$ (with $w \cdot v = 1$), then $\rho(P)^{-n}P^n x \xrightarrow[n \to \infty]{} (w \cdot x)v$ for all $x \in \mathbb{R}^d$.

Markov Chain Example

$$P = \begin{bmatrix} 0.5 & 0.2 & 0.1 & 0.1 \\ 0.3 & 0.6 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.4 & 0.4 \\ 0.1 & 0.1 & 0.4 & 0.4 \end{bmatrix}$$

Markov Chain Example

 $\sigma(P) = \left\{1, \frac{3}{5}, \frac{3}{10}, 0\right\}$ $v = \begin{vmatrix} 3/14 \\ 2/7 \\ 1/4 \\ 1/4 \end{vmatrix}, w = \begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \end{vmatrix}$

If $w \cdot x = 0$, then $\left\|P^n x\right\|_1 = O\left(\left(\frac{3}{5}\right)^n\right).$

 $P = \begin{bmatrix} 0.5 & 0.2 & 0.1 & 0.1 \\ 0.3 & 0.6 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.4 & 0.4 \\ 0.1 & 0.1 & 0.4 & 0.4 \end{bmatrix}$

 (Ω, μ, σ) an invertible, ergodic probability-preserving transformation: "base dynamics".

Cocycle: $A_{\omega} \in M_d(\mathbb{R})$ or $\mathcal{B}(X)$, $A_{\omega}^{(n)} = A_{\sigma^{n-1}(\omega)} \cdots A_{\sigma(\omega)} A_{\omega}$.

 (Ω, μ, σ) an invertible, ergodic probability-preserving transformation: "base dynamics".

Cocycle:
$$A_{\omega} \in M_d(\mathbb{R})$$
 or $\mathcal{B}(X)$, $A_{\omega}^{(n)} = A_{\sigma^{n-1}(\omega)} \cdots A_{\sigma(\omega)} A_{\omega}$.

Lyapunov exponents: exponential growth rates for the cocycle.

$$\limsup_{n\to\infty}\frac{1}{n}\log\left\|A_{\omega}^{(n)}x\right\|=\lambda(x,\omega)$$

(Multiplicative Ergodic Theorem: actually discrete! Like eigenvalues.)

Cone: $C \subset \mathbb{R}^d$ or X, closed, convex, $C \cap -C = \{0\}$. Generating: C - C = X. Partial order: $x \leq y$ if and only if $y - x \in C$. D-adapted: $-y \leq x \leq y$ implies $||x|| \leq D ||y||$ (a.k.a. "normal").

Cone: $C \subset \mathbb{R}^d$ or X, closed, convex, $C \cap -C = \{0\}$. Generating: C - C = X. Partial order: $x \leq y$ if and only if $y - x \in C$. D-adapted: $-y \leq x \leq y$ implies $||x|| \leq D ||y||$ (a.k.a. "normal").

Hilbert projective metric: For a cone C and $v, w \in C$, define:

$$egin{aligned} lpha(m{v},m{w}) &= \sup\left\{\lambda > 0 \; : \; \lambda m{v} \preceq m{w}
ight\}, \ eta(m{v},m{w}) &= \inf\left\{\mu > 0 \; : \; m{w} \le \mu m{v}
ight\}, \ m{ heta}(m{v},m{w}) &= \log\left(rac{eta(m{v},m{w})}{lpha(m{v},m{w})}
ight). \end{aligned}$$

History

- M. Krein, M. Rutman, 1948: Compact linear operators preserving a cone
- Ga. Birkhoff, 1957: Operator on vector lattice preserving a cone
- ▶ I. Evstigneev, 1974: Cocycles of positive matrices
- P. Ferrero and B. Schmitt, 1988: Cocycles of Ruelle-P-F operators

History

- M. Krein, M. Rutman, 1948: Compact linear operators preserving a cone
- Ga. Birkhoff, 1957: Operator on vector lattice preserving a cone
- I. Evstigneev, 1974: Cocycles of positive matrices
- P. Ferrero and B. Schmitt, 1988: Cocycles of Ruelle-P-F operators
- L. Arnold et al, 1994: Cocycles of positive matrices
- C. Liverani, 1995: Cone technique for a dynamical P-F operator
- J. Buzzi, 1999: Cone technique for cocycle of dynamical P-F operators

History

- M. Krein, M. Rutman, 1948: Compact linear operators preserving a cone
- Ga. Birkhoff, 1957: Operator on vector lattice preserving a cone
- I. Evstigneev, 1974: Cocycles of positive matrices
- P. Ferrero and B. Schmitt, 1988: Cocycles of Ruelle-P-F operators
- L. Arnold et al, 1994: Cocycles of positive matrices
- C. Liverani, 1995: Cone technique for a dynamical P-F operator
- J. Buzzi, 1999: Cone technique for cocycle of dynamical P-F operators
- ► I. Evstigneev and S. Pirogov, 2009: Cocycles of non-linear positive operators on R^d
- J. Mierczynski and W. Shen, 2013: Cocycles of positive linear operators

Matrix Cocycle Version

Cocycle
$$A_{\omega}^{(n)} \in M_d(\mathbb{R}^d)$$
 over base dynamics (Ω, μ, σ) .
 $\int_{\Omega} \log^+ \|A_{\omega}\|_{op} \ d\mu(\omega) < \infty$. Cone $\mathcal{C} = \mathbb{R}^d_{\geq 0}$.

