
Asymptotic properties of weighted recursive
and preferential attachment trees
ArXiv:1904.07115

Delphin Sénizergues
Retreat for Young Researchers in Probability and areas of Application,
September 28, 2019

University of British Columbia



Introduction



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.

• Construct a sequence (Tn)n≥1 recursively.

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.

1



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.
• Construct a sequence (Tn)n≥1 recursively.

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.

1



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.
• Construct a sequence (Tn)n≥1 recursively.

1

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Tn
)

∝ wk.

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.

1



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.
• Construct a sequence (Tn)n≥1 recursively.

1

2

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Tn
)

∝ wk.

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.

1



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.
• Construct a sequence (Tn)n≥1 recursively.

1

2

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Tn
)

∝ wk.

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.

1



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.
• Construct a sequence (Tn)n≥1 recursively.

1

2 4

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Tn
)

∝ wk.

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.

1



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.
• Construct a sequence (Tn)n≥1 recursively.

1

2 4

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Tn
)

=
wk∑n
i=1 wi

.

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.

1



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.
• Construct a sequence (Tn)n≥1 recursively.

1

2 4

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Tn
)

=
wk
Wn

.

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.

1



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.
• Construct a sequence (Tn)n≥1 recursively.

1

2 4

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Tn
)

=
wk
Wn

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).

• We can also use random sequences of weights.

1



Weighted recursive trees

• Start with (wn)n≥1 a sequence of weights.
• Construct a sequence (Tn)n≥1 recursively.

1

2 4

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Tn
)

=
wk
Wn

• We write (Tn)n≥1 ∼ WRT((wn)n≥1).
• We can also use random sequences of weights.

1



Goals and motivations

Goal: study the asymptotic behaviour of some statistics of the tree
Tn when n is large such as degrees, height of the tree, profile
(number of vertices at any given height)...

• If (wn)n≥1 is constant, then (Tn)n≥1 follows the distribution of
the Uniform Recursive Tree (URT).

• We will work under the assumption that Wn ' cst ·nγ for some
constant γ > 0 + additional condition on the weights.

• One motivation is the connection with another model of
growing trees: the preferential attachment trees.

• Also, connection to the monkey walk (Mailler-Uribe 2018+).

2



Goals and motivations

Goal: study the asymptotic behaviour of some statistics of the tree
Tn when n is large such as degrees, height of the tree, profile
(number of vertices at any given height)...

• If (wn)n≥1 is constant, then (Tn)n≥1 follows the distribution of
the Uniform Recursive Tree (URT).

• We will work under the assumption that Wn ' cst ·nγ for some
constant γ > 0 + additional condition on the weights.

• One motivation is the connection with another model of
growing trees: the preferential attachment trees.

• Also, connection to the monkey walk (Mailler-Uribe 2018+).

2



Goals and motivations

Goal: study the asymptotic behaviour of some statistics of the tree
Tn when n is large such as degrees, height of the tree, profile
(number of vertices at any given height)...

• If (wn)n≥1 is constant, then (Tn)n≥1 follows the distribution of
the Uniform Recursive Tree (URT).

• We will work under the assumption that Wn ' cst ·nγ for some
constant γ > 0 + additional condition on the weights.

• One motivation is the connection with another model of
growing trees: the preferential attachment trees.

• Also, connection to the monkey walk (Mailler-Uribe 2018+).

2



Goals and motivations

Goal: study the asymptotic behaviour of some statistics of the tree
Tn when n is large such as degrees, height of the tree, profile
(number of vertices at any given height)...

• If (wn)n≥1 is constant, then (Tn)n≥1 follows the distribution of
the Uniform Recursive Tree (URT).

• We will work under the assumption that Wn ' cst ·nγ for some
constant γ > 0 + additional condition on the weights.

• One motivation is the connection with another model of
growing trees: the preferential attachment trees.

• Also, connection to the monkey walk (Mailler-Uribe 2018+).

