Asymptotic properties of weighted recursive and preferential attachment trees

ArXiv:1904.07115

Delphin Sénizergues
Retreat for Young Researchers in Probability and areas of Application,
September 28, 2019
University of British Columbia

Introduction

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.
- Construct a sequence $\left(T_{n}\right)_{n \geq 1}$ recursively.

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.
- Construct a sequence $\left(T_{n}\right)_{n \geq 1}$ recursively.
(1)

$$
\left.\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(n+1) \rightarrow k \mid T_{n}\right) \propto w_{k} .
$$

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.
- Construct a sequence $\left(T_{n}\right)_{n \geq 1}$ recursively.

$$
\left.\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(\bigcap+1) \rightarrow k \mid T_{n}\right) \propto w_{k} .
$$

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.
- Construct a sequence $\left(T_{n}\right)_{n \geq 1}$ recursively.

$$
\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(\bigcap+1) \rightarrow\left(k \mid T_{n}\right) \propto w_{k} .
$$

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.
- Construct a sequence $\left(T_{n}\right)_{n \geq 1}$ recursively.

$$
\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(\bigcap+1) \rightarrow\left(k \mid T_{n}\right) \propto w_{k} .
$$

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.
- Construct a sequence $\left(T_{n}\right)_{n \geq 1}$ recursively.

$$
\left.\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(\cap+1) \rightarrow k \mid T_{n}\right)=\frac{w_{k}}{\sum_{i=1}^{n} w_{i}} .
$$

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.
- Construct a sequence $\left(T_{n}\right)_{n \geq 1}$ recursively.

$$
\left.\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(n+1) \rightarrow k \mid T_{n}\right)=\frac{W_{k}}{W_{n}} .
$$

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.
- Construct a sequence $\left(T_{n}\right)_{n \geq 1}$ recursively.

$$
\left.\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(\cap+1) \rightarrow k \mid T_{n}\right)=\frac{W_{k}}{W_{n}}
$$

- We write $\left(T_{n}\right)_{n \geq 1} \sim \operatorname{WRT}\left(\left(w_{n}\right)_{n \geq 1}\right)$.

Weighted recursive trees

- Start with $\left(w_{n}\right)_{n \geq 1}$ a sequence of weights.
- Construct a sequence $\left(T_{n}\right)_{n \geq 1}$ recursively.

$$
\left.\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(n+1) \rightarrow k \mid T_{n}\right)=\frac{W_{k}}{W_{n}}
$$

- We write $\left(T_{n}\right)_{n \geq 1} \sim \operatorname{WRT}\left(\left(w_{n}\right)_{n \geq 1}\right)$.
- We can also use random sequences of weights.

GOALS AND MOTIVATIONS

Goal: study the asymptotic behaviour of some statistics of the tree T_{n} when n is large such as degrees, height of the tree, profile (number of vertices at any given height)...

GOALS AND MOTIVATIONS

Goal: study the asymptotic behaviour of some statistics of the tree T_{n} when n is large such as degrees, height of the tree, profile (number of vertices at any given height)...

- If $\left(w_{n}\right)_{n \geq 1}$ is constant, then $\left(T_{n}\right)_{n \geq 1}$ follows the distribution of the Uniform Recursive Tree (URT).

GOALS AND MOTIVATIONS

Goal: study the asymptotic behaviour of some statistics of the tree T_{n} when n is large such as degrees, height of the tree, profile (number of vertices at any given height)...

- If $\left(w_{n}\right)_{n \geq 1}$ is constant, then $\left(T_{n}\right)_{n \geq 1}$ follows the distribution of the Uniform Recursive Tree (URT).
- We will work under the assumption that $W_{n} \simeq \mathrm{cst} \cdot n^{\gamma}$ for some constant $\gamma>0+$ additional condition on the weights.

GOALS AND MOTIVATIONS

Goal: study the asymptotic behaviour of some statistics of the tree T_{n} when n is large such as degrees, height of the tree, profile (number of vertices at any given height)...

