Invertible braided module categories and graded braided extensions of fusion categories

Dmitri Nikshych (joint work with Alexei Davydov)

University of New Hampshire

October 15, 2018

Outline

Graded extensions of fusion categories

Braided module categories over braided fusion categories

3 Braided extensions

We work over an algebraically closed field k.

A *G*-graded fusion category is $C = \bigoplus_{x \in G} C_x$ with $\otimes : C_x \times C_y \to C_{xy}$. If $C_1 = \mathcal{B}$ we say that C is a *G*-extension of \mathcal{B} .

A *G*-graded fusion category is $C = \bigoplus_{x \in G} C_x$ with $\otimes : C_x \times C_y \to C_{xy}$. If $C_1 = \mathcal{B}$ we say that C is a *G*-extension of \mathcal{B} .

A *G*-graded fusion category is $C = \bigoplus_{x \in G} C_x$ with $\otimes : C_x \times C_y \to C_{xy}$. If $C_1 = \mathcal{B}$ we say that C is a *G*-extension of \mathcal{B} .

Classification of extensions (Etingof-N-Ostrik) via higher cat groups

• { Groupoid of *G*-extensions of \mathcal{B} } \simeq { groupoid of monoidal 2-functors $G \rightarrow BrPic(\mathcal{B})$ } (invertible \mathcal{B} -bimodule categories).

A *G*-graded fusion category is $C = \bigoplus_{x \in G} C_x$ with $\otimes : C_x \times C_y \to C_{xy}$. If $C_1 = \mathcal{B}$ we say that C is a *G*-extension of \mathcal{B} .

- { Groupoid of *G*-extensions of \mathcal{B} } \simeq { groupoid of monoidal 2-functors $G \rightarrow BrPic(\mathcal{B})$ } (invertible \mathcal{B} -bimodule categories).
- Equivalently: monoidal functors with a vanishing obstruction in $H^4(G, k^{\times})$ (parameterization by a torsor over $H^3(G, k^{\times})$).

A *G*-graded fusion category is $C = \bigoplus_{x \in G} C_x$ with $\otimes : C_x \times C_y \to C_{xy}$. If $C_1 = \mathcal{B}$ we say that C is a *G*-extension of \mathcal{B} .

- { Groupoid of *G*-extensions of \mathcal{B} } \simeq { groupoid of monoidal 2-functors $G \rightarrow BrPic(\mathcal{B})$ } (invertible \mathcal{B} -bimodule categories).
- Equivalently: monoidal functors with a vanishing obstruction in $H^4(G, k^{\times})$ (parameterization by a torsor over $H^3(G, k^{\times})$).
- Equivalently: homotopy classes of maps $BG \to BBrPic(\mathcal{B})$.

A *G*-graded fusion category is $C = \bigoplus_{x \in G} C_x$ with $\otimes : C_x \times C_y \to C_{xy}$. If $C_1 = \mathcal{B}$ we say that C is a *G*-extension of \mathcal{B} .

- { Groupoid of *G*-extensions of \mathcal{B} } \simeq { groupoid of monoidal 2-functors $G \rightarrow BrPic(\mathcal{B})$ } (invertible \mathcal{B} -bimodule categories).
- Equivalently: monoidal functors with a vanishing obstruction in $H^4(G, k^{\times})$ (parameterization by a torsor over $H^3(G, k^{\times})$).
- Equivalently: homotopy classes of maps $BG \to BBrPic(\mathcal{B})$.
- For braided B { G-crossed graded extensions of B } ≃ { monoidal 2-functors G → Pic(B)} (invertible B-module categories).

A *G*-graded fusion category is $C = \bigoplus_{x \in G} C_x$ with $\otimes : C_x \times C_y \to C_{xy}$. If $C_1 = \mathcal{B}$ we say that C is a *G*-extension of \mathcal{B} .