Matrix Cocycle Version

Cocycle $A_{\omega}^{(n)} \in M_d(\mathbb{R}^d)$ over base dynamics (Ω, μ, σ) . $\int_{\Omega} \log^+ ||A_{\omega}||_{op} \ d\mu(\omega) < \infty$. Cone $\mathcal{C} = \mathbb{R}^d_{\geq 0}$. Suppose that there is $k_P \in \mathbb{Z}_{\geq 1}$, $G_P \subset \Omega$ with $\mu(G_P) > 0$, and $D_P \in \mathbb{R}_{>0}$ such that for all $\omega \in G_P$, diam_{θ} $(A_{\omega}^{k_P}(\mathcal{C})) \leq D_P$. Then:

Matrix Cocycle Version

Cocycle
$$A_{\omega}^{(n)} \in M_d(\mathbb{R}^d)$$
 over base dynamics (Ω, μ, σ) .
 $\int_{\Omega} \log^+ ||A_{\omega}||_{op} \ d\mu(\omega) < \infty$. Cone $\mathcal{C} = \mathbb{R}^d_{\geq 0}$.
Suppose that there is $k_P \in \mathbb{Z}_{\geq 1}$, $G_P \subset \Omega$ with $\mu(G_P) > 0$, and
 $D_P \in \mathbb{R}_{>0}$ such that for all $\omega \in G_P$, diam $_{\theta} \left(A_{\omega}^{k_P}(\mathcal{C}) \right) \leq D_P$. Then:

- 1. there is $v(\omega) \in C$ with $||v(\omega)|| = 1$ and $\phi(\omega) > 0$ such that $A_{\omega}v(\omega) = \phi(\omega)v(\sigma(\omega));$
- 2. $\int_{\Omega} \log(\phi) \ d\mu = \lambda_1$ (the largest Lyapunov exponent for $A_{\omega}^{(n)}$) and the top Oseledets space is one-dimensional;

3.
$$\lambda_2 \leq \lambda_1 - \frac{\mu(G_P)}{k_P} \log\left(\tanh\left(\frac{D_P}{4}\right)^{-1} \right) < \lambda_1.$$

Matrix Cocycle Version

Cocycle
$$A_{\omega}^{(n)} \in M_d(\mathbb{R}^d)$$
 over base dynamics (Ω, μ, σ) .
 $\int_{\Omega} \log^+ ||A_{\omega}||_{op} \ d\mu(\omega) < \infty$. Cone $\mathcal{C} = \mathbb{R}^d_{\geq 0}$.
Suppose that there is $k_P \in \mathbb{Z}_{\geq 1}$, $G_P \subset \Omega$ with $\mu(G_P) > 0$, and $D_P \in \mathbb{R}_{>0}$ such that for all $\omega \in G_P$, diam $_{\theta} \left(A_{\omega}^{k_P}(\mathcal{C}) \right) \leq D_P$. Then:

- 1. there is $v(\omega) \in C$ with $||v(\omega)|| = 1$ and $\phi(\omega) > 0$ such that $A_{\omega}v(\omega) = \phi(\omega)v(\sigma(\omega));$
- 2. $\int_{\Omega} \log(\phi) \ d\mu = \lambda_1$ (the largest Lyapunov exponent for $A_{\omega}^{(n)}$) and the top Oseledets space is one-dimensional;

3.
$$\lambda_2 \leq \lambda_1 - \frac{\mu(G_P)}{k_P} \log\left(\tanh\left(\frac{D_P}{4}\right)^{-1} \right) < \lambda_1.$$

Moreover, k_P , G_P , and D_P exist if and only if $n_P(\omega) := \inf \left\{ k \ge 1 : \operatorname{diam}_{\theta} \left(A_{\omega}^{(k)}(\mathcal{C}) \right) < \infty \right\}$ is finite on a set of positive measure.