- If $\left(w_{n}\right)_{n \geq 1}$ is constant, then $\left(T_{n}\right)_{n \geq 1}$ follows the distribution of the Uniform Recursive Tree (URT).
- We will work under the assumption that $W_{n} \simeq \operatorname{cst} \cdot n^{\gamma}$ for some constant $\gamma>0+$ additional condition on the weights.
- One motivation is the connection with another model of growing trees: the preferential attachment trees.

GOALS AND MOTIVATIONS

Goal: study the asymptotic behaviour of some statistics of the tree T_{n} when n is large such as degrees, height of the tree, profile (number of vertices at any given height)...

- If $\left(w_{n}\right)_{n \geq 1}$ is constant, then $\left(T_{n}\right)_{n \geq 1}$ follows the distribution of the Uniform Recursive Tree (URT).
- We will work under the assumption that $W_{n} \simeq \operatorname{cst} \cdot n^{\gamma}$ for some constant $\gamma>0+$ additional condition on the weights.
- One motivation is the connection with another model of growing trees: the preferential attachment trees.
- Also, connection to the monkey walk (Mailler-Uribe 2018+).

Preferential attachment trees with additive fitnesses

- Start with $\left(a_{n}\right)_{n \geq 1}$ a sequence of fitnesses.

Preferential attachment trees with additive fitnesses

- Start with $\left(a_{n}\right)_{n \geq 1}$ a sequence of fitnesses.
- Construct a sequence $\left(\mathrm{P}_{n}\right)_{n \geq 1}$ recursively.

Preferential attachment trees with additive fitnesses

- Start with $\left(a_{n}\right)_{n \geq 1}$ a sequence of fitnesses.
- Construct a sequence $\left(P_{n}\right)_{n \geq 1}$ recursively.

$$
\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(n+1) \rightarrow\left(k \mid P_{n}\right) \propto a_{k}+\operatorname{deg}_{n}^{+}(k) .
$$

Preferential attachment trees with additive fitnesses

- Start with $\left(a_{n}\right)_{n \geq 1}$ a sequence of fitnesses.
- Construct a sequence $\left(P_{n}\right)_{n \geq 1}$ recursively.

$$
\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(n+1) \rightarrow\left(k \mid P_{n}\right) \propto a_{k}+\operatorname{deg}_{n}^{+}(k) .
$$

Preferential attachment trees with additive fitnesses

- Start with $\left(a_{n}\right)_{n \geq 1}$ a sequence of fitnesses.
- Construct a sequence $\left(P_{n}\right)_{n \geq 1}$ recursively.

$$
\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(n+1) \rightarrow\left(k \mid P_{n}\right) \propto a_{k}+\operatorname{deg}_{n}^{+}(k) .
$$

Preferential attachment trees with additive fitnesses

- Start with $\left(a_{n}\right)_{n \geq 1}$ a sequence of fitnesses.
- Construct a sequence $\left(P_{n}\right)_{n \geq 1}$ recursively.

$$
\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(n+1) \rightarrow\left(k \mid P_{n}\right) \propto a_{k}+\operatorname{deg}_{n}^{+}(k) .
$$

Preferential attachment trees with additive fitnesses

- Start with $\left(a_{n}\right)_{n \geq 1}$ a sequence of fitnesses.
- Construct a sequence $\left(\mathrm{P}_{n}\right)_{n \geq 1}$ recursively.

$\left.\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(\curvearrowleft+1) \rightarrow(k) \mid P_{n}\right)=\frac{\left.a_{k}+\operatorname{deg}_{n}^{+}(k)\right)}{\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} \operatorname{deg}_{n}^{+}(\mathrm{i})}$.

Preferential attachment trees with additive fitnesses

- Start with $\left(a_{n}\right)_{n \geq 1}$ a sequence of fitnesses.
- Construct a sequence $\left(\mathrm{P}_{n}\right)_{n \geq 1}$ recursively.

$\left.\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(n+1) \rightarrow k \mid P_{n}\right)=\frac{\left.a_{k}+\operatorname{deg}_{n}^{+}(k)\right)}{A_{n}+n-1}$.