Classification of extensions (Etingof-N-Ostrik) via higher cat groups

- { Groupoid of *G*-extensions of \mathcal{B} } \simeq { groupoid of monoidal 2-functors $G \rightarrow BrPic(\mathcal{B})$ } (invertible \mathcal{B} -bimodule categories).
- Equivalently: monoidal functors with a vanishing obstruction in $H^4(G, k^{\times})$ (parameterization by a torsor over $H^3(G, k^{\times})$).
- Equivalently: homotopy classes of maps $BG \to BBrPic(\mathcal{B})$.
- For braided B { G-crossed graded extensions of B } ≃ { monoidal 2-functors G → Pic(B)} (invertible B-module categories).

BrPic(\mathcal{B}) is a 2-categorical group. It determines the homotopy class of a topological space (a 3-type) with $\pi_1 = \text{BrPic}(\mathcal{B}), \ \pi_2 = \text{Inv}(\mathcal{Z}(\mathcal{B}))$, and $\pi_3 = k^{\times}$.

Let A be a finite abelian group. Let \mathcal{B} be a braided fusion category. Classify braided A-extensions of \mathcal{B} .

Let A be a finite abelian group. Let \mathcal{B} be a braided fusion category. Classify braided A-extensions of \mathcal{B} .

Solution

{ Groupoid of braided *A*-extensions of \mathcal{B} } \simeq { groupoid of *braided* monoidal 2-functors $A \rightarrow \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ }. Here $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ consists of invertible *braided* \mathcal{B} -bimodule categories), we call it the *braided* Picard group of \mathcal{B} .

Let A be a finite abelian group. Let \mathcal{B} be a braided fusion category. Classify braided A-extensions of \mathcal{B} .

Solution

{ Groupoid of braided A-extensions of \mathcal{B} } \simeq { groupoid of braided monoidal 2-functors $A \rightarrow \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ }. Here $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ consists of invertible braided \mathcal{B} -bimodule categories), we call it the braided Picard group of \mathcal{B} .

Let A be a finite abelian group. Let \mathcal{B} be a braided fusion category. Classify braided A-extensions of \mathcal{B} .

Solution

{ Groupoid of braided *A*-extensions of \mathcal{B} } \simeq { groupoid of *braided* monoidal 2-functors $A \rightarrow \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ }. Here $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ consists of invertible *braided* \mathcal{B} -bimodule categories), we call it the *braided* Picard group of \mathcal{B} .

Plan of the talk

Describe the structures involved

Let A be a finite abelian group. Let \mathcal{B} be a braided fusion category. Classify braided A-extensions of \mathcal{B} .

Solution

{ Groupoid of braided *A*-extensions of \mathcal{B} } \simeq { groupoid of *braided* monoidal 2-functors $A \rightarrow \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ }. Here $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ consists of invertible *braided* \mathcal{B} -bimodule categories), we call it the *braided* Picard group of \mathcal{B} .

- Describe the structures involved
- Prove the classification result

Let A be a finite abelian group. Let \mathcal{B} be a braided fusion category. Classify braided A-extensions of \mathcal{B} .

Solution

{ Groupoid of braided *A*-extensions of \mathcal{B} } \simeq { groupoid of *braided* monoidal 2-functors $A \rightarrow \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ }. Here $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ consists of invertible *braided* \mathcal{B} -bimodule categories), we call it the *braided* Picard group of \mathcal{B} .

- Describe the structures involved
- Prove the classification result
- Explain relevant higher categories and functors algebraically (using the language of obstructions)

Let A be a finite abelian group. Let \mathcal{B} be a braided fusion category. Classify braided A-extensions of \mathcal{B} .

Solution

{ Groupoid of braided *A*-extensions of \mathcal{B} } \simeq { groupoid of *braided* monoidal 2-functors $A \rightarrow \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ }. Here $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ consists of invertible *braided* \mathcal{B} -bimodule categories), we call it the *braided* Picard group of \mathcal{B} .

- Describe the structures involved
- Prove the classification result
- Explain relevant higher categories and functors algebraically (using the language of obstructions)
- Compute braided Picard groups in interesting cases

Let A be a finite abelian group. Let \mathcal{B} be a braided fusion category. Classify braided A-extensions of \mathcal{B} .