2



Goals and motivations

Goal: study the asymptotic behaviour of some statistics of the tree
Tn when n is large such as degrees, height of the tree, profile
(number of vertices at any given height)...

• If (wn)n≥1 is constant, then (Tn)n≥1 follows the distribution of
the Uniform Recursive Tree (URT).

• We will work under the assumption that Wn ' cst ·nγ for some
constant γ > 0 + additional condition on the weights.

• One motivation is the connection with another model of
growing trees: the preferential attachment trees.

• Also, connection to the monkey walk (Mailler-Uribe 2018+).

2



Preferential attachment trees with additive fitnesses

• Start with (an)n≥1 a sequence of fitnesses.

• Construct a sequence (Pn)n≥1 recursively.

• We write (Pn)n≥1 ∼ PA((an)n≥1).

3



Preferential attachment trees with additive fitnesses

• Start with (an)n≥1 a sequence of fitnesses.
• Construct a sequence (Pn)n≥1 recursively.

• We write (Pn)n≥1 ∼ PA((an)n≥1).

3



Preferential attachment trees with additive fitnesses

• Start with (an)n≥1 a sequence of fitnesses.
• Construct a sequence (Pn)n≥1 recursively.

1

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Pn
)

∝ ak + deg+n ( k ).

• We write (Pn)n≥1 ∼ PA((an)n≥1).

3



Preferential attachment trees with additive fitnesses

• Start with (an)n≥1 a sequence of fitnesses.
• Construct a sequence (Pn)n≥1 recursively.

1

2

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Pn
)

∝ ak + deg+n ( k ).

• We write (Pn)n≥1 ∼ PA((an)n≥1).

3



Preferential attachment trees with additive fitnesses

• Start with (an)n≥1 a sequence of fitnesses.
• Construct a sequence (Pn)n≥1 recursively.

1

2

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Pn
)

∝ ak + deg+n ( k ).

• We write (Pn)n≥1 ∼ PA((an)n≥1).

3



Preferential attachment trees with additive fitnesses

• Start with (an)n≥1 a sequence of fitnesses.
• Construct a sequence (Pn)n≥1 recursively.

1

2 4

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Pn
)

∝ ak + deg+n ( k ).

• We write (Pn)n≥1 ∼ PA((an)n≥1).

3



Preferential attachment trees with additive fitnesses

• Start with (an)n≥1 a sequence of fitnesses.
• Construct a sequence (Pn)n≥1 recursively.

1

2 4

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Pn
)

=
ak + deg+n ( k )∑n

i=1 ai +
∑n

i=1 deg
+
n ( i )

.

• We write (Pn)n≥1 ∼ PA((an)n≥1).

3



Preferential attachment trees with additive fitnesses

• Start with (an)n≥1 a sequence of fitnesses.
• Construct a sequence (Pn)n≥1 recursively.

1

2 4

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Pn
)

=
ak + deg+n ( k )

An + n− 1
.

• We write (Pn)n≥1 ∼ PA((an)n≥1).

3



Preferential attachment trees with additive fitnesses

• Start with (an)n≥1 a sequence of fitnesses.
• Construct a sequence (Pn)n≥1 recursively.

1

2 4

3

∀k ∈ {1, . . .n}, P
(
n+1 → k

∣∣∣ Pn
)

=
ak + deg+n ( k )

An + n− 1
.

• We write (Pn)n≥1 ∼ PA((an)n≥1).

3



The representation theorem

Theorem (S. 2019+)
Preferential attachment trees are weighted recursive trees i.e. for any
sequence of fitnesses a = (an)n≥1, there exists a random sequence
(wan)n≥1 such that the distributions PA((an)n≥1) andWRT((wan)n≥1)
coincide.

• If An ' c · n as n→ ∞ then the sequence (wan)n≥1 satisfies
Wa
n ' cst ·nγ a.s. with γ = c

c+1 .
• Results for weighted recursive trees automatically apply to
preferential attachment trees!