Preferential attachment trees with additive fitnesses

- Start with $\left(a_{n}\right)_{n \geq 1}$ a sequence of fitnesses.
- Construct a sequence $\left(\mathrm{P}_{n}\right)_{n \geq 1}$ recursively.

$$
\forall k \in\{1, \ldots n\}, \quad \mathbb{P}(\curvearrowleft+1) \rightarrow\left(k \mid P_{n}\right)=\frac{\left.a_{k}+\operatorname{deg}_{n}^{+}(k)\right)}{A_{n}+n-1} .
$$

- We write $\left(P_{n}\right)_{n \geq 1} \sim \operatorname{PA}\left(\left(a_{n}\right)_{n \geq 1}\right)$.

The representation theorem

Theorem (S. 2019+)
Preferential attachment trees are weighted recursive trees i.e. for any sequence of fitnesses $\mathrm{a}=\left(a_{n}\right)_{n \geq 1}$, there exists a random sequence $\left(w_{n}^{a}\right)_{n \geq 1}$ such that the distributions PA $\left(\left(a_{n}\right)_{n \geq 1}\right)$ and WRT $\left(\left(w_{n}^{a}\right)_{n \geq 1}\right)$ coincide.

The representation theorem

Theorem (S. 2019+)
Preferential attachment trees are weighted recursive trees i.e. for any sequence of fitnesses $\mathrm{a}=\left(a_{n}\right)_{n \geq 1}$, there exists a random sequence $\left(w_{n}^{a}\right)_{n \geq 1}$ such that the distributions PA $\left(\left(a_{n}\right)_{n \geq 1}\right)$ and WRT $\left(\left(w_{n}^{a}\right)_{n \geq 1}\right)$ coincide.

- If $A_{n} \simeq c \cdot n$ as $n \rightarrow \infty$ then the sequence $\left(w_{n}^{a}\right)_{n \geq 1}$ satisfies $W_{n}^{a} \simeq c s t \cdot n^{\gamma}$ a.s. with $\gamma=\frac{c}{c+1}$.

The representation theorem

Theorem (S. 2019+)
Preferential attachment trees are weighted recursive trees i.e. for any sequence of fitnesses $\mathrm{a}=\left(a_{n}\right)_{n \geq 1}$, there exists a random sequence $\left(w_{n}^{a}\right)_{n \geq 1}$ such that the distributions PA $\left(\left(a_{n}\right)_{n \geq 1}\right)$ and WRT $\left(\left(w_{n}^{a}\right)_{n \geq 1}\right)$ coincide.

- If $A_{n} \simeq c \cdot n$ as $n \rightarrow \infty$ then the sequence $\left(w_{n}^{a}\right)_{n \geq 1}$ satisfies $W_{n}^{a} \simeq c s t \cdot n^{\gamma}$ a.s. with $\gamma=\frac{c}{c+1}$.
- Results for weighted recursive trees automatically apply to preferential attachment trees!

DEFINITION OF THE RANDOM SEQUENCE $\left(W_{n}^{a}\right)_{n \geq 1}$

For any sequence $\mathrm{a}=\left(a_{n}\right)_{n \geq 1}$ of fitnesses, the random sequence $\left(w_{n}^{a}\right)_{n \geq 1}$ is defined as

$$
w_{1}^{a}=W_{1}^{a}=1 \quad \text { and } \quad \forall n \geq 2, \quad w_{n}^{a}=\prod_{k=1}^{n-1} \beta_{k}^{-1}
$$

where the $\left(\beta_{k}\right)_{k \geq 1}$ are independent with respective distribution $\operatorname{Beta}\left(A_{k}+k, a_{k+1}\right)$, with $A_{k}=\sum_{i=1}^{k} a_{i}$.

The CLASSICAL PólyA URN

- At time 0 , the urn contains a black balls and b red balls.
- At each time $n \geq 1$, a ball is drawn from the urn and returned to the urn together with a new ball of the same colour.
- For all $n \geq 1$, we let $X_{n}:=1_{\{\text {the ball drawn at time } n \text { is black\}} \text {. }}$.