Solution

{ Groupoid of braided *A*-extensions of \mathcal{B} } \simeq { groupoid of *braided* monoidal 2-functors $A \rightarrow \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ }. Here $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ consists of invertible *braided* \mathcal{B} -bimodule categories), we call it the *braided* Picard group of \mathcal{B} .

- Describe the structures involved
- Prove the classification result
- Explain relevant higher categories and functors algebraically (using the language of obstructions)
- Compute braided Picard groups in interesting cases

Let $\mathcal M$ be a right $\mathcal B$ -module category and $\mathcal N$ be a left $\mathcal B$ -module category.

Let \mathcal{M} be a right \mathcal{B} -module category and \mathcal{N} be a left \mathcal{B} -module category.

The \mathcal{B} -module tensor product $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}$

consists of pairs ($V \in \mathcal{M} \boxtimes \mathcal{N}, \gamma = \{\gamma_X\}$), where the middle balancing $\gamma_X : V \otimes (X \boxtimes 1) \rightarrow (1 \boxtimes X) \otimes V, \qquad X \in \mathcal{B}$

is associative.

Let $\mathcal M$ be a right $\mathcal B\text{-module}$ category and $\mathcal N$ be a left $\mathcal B\text{-module}$ category.

The \mathcal{B} -module tensor product $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}$

consists of pairs ($V \in \mathcal{M} \boxtimes \mathcal{N}, \gamma = \{\gamma_X\}$), where the middle balancing $\gamma_X : V \otimes (X \boxtimes 1) \rightarrow (1 \boxtimes X) \otimes V, \quad X \in \mathcal{B}$

is associative. This is similar to tensor product of modules over a ring.

Let \mathcal{M} be a right \mathcal{B} -module category and \mathcal{N} be a left \mathcal{B} -module category.

The \mathcal{B} -module tensor product $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}$

consists of pairs ($V \in \mathcal{M} \boxtimes \mathcal{N}, \gamma = \{\gamma_X\}$), where the middle balancing $\gamma_X : V \otimes (X \boxtimes 1) \rightarrow (1 \boxtimes X) \otimes V, \qquad X \in \mathcal{B}$

is associative. This is similar to tensor product of modules over a ring. If \mathcal{M}, \mathcal{N} are bimodule categories then so is $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}$.

\mathcal{B} -**Bimod** is a monoidal 2-category via $\boxtimes_{\mathcal{B}}$

 $\label{eq:objects} \begin{array}{l} \mathsf{Objects} = \mathcal{B}\text{-bimodule categories, } 1\text{-cells} = \mathcal{B}\text{-bimodule functors, } 2\text{-cells} = \\ \mathcal{B}\text{-bimodule natural transformations.} \end{array}$

Let $\mathcal M$ be a right $\mathcal B\text{-module}$ category and $\mathcal N$ be a left $\mathcal B\text{-module}$ category.

The \mathcal{B} -module tensor product $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}$

consists of pairs ($V \in \mathcal{M} \boxtimes \mathcal{N}, \gamma = \{\gamma_X\}$), where the middle balancing $\gamma_X : V \otimes (X \boxtimes 1) \rightarrow (1 \boxtimes X) \otimes V, \qquad X \in \mathcal{B}$

is associative. This is similar to tensor product of modules over a ring. If \mathcal{M}, \mathcal{N} are bimodule categories then so is $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}$.

\mathcal{B} -**Bimod** is a monoidal 2-category via $\boxtimes_{\mathcal{B}}$

 $\label{eq:objects} \begin{array}{l} \mathsf{Objects} = \mathcal{B}\text{-bimodule categories, 1-cells} = \mathcal{B}\text{-bimodule functors, 2-cells} = \\ \mathcal{B}\text{-bimodule natural transformations.} \end{array}$

We will suppress the assocativity 2-cells for $\boxtimes_{\mathcal{B}}$.

Let $\mathcal M$ be a right $\mathcal B\text{-module}$ category and $\mathcal N$ be a left $\mathcal B\text{-module}$ category.