4



The representation theorem

Theorem (S. 2019+)
Preferential attachment trees are weighted recursive trees i.e. for any
sequence of fitnesses a = (an)n≥1, there exists a random sequence
(wan)n≥1 such that the distributions PA((an)n≥1) andWRT((wan)n≥1)
coincide.

• If An ' c · n as n→ ∞ then the sequence (wan)n≥1 satisfies
Wa
n ' cst ·nγ a.s. with γ = c

c+1 .

• Results for weighted recursive trees automatically apply to
preferential attachment trees!

4



The representation theorem

Theorem (S. 2019+)
Preferential attachment trees are weighted recursive trees i.e. for any
sequence of fitnesses a = (an)n≥1, there exists a random sequence
(wan)n≥1 such that the distributions PA((an)n≥1) andWRT((wan)n≥1)
coincide.

• If An ' c · n as n→ ∞ then the sequence (wan)n≥1 satisfies
Wa
n ' cst ·nγ a.s. with γ = c

c+1 .
• Results for weighted recursive trees automatically apply to
preferential attachment trees!

4



Definition of the random sequence (wan)n≥1

For any sequence a = (an)n≥1 of fitnesses, the random sequence
(wan)n≥1 is defined as

wa1 = Wa
1 = 1 and ∀n ≥ 2, Wa

n =
n−1∏
k=1

β−1
k ,

where the (βk)k≥1 are independent with respective distribution
Beta(Ak + k,ak+1), with Ak =

∑k
i=1 ai.

5



The classical Pólya urn

+

+

• At time 0, the urn contains a black balls and b red balls.
• At each time n ≥ 1, a ball is drawn from the urn and returned to
the urn together with a new ball of the same colour.

• For all n ≥ 1, we let Xn := 1{the ball drawn at time n is black}.

6



Classical results on Pólya urns

Theorem
Almost surely

#{black balls at time n}
#{balls at time n}

=
a+

∑n
i=1 Xi

a+ b+ n
−→
n→∞

β,

where β is a random variable with distribution Beta(a,b).

Furthermore, conditionally on β, the sequence (Xn)n≥1 is a sequence
of i.i.d. Bernoulli random variables with parameter β.

7



Classical results on Pólya urns

Theorem
Almost surely

#{black balls at time n}
#{balls at time n}

=
a+

∑n
i=1 Xi

a+ b+ n
−→
n→∞

β,

where β is a random variable with distribution Beta(a,b).
Furthermore, conditionally on β, the sequence (Xn)n≥1 is a sequence
of i.i.d. Bernoulli random variables with parameter β.

7



Convergence results for weighted
recursive trees



Convergence of degrees

Proposition (S. 2019+)
If Wn ∼ C · nγ as n→ ∞ for 0 < γ < 1, then we almost surely have

n−(1−γ) · (deg+n ( 1 ), deg+n ( 2 ), . . . ) →
n→∞

1
C(1− γ)

· (w1,w2, . . . ),

for the product topology.

• Under some additional condition on (wn)n≥1, the last
convergence can be proved to hold in `p for p > 1

1−γ .
• Thanks to the representation theorem, this also holds for
preferential attachment trees.

8



Convergence of degrees

Proposition (S. 2019+)
If Wn ∼ C · nγ as n→ ∞ for 0 < γ < 1, then we almost surely have

n−(1−γ) · (deg+n ( 1 ), deg+n ( 2 ), . . . ) →
n→∞

1
C(1− γ)

· (w1,w2, . . . ),

for the product topology.

• Under some additional condition on (wn)n≥1, the last
convergence can be proved to hold in `p for p > 1

1−γ .

• Thanks to the representation theorem, this also holds for
preferential attachment trees.

8



Convergence of degrees

Proposition (S. 2019+)
If Wn ∼ C · nγ as n→ ∞ for 0 < γ < 1, then we almost surely have

n−(1−γ) · (deg+n ( 1 ), deg+n ( 2 ), . . . ) →
n→∞

1
C(1− γ)

· (w1,w2, . . . ),

for the product topology.