CLASSICAL RESULTS ON PÓLYA URNS

Theorem
Almost surely

$$
\frac{\#\{\text { black balls at time } n\}}{\#\{\text { balls at time } n\}}=\frac{a+\sum_{i=1}^{n} x_{i}}{a+b+n} \underset{n \rightarrow \infty}{\longrightarrow} \beta,
$$

where β is a random variable with distribution $\operatorname{Beta}(a, b)$.

CLASSICAL RESULTS ON PÓLYA URNS

Theorem
Almost surely

$$
\frac{\#\{\text { black balls at time } n\}}{\#\{\text { balls at time } n\}}=\frac{a+\sum_{i=1}^{n} x_{i}}{a+b+n} \underset{n \rightarrow \infty}{\longrightarrow} \beta,
$$

where β is a random variable with distribution $\operatorname{Beta}(a, b)$.
Furthermore, conditionally on β, the sequence $\left(X_{n}\right)_{n \geq 1}$ is a sequence of i.i.d. Bernoulli random variables with parameter β.

Convergence results for weighted recursive trees

Convergence of degrees

Proposition (S. 2019+)
If $W_{n} \sim C \cdot n^{\gamma}$ as $n \rightarrow \infty$ for $0<\gamma<1$, then we almost surely have

$$
n^{-(1-\gamma)} \cdot\left(\operatorname{deg}_{n}^{+}(1)\right), \operatorname{deg}_{n}^{+}((2), \ldots) \underset{n \rightarrow \infty}{\rightarrow} \frac{1}{C(1-\gamma)} \cdot\left(w_{1}, w_{2}, \ldots\right),
$$

for the product topology.

Convergence of degrees

Proposition (S. 2019+)
If $W_{n} \sim C \cdot n^{\gamma}$ as $n \rightarrow \infty$ for $0<\gamma<1$, then we almost surely have

$$
\left.n^{-(1-\gamma)} \cdot\left(\operatorname{deg}_{n}^{+}(1)\right), \operatorname{deg}_{n}^{+}((2)), \ldots\right) \underset{n \rightarrow \infty}{\rightarrow} \frac{1}{C(1-\gamma)} \cdot\left(w_{1}, w_{2}, \ldots\right),
$$

for the product topology.

- Under some additional condition on $\left(w_{n}\right)_{n \geq 1}$, the last convergence can be proved to hold in ℓ^{p} for $p>\frac{1}{1-\gamma}$.

Convergence of degrees

Proposition (S. 2019+)
If $W_{n} \sim C \cdot n^{\gamma}$ as $n \rightarrow \infty$ for $0<\gamma<1$, then we almost surely have

$$
\left.n^{-(1-\gamma)} \cdot\left(\operatorname{deg}_{n}^{+}(1)\right), \operatorname{deg}_{n}^{+}((2)), \ldots\right) \underset{n \rightarrow \infty}{\rightarrow} \frac{1}{C(1-\gamma)} \cdot\left(w_{1}, w_{2}, \ldots\right),
$$

for the product topology.

- Under some additional condition on $\left(w_{n}\right)_{n \geq 1}$, the last convergence can be proved to hold in ℓ^{p} for $p>\frac{1}{1-\gamma}$.
- Thanks to the representation theorem, this also holds for preferential attachment trees.

Convergence of degrees: elements of proofs

For any $k \geq 1$ we can write:

$$
\operatorname{deg}_{n}^{+}(k)=\sum_{i=k+1}^{n} 1\{(\mathrm{i} \rightarrow\}
$$

Convergence of degrees: Elements of proofs

For any $k \geq 1$ we can write:

$$
\operatorname{deg}_{n}^{+}(\mathbb{k})=\sum_{i=k+1}^{n} 1\{(\mathrm{i} \rightarrow(\mathrm{k})\}
$$

The events $\{$ (i) \rightarrow k for $i \in\{k+1, k+2, \ldots n\}$ are independent and have respective probability $\frac{w_{k}}{W_{i-1}}$.