The \mathcal{B} -module tensor product $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}$

consists of pairs ($V \in \mathcal{M} \boxtimes \mathcal{N}, \gamma = \{\gamma_X\}$), where the middle balancing $\gamma_X : V \otimes (X \boxtimes 1) \to (1 \boxtimes X) \otimes V, \qquad X \in \mathcal{B}$

is associative. This is similar to tensor product of modules over a ring. If \mathcal{M}, \mathcal{N} are bimodule categories then so is $\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}$.

\mathcal{B} -**Bimod** is a monoidal 2-category via $\boxtimes_{\mathcal{B}}$

 $\label{eq:objects} \begin{array}{l} \mathsf{Objects} = \mathcal{B}\text{-bimodule categories, } 1\text{-cells} = \mathcal{B}\text{-bimodule functors, } 2\text{-cells} = \\ \mathcal{B}\text{-bimodule natural transformations.} \end{array}$

We will suppress the assocativity 2-cells for $\boxtimes_{\mathcal{B}}$.

The Brauer-Picard categorical 2-group $BrPic(\mathcal{B})$ is the "pointed part" of \mathcal{B} -**Bimod**

Objects are invertible w.r.t $\boxtimes_{\mathcal{B}}$, all cells are isomorphisms.

I Graded extensions of fusion categories

Praided module categories over braided fusion categories

3 Braided extensions

Let \mathcal{B} be a braided fusion category with braiding $c_{X,Y}: X \otimes Y \to Y \otimes X$.

Let \mathcal{B} be a braided fusion category with braiding $c_{X,Y} : X \otimes Y \to Y \otimes X$. Let \mathcal{M} be a \mathcal{B} -module category, i.e., there is $\otimes : \mathcal{B} \times \mathcal{M} \to \mathcal{M}$

Two tensor products on $\mathcal{B}\text{-}\mathbf{Mod}$

Two tensor products on $\mathcal{B}\text{-}\mathbf{Mod}$

Two tensor products on \mathcal{B} -**Mod**

 There are two tensor functors α^M_± : B → End_B(M) (α-inductions of Böckenhauer-Evans-Kawahigashi):

Two tensor products on \mathcal{B} -**Mod**

There are two tensor functors α^M_± : B → End_B(M) (α-inductions of Böckenhauer-Evans-Kawahigashi): α^M_±(X) = X⊗? with the B-module structure given by c_{X,Y} (resp. c⁻¹_{Y X})
Two tensor products on B-Mod

- There are two tensor functors α^M_± : B → End_B(M) (α-inductions of Böckenhauer-Evans-Kawahigashi): α^M_±(X) = X⊗? with the B-module structure given by c_{X,Y} (resp. c⁻¹_{Y,X})
- Since \mathcal{M} is a $\mathcal{B} \operatorname{End}_{\mathcal{B}}(\mathcal{M})$ -bimodule, one can turn \mathcal{M} into a \mathcal{B} -bimodule category in 2 different ways: \mathcal{M}_{\pm} (using $\alpha_{\pm}^{\mathcal{M}}$).

Two tensor products on \mathcal{B} -Mod

- There are two tensor functors α^M_± : B → End_B(M) (α-inductions of Böckenhauer-Evans-Kawahigashi): α^M_±(X) = X⊗? with the B-module structure given by c_{X,Y} (resp. c⁻¹_{Y,X})
- Since *M* is a *B* End_B(*M*)-bimodule, one can turn *M* into a *B*-bimodule category in 2 different ways: *M*_± (using α^M_±).
- Two monoidal 2-categories: \mathcal{B} -**Mod**_± with products $\mathcal{M}_{\pm} \boxtimes_{\mathcal{B}} \mathcal{N}$.

Relation between \pm products:

Two tensor products on \mathcal{B} -Mod

- There are two tensor functors α^M_± : B → End_B(M) (α-inductions of Böckenhauer-Evans-Kawahigashi): α^M_±(X) = X⊗? with the B-module structure given by c_{X,Y} (resp. c⁻¹_{YX})
- Since *M* is a *B* End_B(*M*)-bimodule, one can turn *M* into a *B*-bimodule category in 2 different ways: *M*_± (using α^M_±).
- Two monoidal 2-categories: \mathcal{B} -**Mod**_± with products $\mathcal{M}_{\pm} \boxtimes_{\mathcal{B}} \mathcal{N}$.