• Under some additional condition on (wn)n≥1, the last
convergence can be proved to hold in `p for p > 1

1−γ .
• Thanks to the representation theorem, this also holds for
preferential attachment trees.

8



Convergence of degrees: elements of proofs

For any k ≥ 1 we can write:

deg+n ( k ) =
n∑

i=k+1

1{
i → k

}.

The events
{
i → k

}
for i ∈ {k+ 1, k+ 2, . . .n} are independent

and have respective probability wk
Wi−1

. Hence by a law of large
numbers, with probability 1 we have

deg+n ( k ) ∼
n→∞

n∑
i=k+1

P
(
i → k

)
∼

n→∞

n∑
i=k+1

wk
Wi−1

∼
n→∞

wk ·
n∑

i=k+1

1
C · iγ

∼
n→∞

wk ·
n1−γ

C(1− γ)
.

9



Convergence of degrees: elements of proofs

For any k ≥ 1 we can write:

deg+n ( k ) =
n∑

i=k+1

1{
i → k

}.

The events
{
i → k

}
for i ∈ {k+ 1, k+ 2, . . .n} are independent

and have respective probability wk
Wi−1

.

Hence by a law of large
numbers, with probability 1 we have

deg+n ( k ) ∼
n→∞

n∑
i=k+1

P
(
i → k

)
∼

n→∞

n∑
i=k+1

wk
Wi−1

∼
n→∞

wk ·
n∑

i=k+1

1
C · iγ

∼
n→∞

wk ·
n1−γ

C(1− γ)
.

9



Convergence of degrees: elements of proofs

For any k ≥ 1 we can write:

deg+n ( k ) =
n∑

i=k+1

1{
i → k

}.

The events
{
i → k

}
for i ∈ {k+ 1, k+ 2, . . .n} are independent

and have respective probability wk
Wi−1

. Hence by a law of large
numbers, with probability 1 we have

deg+n ( k ) ∼
n→∞

n∑
i=k+1

P
(
i → k

)
∼

n→∞

n∑
i=k+1

wk
Wi−1

∼
n→∞

wk ·
n∑

i=k+1

1
C · iγ

∼
n→∞

wk ·
n1−γ

C(1− γ)
.

9



Convergence of degrees in PA trees

If (Pn)n≥1 is a sequence of trees with distribution PA((an)n≥1) with
An ' c · n as n→ ∞ then we have the almost sure convergence in
some `p space,

n− 1
c+1 · (deg+n ( 1 ), deg+n ( 2 ), . . . ) →

n→∞
(m1,m2, . . . ),

where (mn)n≥1 is a constant times the sequence (wan)n≥1.

10



Scaling limits for generalisation
of Rémy’s algorithm



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

H1

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

H2

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

H3

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

H4

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

11



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

H5

11



Questions about the model

• In the original algorithm, the diameter of Hn grows as n1/2, and
we have an almost sure convergence in a metric space sense

(Hn,n−1/2 · dgr) →
n→∞

T ,

where T is Aldous’ CRT.

• How does the diameter of Hn grow as n→ ∞ for more general
sequences (Gn)n≥1?

• Do we get a scaling limit?
• If yes, what does it look like?

12



Questions about the model

• In the original algorithm, the diameter of Hn grows as n1/2, and
we have an almost sure convergence in a metric space sense

(Hn,n−1/2 · dgr) →
n→∞

T ,

where T is Aldous’ CRT.
• How does the diameter of Hn grow as n→ ∞ for more general
sequences (Gn)n≥1?

• Do we get a scaling limit?
• If yes, what does it look like?

12



Questions about the model

• In the original algorithm, the diameter of Hn grows as n1/2, and
we have an almost sure convergence in a metric space sense

(Hn,n−1/2 · dgr) →
n→∞

T ,

where T is Aldous’ CRT.
• How does the diameter of Hn grow as n→ ∞ for more general
sequences (Gn)n≥1?

• Do we get a scaling limit?

• If yes, what does it look like?