Convergence of degrees: Elements of proofs

For any $k \geq 1$ we can write:

$$
\operatorname{deg}_{n}^{+}(\mathbb{k})=\sum_{i=k+1}^{n} 1\{(\mathrm{i} \rightarrow(\mathrm{k})\}
$$

The events $\{$ (i) \rightarrow k for $i \in\{k+1, k+2, \ldots n\}$ are independent and have respective probability $\frac{w_{k}}{W_{i-1}}$. Hence by a law of large numbers, with probability 1 we have

$$
\begin{array}{r}
\left.\operatorname{deg}_{n}^{+}(k) \underset{n \rightarrow \infty}{\sim} \sum_{i=k+1}^{n} \mathbb{P}(i) \rightarrow k\right) \underset{n \rightarrow \infty}{\sim} \sum_{i=k+1}^{n} \frac{w_{k}}{W_{i-1}} \underset{n \rightarrow \infty}{\sim} w_{k} \cdot \sum_{i=k+1}^{n} \frac{1}{C \cdot i \gamma} \\
\underset{n \rightarrow \infty}{\sim} w_{k} \cdot \frac{n^{1-\gamma}}{C(1-\gamma)}
\end{array}
$$

Convergence of degrees in PA trees

If $\left(P_{n}\right)_{n \geq 1}$ is a sequence of trees with distribution $\operatorname{PA}\left(\left(a_{n}\right)_{n \geq 1}\right)$ with $A_{n} \simeq c \cdot n$ as $n \rightarrow \infty$ then we have the almost sure convergence in some $\ell^{\text {p }}$ space,

$$
\left.n^{-\frac{1}{c+1}} \cdot\left(\operatorname{deg}_{n}^{+}(1)\right), \operatorname{deg}_{n}^{+}((2)), \ldots\right) \underset{n \rightarrow \infty}{\rightarrow}\left(m_{1}, m_{2}, \ldots\right),
$$

where $\left(m_{n}\right)_{n \geq 1}$ is a constant times the sequence $\left(w_{n}^{a}\right)_{n \geq 1}$.

Scaling limits for generalisation of Rémy's algorithm

A generalised version of rémy's algorithm

A generalised version of rémy's algorithm

A generalised version of rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

A generalised version of Rémy's algorithm

Questions about the model

- In the original algorithm, the diameter of H_{n} grows as $n^{1 / 2}$, and we have an almost sure convergence in a metric space sense

$$
\left(H_{n}, n^{-1 / 2} \cdot \mathrm{~d}_{g r}\right) \underset{n \rightarrow \infty}{\rightarrow} \mathcal{T}
$$

where \mathcal{T} is Aldous' CRT.

Questions about the model

- In the original algorithm, the diameter of H_{n} grows as $n^{1 / 2}$, and we have an almost sure convergence in a metric space sense

$$
\left(H_{n}, n^{-1 / 2} \cdot \mathrm{~d}_{g r}\right) \underset{n \rightarrow \infty}{\rightarrow} \mathcal{T},
$$

where \mathcal{T} is Aldous' CRT.

- How does the diameter of H_{n} grow as $n \rightarrow \infty$ for more general sequences $\left(G_{n}\right)_{n \geq 1}$?

Questions about the model

- In the original algorithm, the diameter of H_{n} grows as $n^{1 / 2}$, and we have an almost sure convergence in a metric space sense

$$
\left(H_{n}, n^{-1 / 2} \cdot \mathrm{~d}_{g r}\right) \underset{n \rightarrow \infty}{\rightarrow} \mathcal{T},
$$

where \mathcal{T} is Aldous' CRT.

- How does the diameter of H_{n} grow as $n \rightarrow \infty$ for more general sequences $\left(G_{n}\right)_{n \geq 1}$?
- Do we get a scaling limit?