Relation between \pm products:

There is natural equivalence $\mathcal{N}_{-} \boxtimes_{\mathcal{B}} \mathcal{M} \xrightarrow{\sim} \mathcal{M}_{+} \boxtimes_{\mathcal{B}} \mathcal{N}$

Two tensor products on \mathcal{B} -Mod

- There are two tensor functors α^M_± : B → End_B(M) (α-inductions of Böckenhauer-Evans-Kawahigashi): α^M_±(X) = X⊗? with the B-module structure given by c_{X,Y} (resp. c⁻¹_{Y,X})
- Since *M* is a *B* End_B(*M*)-bimodule, one can turn *M* into a *B*-bimodule category in 2 different ways: *M*_± (using α^M_±).
- Two monoidal 2-categories: \mathcal{B} -**Mod**_± with products $\mathcal{M}_{\pm} \boxtimes_{\mathcal{B}} \mathcal{N}$.

Relation between \pm products:

There is natural equivalence $\mathcal{N}_{-} \boxtimes_{\mathcal{B}} \mathcal{M} \xrightarrow{\sim} \mathcal{M}_{+} \boxtimes_{\mathcal{B}} \mathcal{N}$ given by the transposition of factors $\mathcal{N} \boxtimes \mathcal{M} \to \mathcal{M} \boxtimes \mathcal{N}$,

Two tensor products on \mathcal{B} -Mod

- There are two tensor functors α^M_± : B → End_B(M) (α-inductions of Böckenhauer-Evans-Kawahigashi): α^M_±(X) = X⊗? with the B-module structure given by c_{X,Y} (resp. c⁻¹_{Y,X})
- Since *M* is a *B* End_B(*M*)-bimodule, one can turn *M* into a *B*-bimodule category in 2 different ways: *M*_± (using α^M_±).
- Two monoidal 2-categories: \mathcal{B} -**Mod**_± with products $\mathcal{M}_{\pm} \boxtimes_{\mathcal{B}} \mathcal{N}$.

Relation between \pm products:

There is natural equivalence $\mathcal{N}_{-} \boxtimes_{\mathcal{B}} \mathcal{M} \xrightarrow{\sim} \mathcal{M}_{+} \boxtimes_{\mathcal{B}} \mathcal{N}$ given by the transposition of factors $\mathcal{N} \boxtimes \mathcal{M} \to \mathcal{M} \boxtimes \mathcal{N}$, so that \mathcal{B} -**Mod**₊^{op}

Two tensor products on \mathcal{B} -Mod

- There are two tensor functors α^M_± : B → End_B(M) (α-inductions of Böckenhauer-Evans-Kawahigashi): α^M_±(X) = X⊗? with the B-module structure given by c_{X,Y} (resp. c⁻¹_{Y,X})
- Since *M* is a *B* End_B(*M*)-bimodule, one can turn *M* into a *B*-bimodule category in 2 different ways: *M*_± (using α^M_±).
- Two monoidal 2-categories: \mathcal{B} -**Mod**_± with products $\mathcal{M}_{\pm} \boxtimes_{\mathcal{B}} \mathcal{N}$.

Relation between \pm products:

There is natural equivalence $\mathcal{N}_{-} \boxtimes_{\mathcal{B}} \mathcal{M} \xrightarrow{\sim} \mathcal{M}_{+} \boxtimes_{\mathcal{B}} \mathcal{N}$ given by the transposition of factors $\mathcal{N} \boxtimes \mathcal{M} \to \mathcal{M} \boxtimes \mathcal{N}$, so that \mathcal{B} -**Mod**₊^{op}

A braided B-module category [Brochier, Ben-Zvi - Brochier - Jordan]

is a \mathcal{B} -module category \mathcal{M} equipped with a collection of isomorphisms $\sigma_{X,M}^{\mathcal{M}}: X * M \to X * M$ (module braiding) natural in $X \in \mathcal{B}, \ M \in \mathcal{M}$ with $\sigma_{1,M} = 1_M$ and such that the diagrams

commute for all $X, Y \in \mathcal{B}$ and $M \in \mathcal{M}$.