12



Questions about the model

• In the original algorithm, the diameter of Hn grows as n1/2, and
we have an almost sure convergence in a metric space sense

(Hn,n−1/2 · dgr) →
n→∞

T ,

where T is Aldous’ CRT.
• How does the diameter of Hn grow as n→ ∞ for more general
sequences (Gn)n≥1?

• Do we get a scaling limit?
• If yes, what does it look like?

12



A generalised version of Rémy’s algorithm

H1 T1

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

H2 T2

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

H3 T3

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

H4 T4

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

H5 T5

1

2
3 5

4

G1 G2 G3 G4 G5

13



A generalised version of Rémy’s algorithm

G1 G2 G3 G4 G5

distances ×n−1/(c+1)

large n

13



Scaling limit of this process

Denote by (an)n≥1 = (|E(Gn)|)n≥1 the sequence corresponding to the
number of edges in (Gn)n≥1.

Theorem (S. 2019+)
Suppose that

∑n
i=1 ai = c · n+ O

(
n1−ε

)
for some constant c > 0 and

an ≤ n 1
c+1−ε+o(1). Then we have the following convergence(

Hn,n−
1
c+1 · dgr, µn,unif

)
−→
n→∞

(H, d, µ) ,

almost surely in Gromov-Hausdorff-Prokhorov topology.

• Convergence of degrees in the tree→ convergence of each
coloured portion of the graph.

• Controlling the degrees in the tree→ controlling distances in Hn.
• Description of the tree as a WRT→ iterative gluing construction.

14



Scaling limit of this process

Denote by (an)n≥1 = (|E(Gn)|)n≥1 the sequence corresponding to the
number of edges in (Gn)n≥1.

Theorem (S. 2019+)
Suppose that

∑n
i=1 ai = c · n+ O

(
n1−ε

)
for some constant c > 0 and

an ≤ n 1
c+1−ε+o(1). Then we have the following convergence(

Hn,n−
1
c+1 · dgr, µn,unif

)
−→
n→∞

(H, d, µ) ,

almost surely in Gromov-Hausdorff-Prokhorov topology.

• Convergence of degrees in the tree→ convergence of each
coloured portion of the graph.

• Controlling the degrees in the tree→ controlling distances in Hn.
• Description of the tree as a WRT→ iterative gluing construction.

14



Scaling limit of this process

Denote by (an)n≥1 = (|E(Gn)|)n≥1 the sequence corresponding to the
number of edges in (Gn)n≥1.

Theorem (S. 2019+)
Suppose that

∑n
i=1 ai = c · n+ O

(
n1−ε

)
for some constant c > 0 and

an ≤ n 1
c+1−ε+o(1). Then we have the following convergence(

Hn,n−
1
c+1 · dgr, µn,unif

)
−→
n→∞

(H, d, µ) ,

almost surely in Gromov-Hausdorff-Prokhorov topology.

• Convergence of degrees in the tree→ convergence of each
coloured portion of the graph.

• Controlling the degrees in the tree→ controlling distances in Hn.
• Description of the tree as a WRT→ iterative gluing construction.

14



Scaling limit of this process

Denote by (an)n≥1 = (|E(Gn)|)n≥1 the sequence corresponding to the
number of edges in (Gn)n≥1.

Theorem (S. 2019+)
Suppose that

∑n
i=1 ai = c · n+ O

(
n1−ε

)
for some constant c > 0 and

an ≤ n 1
c+1−ε+o(1). Then we have the following convergence(

Hn,n−
1
c+1 · dgr, µn,unif

)
−→
n→∞

(H, d, µ) ,

almost surely in Gromov-Hausdorff-Prokhorov topology.

• Convergence of degrees in the tree→ convergence of each
coloured portion of the graph.

• Controlling the degrees in the tree→ controlling distances in Hn.

• Description of the tree as a WRT→ iterative gluing construction.

14



Scaling limit of this process

Denote by (an)n≥1 = (|E(Gn)|)n≥1 the sequence corresponding to the
number of edges in (Gn)n≥1.