Questions about the model

- In the original algorithm, the diameter of H_{n} grows as $n^{1 / 2}$, and we have an almost sure convergence in a metric space sense

$$
\left(H_{n}, n^{-1 / 2} \cdot \mathrm{~d}_{g r}\right) \underset{n \rightarrow \infty}{\rightarrow} \mathcal{T},
$$

where \mathcal{T} is Aldous' CRT.

- How does the diameter of H_{n} grow as $n \rightarrow \infty$ for more general sequences $\left(G_{n}\right)_{n \geq 1}$?
- Do we get a scaling limit?
- If yes, what does it look like?

A generalised version of rémy's algorithm

G_{3}

G_{4}

G_{5}

0

A generalised version of Rémy's algorithm

G_{5}

H_{3}

T_{3}

A generalised version of Rémy's algorithm

G_{5}

0

A generalised version of Rémy's algorithm

G_{4}

G_{5}

A generalised version of Rémy's algorithm

G_{4}

G_{5}

H_{4}

T_{4}

A generalised version of Rémy's algorithm

G_{4}

G_{5}

A generalised version of Rémy's algorithm

G_{2}

G_{3}

G_{4}

G_{5}

A generalised version of Rémy's algorithm

A generalised version of rémy's algorithm

G_{4}

G_{5}
large n
distances $\times n^{-1 /(c+1)}$

SCALING LIMIT OF THIS PROCESS

Denote by $\left(a_{n}\right)_{n \geq 1}=\left(\left|E\left(G_{n}\right)\right|\right)_{n \geq 1}$ the sequence corresponding to the number of edges in $\left(G_{n}\right)_{n \geq 1}$.

SCALING LIMIT OF THIS PROCESS

Denote by $\left(a_{n}\right)_{n \geq 1}=\left(\left|E\left(G_{n}\right)\right|\right)_{n \geq 1}$ the sequence corresponding to the number of edges in $\left(G_{n}\right)_{n \geq 1}$.

Theorem (S. 2019+)
Suppose that $\sum_{i=1}^{n} a_{i}=c \cdot n+O\left(n^{1-\epsilon}\right)$ for some constant $c>0$ and $a_{n} \leq n^{\frac{1}{+1+1}-\epsilon+o(1)}$. Then we have the following convergence

$$
\left(H_{n}, n^{-\frac{1}{c+1}} \cdot d_{g r}, \mu_{n, \text { unif }}\right) \underset{n \rightarrow \infty}{\longrightarrow}(\mathcal{H}, \mathrm{~d}, \mu)
$$

almost surely in Gromov-Hausdorff-Prokhorov topology.

SCALING LIMIT OF THIS PROCESS

Denote by $\left(a_{n}\right)_{n \geq 1}=\left(\left|E\left(G_{n}\right)\right|\right)_{n \geq 1}$ the sequence corresponding to the number of edges in $\left(G_{n}\right)_{n \geq 1}$.

Theorem (S. 2019+)
Suppose that $\sum_{i=1}^{n} a_{i}=c \cdot n+O\left(n^{1-\epsilon}\right)$ for some constant $c>0$ and $a_{n} \leq n^{\frac{1}{c+1}-\epsilon+o(1)}$. Then we have the following convergence

$$
\left(H_{n}, n^{-\frac{1}{c+1}} \cdot d_{g r}, \mu_{n, \text { unif }}\right) \underset{n \rightarrow \infty}{\longrightarrow}(\mathcal{H}, \mathrm{~d}, \mu)
$$

almost surely in Gromov-Hausdorff-Prokhorov topology.

- Convergence of degrees in the tree \rightarrow convergence of each coloured portion of the graph.

SCALING LIMIT OF THIS PROCESS

Denote by $\left(a_{n}\right)_{n \geq 1}=\left(\left|E\left(G_{n}\right)\right|\right)_{n \geq 1}$ the sequence corresponding to the number of edges in $\left(G_{n}\right)_{n \geq 1}$.