A braided B-module category [Brochier, Ben-Zvi - Brochier - Jordan]

is a \mathcal{B} -module category \mathcal{M} equipped with a collection of isomorphisms $\sigma_{X,M}^{\mathcal{M}}: X * M \to X * M$ (module braiding) natural in $X \in \mathcal{B}, \ M \in \mathcal{M}$ with $\sigma_{1,M} = 1_M$ and such that the diagrams

commute for all $X, Y \in \mathcal{B}$ and $M \in \mathcal{M}$. \mathcal{B} -module braided functors are required to respect module braiding.

Dmitri Nikshych (University of New Hampshi

Interpretation of module braidings

Terminology justification

A module braiding on \mathcal{M} gives rise to the pure braid group representation on $\operatorname{End}_{\mathcal{M}}(X_1 \otimes \cdots \otimes X_n \otimes M)$ for $X_1, \ldots, X_n \in \mathcal{B}$ and $M \in \mathcal{M}$.

A module braiding on \mathcal{M} gives rise to the pure braid group representation on $\operatorname{End}_{\mathcal{M}}(X_1 \otimes \cdots \otimes X_n \otimes M)$ for $X_1, \ldots, X_n \in \mathcal{B}$ and $M \in \mathcal{M}$.

A module braiding on \mathcal{M} is precisely an isomorphism of tensor functors $\alpha_+^{\mathcal{M}} \xrightarrow{\sim} \alpha_-^{\mathcal{M}}$.

A module braiding on \mathcal{M} gives rise to the pure braid group representation on $\operatorname{End}_{\mathcal{M}}(X_1 \otimes \cdots \otimes X_n \otimes M)$ for $X_1, \ldots, X_n \in \mathcal{B}$ and $M \in \mathcal{M}$.

A module braiding on \mathcal{M} is precisely an isomorphism of tensor functors $\alpha_{+}^{\mathcal{M}} \xrightarrow{\sim} \alpha_{-}^{\mathcal{M}}$. It gives a \mathcal{B} -bimodule equivalence $\mathcal{M}_{+} \xrightarrow{\sim} \mathcal{M}_{-}$.

A module braiding on \mathcal{M} gives rise to the pure braid group representation on $\operatorname{End}_{\mathcal{M}}(X_1 \otimes \cdots \otimes X_n \otimes M)$ for $X_1, \ldots, X_n \in \mathcal{B}$ and $M \in \mathcal{M}$.

A module braiding on \mathcal{M} is precisely an isomorphism of tensor functors $\alpha_+^{\mathcal{M}} \xrightarrow{\sim} \alpha_-^{\mathcal{M}}$. It gives a \mathcal{B} -bimodule equivalence $\mathcal{M}_+ \xrightarrow{\sim} \mathcal{M}_-$.

Tensor product of braided module categories

A module braiding on \mathcal{M} gives rise to the pure braid group representation on $\operatorname{End}_{\mathcal{M}}(X_1 \otimes \cdots \otimes X_n \otimes M)$ for $X_1, \ldots, X_n \in \mathcal{B}$ and $M \in \mathcal{M}$.

A module braiding on \mathcal{M} is precisely an isomorphism of tensor functors $\alpha_+^{\mathcal{M}} \xrightarrow{\sim} \alpha_-^{\mathcal{M}}$. It gives a \mathcal{B} -bimodule equivalence $\mathcal{M}_+ \xrightarrow{\sim} \mathcal{M}_-$.

Tensor product of braided module categories

$$(\mathcal{M}, \, \sigma^{\mathcal{M}}) \boxtimes_{\mathcal{B}} (\mathcal{N}, \, \sigma^{\mathcal{N}}) := (\mathcal{M}_{+} \boxtimes_{\mathcal{B}} \mathcal{N}, \, \sigma^{\mathcal{M}} \boxtimes_{\mathcal{B}} \sigma^{\mathcal{N}}).$$

A module braiding on \mathcal{M} gives rise to the pure braid group representation on $\operatorname{End}_{\mathcal{M}}(X_1 \otimes \cdots \otimes X_n \otimes M)$ for $X_1, \ldots, X_n \in \mathcal{B}$ and $M \in \mathcal{M}$.