Theorem (S. 2019+)
Suppose that

∑n
i=1 ai = c · n+ O

(
n1−ε

)
for some constant c > 0 and

an ≤ n 1
c+1−ε+o(1). Then we have the following convergence(

Hn,n−
1
c+1 · dgr, µn,unif

)
−→
n→∞

(H, d, µ) ,

almost surely in Gromov-Hausdorff-Prokhorov topology.

• Convergence of degrees in the tree→ convergence of each
coloured portion of the graph.

• Controlling the degrees in the tree→ controlling distances in Hn.
• Description of the tree as a WRT→ iterative gluing construction.

14



Iterative gluing construction

G1 G2 G3 G4 G5

15



Iterative gluing construction

G1 G2 G3 G4 G5

15



Iterative gluing construction

G1 G2 G3 G4 G5

H1

15



Iterative gluing construction

G1 G2 G3 G4 G5

H2

15



Iterative gluing construction

G1 G2 G3 G4 G5

H3

15



Iterative gluing construction

G1 G2 G3 G4 G5

H4

15



Iterative gluing construction

H5

G1 G2 G3 G4 G5

15



Thank you for your attention!

16



Height and profile of WRT

1
Tn

The profile of the tree Tn is the function Ln : N → N defined as

∀k ≥ 0, Ln(k) = #{vertices at height k in the tree Tn}.

17



Height and profile of WRT

ht(Tn)

1

The profile of the tree Tn is the function Ln : N → N defined as

∀k ≥ 0, Ln(k) = #{vertices at height k in the tree Tn}.

17



Height and profile of WRT

k

Ln(k)
10

1

2

3

4

The profile of the tree Tn is the function Ln : N → N defined as

∀k ≥ 0, Ln(k) = #{vertices at height k in the tree Tn}.
17



Height and profile of WRT

k

Ln(k)
0

1

2

3

4

The profile of the tree Tn is the function Ln : N → N defined as

∀k ≥ 0, Ln(k) = #{vertices at height k in the tree Tn}.
17



The profile is almost surely asymptotically Gaussian

0

k

Ln(k)

18



The profile is almost surely asymptotically Gaussian

γ log n √
γ log n

n√
2πγ logn

0

k

Ln(k)

18



The log of the profile converges to a function

0

γ log n

Ln(k)

k

(log scale)

• fγ(z) := 1+ γ(ez − 1− zez).
• z+ is the unique positive
zero of fγ .

• Almost surely
ht(Tn) ∼

n→∞
γ · ez+ log n.

19



The log of the profile converges to a function

0

k

γez log n

nfγ(z)

• fγ(z) := 1+ γ(ez − 1− zez).

• z+ is the unique positive
zero of fγ .

• Almost surely
ht(Tn) ∼

n→∞
γ · ez+ log n.

19



The log of the profile converges to a function

0

k

γez+ log n

• fγ(z) := 1+ γ(ez − 1− zez).
• z+ is the unique positive
zero of fγ .

• Almost surely
ht(Tn) ∼

n→∞
γ · ez+ log n.

19



The log of the profile converges to a function

0

k

γez+ log n

• fγ(z) := 1+ γ(ez − 1− zez).
• z+ is the unique positive
zero of fγ .

• Almost surely
ht(Tn) ∼

n→∞
γ · ez+ log n.

19



Statement of the theorem

Theorem (S. 2019+)
Under the assumption Wn ' cst ·nγ (+ additional condition) we
almost surely have

• ht(Tn)
log n

−→
n→∞

γ · ez+ .

• Ln(k) =
n→∞

n√
2πγ log n

exp

{
− 1
2
·
(
k− γ log n√

γ log n

)2
}

+ O
(

n
log n

)
,

• for all z ∈ (z− , z+), Ln (bγez log nc) = nfγ(z)+o(1).

20


	Introduction
	Convergence results for weighted recursive trees
	Scaling limits for generalisation of Rémy's algorithm