Theorem (S. 2019+)
Suppose that $\sum_{i=1}^{n} a_{i}=c \cdot n+O\left(n^{1-\epsilon}\right)$ for some constant $c>0$ and $a_{n} \leq n^{\frac{1}{c+1}-\epsilon+o(1)}$. Then we have the following convergence

$$
\left(H_{n}, n^{-\frac{1}{c+1}} \cdot d_{g r}, \mu_{n, \text { unif }}\right) \underset{n \rightarrow \infty}{\longrightarrow}(\mathcal{H}, \mathrm{~d}, \mu)
$$

almost surely in Gromov-Hausdorff-Prokhorov topology.

- Convergence of degrees in the tree \rightarrow convergence of each coloured portion of the graph.
- Controlling the degrees in the tree \rightarrow controlling distances in H_{n}.

SCALING LIMIT OF THIS PROCESS

Denote by $\left(a_{n}\right)_{n \geq 1}=\left(\left|E\left(G_{n}\right)\right|\right)_{n \geq 1}$ the sequence corresponding to the number of edges in $\left(G_{n}\right)_{n \geq 1}$.
Theorem (S. 2019+)
Suppose that $\sum_{i=1}^{n} a_{i}=c \cdot n+O\left(n^{1-\epsilon}\right)$ for some constant $c>0$ and $a_{n} \leq n^{\frac{1}{c+1}-\epsilon+o(1)}$. Then we have the following convergence

$$
\left(H_{n}, n^{-\frac{1}{c+1}} \cdot d_{g r}, \mu_{n, \text { unif }}\right) \underset{n \rightarrow \infty}{\longrightarrow}(\mathcal{H}, \mathrm{~d}, \mu)
$$

almost surely in Gromov-Hausdorff-Prokhorov topology.

- Convergence of degrees in the tree \rightarrow convergence of each coloured portion of the graph.
- Controlling the degrees in the tree \rightarrow controlling distances in H_{n}.
- Description of the tree as a WRT \rightarrow iterative gluing construction.

Iterative gluing construction

Thank you for your attention!

Height and profile of WRT

T_{n}

Height and profile of WRT

Height and profile of WRT

The profile of the tree T_{n} is the function $\mathbb{L}_{n}: \mathbb{N} \rightarrow \mathbb{N}$ defined as $\forall k \geq 0, \quad \mathbb{L}_{n}(k)=\#\left\{\right.$ vertices at height k in the tree $\left.\mathrm{T}_{n}\right\}$.

Height and profile of WRT

The profile of the tree T_{n} is the function $\mathbb{L}_{n}: \mathbb{N} \rightarrow \mathbb{N}$ defined as $\forall k \geq 0, \quad \mathbb{L}_{n}(k)=\#\left\{\right.$ vertices at height k in the tree $\left.\mathrm{T}_{n}\right\}$.

The profile is almost surely asymptotically Gaussian

The profile is almost surely asymptotically Gaussian

The log of the profile converges to a function

The log of the profile converges to a function

The log of the profile converges to a function

THE LOG OF THE PROFILE CONVERGES TO A FUNCTION

Statement of the Theorem

Theorem (S. 2019+)
Under the assumption $W_{n} \simeq \mathrm{cst} \cdot n^{\gamma}$ (+ additional condition) we almost surely have
$\cdot \frac{h t\left(T_{n}\right)}{\log n} \underset{n \rightarrow \infty}{\longrightarrow} \gamma \cdot e^{z_{+}}$.
$\cdot \mathbb{L}_{n}(k) \underset{n \rightarrow \infty}{=} \frac{n}{\sqrt{2 \pi \gamma \log n}} \exp \left\{-\frac{1}{2} \cdot\left(\frac{k-\gamma \log n}{\sqrt{\gamma \log n}}\right)^{2}\right\}+O\left(\frac{n}{\log n}\right)$,

- for all $z \in\left(z_{-}, z_{+}\right), \quad \mathbb{L}_{n}\left(\left\lfloor\gamma e^{z} \log n\right\rfloor\right)=n^{f_{\gamma}(z)+o(1)}$.

