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Introduction



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.

• Construct a sequence (Tn)n≥1 recursively.

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.
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Goals and motivations

Goal: study the asymptotic behaviour of some statistics of the tree
Tn when n is large such as degrees, height of the tree, profile
(number of vertices at any given height)...

• If (wn)n≥1 is constant, then (Tn)n≥1 follows the distribution of
the Uniform Recursive Tree (URT).

• We will work under the assumption that Wn ' cst ·nγ for some
constant γ > 0 + additional condition on the weights.

• One motivation is the connection with another model of
growing trees: the preferential attachment trees.

• Also, connection to the monkey walk (Mailler-Uribe 2018+).
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The representation theorem

Theorem (S. 2019+)
Preferential attachment trees are weighted recursive trees i.e. for any
sequence of fitnesses a = (an)n≥1, there exists a random sequence
(wan)n≥1 such that the distributions PA((an)n≥1) andWRT((wan)n≥1)
coincide.

• If An ' c · n as n→ ∞ then the sequence (wan)n≥1 satisfies
Wa
n ' cst ·nγ a.s. with γ = c

c+1 .
• Results for weighted recursive trees automatically apply to
preferential attachment trees!
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Definition of the random sequence (wan)n≥1

For any sequence a = (an)n≥1 of fitnesses, the random sequence
(wan)n≥1 is defined as

wa1 = Wa
1 = 1 and ∀n ≥ 2, Wa

n =
n−1∏
k=1

β−1
k ,

where the (βk)k≥1 are independent with respective distribution
Beta(Ak + k,ak+1), with Ak =

∑k
i=1 ai.
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The classical Pólya urn

+

+

• At time 0, the urn contains a black balls and b red balls.
• At each time n ≥ 1, a ball is drawn from the urn and returned to
the urn together with a new ball of the same colour.

• For all n ≥ 1, we let Xn := 1{the ball drawn at time n is black}.
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Classical results on Pólya urns

Theorem
Almost surely

#{black balls at time n}
#{balls at time n}

=
a+

∑n
i=1 Xi

a+ b+ n
−→
n→∞

β,

where β is a random variable with distribution Beta(a,b).

Furthermore, conditionally on β, the sequence (Xn)n≥1 is a sequence
of i.i.d. Bernoulli random variables with parameter β.
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Convergence results for weighted
recursive trees



Convergence of degrees

Proposition (S. 2019+)
If Wn ∼ C · nγ as n→ ∞ for 0 < γ < 1, then we almost surely have

n−(1−γ) · (deg+n ( 1 ), deg+n ( 2 ), . . . ) →
n→∞

1
C(1− γ)

· (w1,w2, . . . ),

for the product topology.

• Under some additional condition on (wn)n≥1, the last
convergence can be proved to hold in `p for p > 1

1−γ .
• Thanks to the representation theorem, this also holds for
preferential attachment trees.
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Convergence of degrees: elements of proofs

For any k ≥ 1 we can write:

deg+n ( k ) =
n∑

i=k+1

1{
i → k

}.

The events
{
i → k

}
for i ∈ {k+ 1, k+ 2, . . .n} are independent

and have respective probability wk
Wi−1

. Hence by a law of large
numbers, with probability 1 we have

deg+n ( k ) ∼
n→∞

n∑
i=k+1

P
(
i → k

)
∼

n→∞

n∑
i=k+1

wk
Wi−1

∼
n→∞

wk ·
n∑

i=k+1

1
C · iγ

∼
n→∞

wk ·
n1−γ

C(1− γ)
.
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Convergence of degrees in PA trees

If (Pn)n≥1 is a sequence of trees with distribution PA((an)n≥1) with
An ' c · n as n→ ∞ then we have the almost sure convergence in
some `p space,

n− 1
c+1 · (deg+n ( 1 ), deg+n ( 2 ), . . . ) →

n→∞
(m1,m2, . . . ),

where (mn)n≥1 is a constant times the sequence (wan)n≥1.
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Scaling limits for generalisation
of Rémy’s algorithm



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5
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A generalised version of Rémy’s algorithm
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Questions about the model

• In the original algorithm, the diameter of Hn grows as n1/2, and
we have an almost sure convergence in a metric space sense

(Hn,n−1/2 · dgr) →
n→∞

T ,

where T is Aldous’ CRT.

• How does the diameter of Hn grow as n→ ∞ for more general
sequences (Gn)n≥1?

• Do we get a scaling limit?
• If yes, what does it look like?
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A generalised version of Rémy’s algorithm
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A generalised version of Rémy’s algorithm
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distances ×n−1/(c+1)

large n
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Scaling limit of this process

Denote by (an)n≥1 = (|E(Gn)|)n≥1 the sequence corresponding to the
number of edges in (Gn)n≥1.

Theorem (S. 2019+)
Suppose that

∑n
i=1 ai = c · n+ O

(
n1−ε

)
for some constant c > 0 and

an ≤ n 1
c+1−ε+o(1). Then we have the following convergence(

Hn,n−
1
c+1 · dgr, µn,unif

)
−→
n→∞

(H, d, µ) ,

almost surely in Gromov-Hausdorff-Prokhorov topology.

• Convergence of degrees in the tree→ convergence of each
coloured portion of the graph.

• Controlling the degrees in the tree→ controlling distances in Hn.
• Description of the tree as a WRT→ iterative gluing construction.
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Iterative gluing construction
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Iterative gluing construction

H5

G1 G2 G3 G4 G5
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Thank you for your attention!
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Height and profile of WRT

1
Tn

The profile of the tree Tn is the function Ln : N → N defined as

∀k ≥ 0, Ln(k) = #{vertices at height k in the tree Tn}.
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The profile is almost surely asymptotically Gaussian
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The profile is almost surely asymptotically Gaussian

γ log n √
γ log n

n√
2πγ logn

0

k

Ln(k)
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The log of the profile converges to a function

0

γ log n

Ln(k)

k

(log scale)

• fγ(z) := 1+ γ(ez − 1− zez).
• z+ is the unique positive
zero of fγ .

• Almost surely
ht(Tn) ∼

n→∞
γ · ez+ log n.
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Statement of the theorem

Theorem (S. 2019+)
Under the assumption Wn ' cst ·nγ (+ additional condition) we
almost surely have

• ht(Tn)
log n

−→
n→∞

γ · ez+ .

• Ln(k) =
n→∞

n√
2πγ log n

exp

{
− 1
2
·
(
k− γ log n√

γ log n

)2
}

+ O
(

n
log n

)
,

• for all z ∈ (z− , z+), Ln (bγez log nc) = nfγ(z)+o(1).
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