Cocycle of Linear Operators Version

Cocycle $A_{\omega}^{(n)} \in \mathcal{B}(X)$ over base dynamics (Ω, μ, σ) . $\int_{\Omega} \log^{+} ||A_{\omega}||_{op} d\mu(\omega) < \infty$, A_{ω} "nice". Cone $\mathcal{C} \subset X$, *D*-adapted. Suppose that there is $k_{P} \in \mathbb{Z}_{\geq 1}$, $G_{P} \subset \Omega$ with $\mu(G_{P}) > 0$, and $D_{P} \in \mathbb{R}_{>0}$ such that for all $\omega \in G_{P}$, diam_{θ} $(A_{\omega}^{k_{P}}(\mathcal{C})) \leq D_{P}$. Then:

- 1. there is $v(\omega) \in C$ with $||v(\omega)|| = 1$ and $\phi(\omega) > 0$ such that $A_{\omega}v(\omega) = \phi(\omega)v(\sigma(\omega));$
- 2. $\int_{\Omega} \log(\phi) \ d\mu = \lambda_1$ (the largest Lyapunov exponent for $A_{\omega}^{(n)}$) and the top Oseledets space is one-dimensional;

3.
$$\lambda_2 \leq \lambda_1 - \frac{\mu(G_P)}{k_P} \log\left(\tanh\left(\frac{D_P}{4}\right)^{-1} \right) < \lambda_1.$$

Moreover, k_P , G_P , and D_P exist if and only if $n_P(\omega) := \inf \left\{ k \ge 1 : \operatorname{diam}_{\theta} \left(A_{\omega}^{(k)}(\mathcal{C}) \right) < \infty \right\}$ is finite on a set of positive measure.

Definition and Background

A paired tent map is a map $T_{\epsilon_1,\epsilon_2}$: $[-1,1] \rightarrow [-1,1]$, with $\epsilon_1, \epsilon_2 \in [0,1]$, that looks like:

Figure: $T_{\epsilon_1,\epsilon_2}$, with parameters $\epsilon_1 = 0.3$ and $\epsilon_2 = 0.7$.

C. Gonzalez Tokman, B. Hunt, and P. Wright (2011) studied invariant densities for C^2 perturbations of maps like $T_{0,0}$ that "leak" between [-1,0] and [0,1].

C. Gonzalez Tokman, B. Hunt, and P. Wright (2011) studied invariant densities for C^2 perturbations of maps like $T_{0,0}$ that "leak" between [-1,0] and [0,1].

What are the more in-depth spectral properties; what about cocycles?

Application of Generalized P-F Theorem to Paired Tent Maps

Theorem

Base dynamics (Ω, μ, σ) , $\epsilon_1, \epsilon_2 : \Omega \to [0, 1]$ both not 0, countable range. Consider the cocycle of P-F operators $P_{\omega}^{(n)}$ associated to $T_{\omega} := T_{\epsilon_1(\omega), \epsilon_2(\omega)}$.

Then there is an explicitly computable $C = C(\epsilon_1, \epsilon_2) > 0$ with $\lambda_2 \leq -C < 0 = \lambda_1$, where λ_1 and λ_2 are the largest and second largest Lyapunov exponents for $P_{\omega}^{(n)}$.

Application of Generalized P-F Theorem to Paired Tent Maps

Theorem

Base dynamics (Ω, μ, σ) , $\epsilon_1, \epsilon_2 : \Omega \to [0, 1]$ both not 0, countable range. Consider the cocycle of P-F operators $P_{\omega}^{(n)}$ associated to $T_{\omega} := T_{\epsilon_1(\omega), \epsilon_2(\omega)}$.

Then there is an explicitly computable $C = C(\epsilon_1, \epsilon_2) > 0$ with $\lambda_2 \leq -C < 0 = \lambda_1$, where λ_1 and λ_2 are the largest and second largest Lyapunov exponents for $\mathcal{P}_{\omega}^{(n)}$.

Proposition (New Lasota-Yorke Inequality)

Inequality of the form $Var(P_{\omega}(f)) \leq a_1 Var(f) + a_2 ||f||_1$ that can hold uniformly in ω .

Asymptotic Properties of $\lambda_2(\kappa)$

Theorem

Consider $T_{\omega,\kappa} = T_{\kappa\epsilon_1(\omega),\kappa\epsilon_2(\omega)}$. For ϵ_1, ϵ_2 both not 0, countable range, there is c > 0 such that $\lambda_2(\kappa) \leq -c\kappa$ for sufficiently small κ .

Asymptotic Properties of $\lambda_2(\kappa)$

Theorem

Consider $T_{\omega,\kappa} = T_{\kappa\epsilon_1(\omega),\kappa\epsilon_2(\omega)}$. For ϵ_1, ϵ_2 both not 0, countable range, there is c > 0 such that $\lambda_2(\kappa) \leq -c\kappa$ for sufficiently small κ .

Proposition

There is a decreasing sequence $\{\kappa_j\} \subset (0,1]$ with $\kappa_j \xrightarrow{j \to \infty} 0$ such that the maps T_{κ_j,κ_j} are Markov. Set $P_j = P_{T_{\kappa_j,\kappa_j}}$; the cocycles of *P*-*F* operators $P_{\omega}^{(n)} = P_j^n$ have $\lambda_2(j) \sim -2\kappa_j$.

The End

Thank you!