A module braiding on \mathcal{M} is precisely an isomorphism of tensor functors $\alpha_+^{\mathcal{M}} \xrightarrow{\sim} \alpha_-^{\mathcal{M}}$. It gives a \mathcal{B} -bimodule equivalence $\mathcal{M}_+ \xrightarrow{\sim} \mathcal{M}_-$.

Tensor product of braided module categories

 $(\mathcal{M}, \sigma^{\mathcal{M}}) \boxtimes_{\mathcal{B}} (\mathcal{N}, \sigma^{\mathcal{N}}) := (\mathcal{M}_{+} \boxtimes_{\mathcal{B}} \mathcal{N}, \sigma^{\mathcal{M}} \boxtimes_{\mathcal{B}} \sigma^{\mathcal{N}}).$ The unit object is the regular \mathcal{B} with $\sigma^{\mathcal{B}}_{X,Y} = c_{Y,X} \circ c_{X,Y}.$

A module braiding on \mathcal{M} gives rise to the pure braid group representation on $\operatorname{End}_{\mathcal{M}}(X_1 \otimes \cdots \otimes X_n \otimes M)$ for $X_1, \ldots, X_n \in \mathcal{B}$ and $M \in \mathcal{M}$.

A module braiding on \mathcal{M} is precisely an isomorphism of tensor functors $\alpha_+^{\mathcal{M}} \xrightarrow{\sim} \alpha_-^{\mathcal{M}}$. It gives a \mathcal{B} -bimodule equivalence $\mathcal{M}_+ \xrightarrow{\sim} \mathcal{M}_-$.

Tensor product of braided module categories

 $(\mathcal{M}, \sigma^{\mathcal{M}}) \boxtimes_{\mathcal{B}} (\mathcal{N}, \sigma^{\mathcal{N}}) := (\mathcal{M}_{+} \boxtimes_{\mathcal{B}} \mathcal{N}, \sigma^{\mathcal{M}} \boxtimes_{\mathcal{B}} \sigma^{\mathcal{N}}).$ The unit object is the regular \mathcal{B} with $\sigma^{\mathcal{B}}_{X,Y} = c_{Y,X} \circ c_{X,Y}.$

Denote \mathcal{B} -**Mod**_{br} the resulting monoidal 2-category.

A module braiding on \mathcal{M} gives rise to the pure braid group representation on $\operatorname{End}_{\mathcal{M}}(X_1 \otimes \cdots \otimes X_n \otimes M)$ for $X_1, \ldots, X_n \in \mathcal{B}$ and $M \in \mathcal{M}$.

A module braiding on \mathcal{M} is precisely an isomorphism of tensor functors $\alpha_+^{\mathcal{M}} \xrightarrow{\sim} \alpha_-^{\mathcal{M}}$. It gives a \mathcal{B} -bimodule equivalence $\mathcal{M}_+ \xrightarrow{\sim} \mathcal{M}_-$.

Tensor product of braided module categories

 $(\mathcal{M}, \sigma^{\mathcal{M}}) \boxtimes_{\mathcal{B}} (\mathcal{N}, \sigma^{\mathcal{N}}) := (\mathcal{M}_{+} \boxtimes_{\mathcal{B}} \mathcal{N}, \sigma^{\mathcal{M}} \boxtimes_{\mathcal{B}} \sigma^{\mathcal{N}}).$ The unit object is the regular \mathcal{B} with $\sigma^{\mathcal{B}}_{X,Y} = c_{Y,X} \circ c_{X,Y}.$

Denote \mathcal{B} -**Mod**_{br} the resulting monoidal 2-category.

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let us combine previously mentioned equivalences:

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let us combine previously mentioned equivalences:

$$B_{\mathcal{M},\mathcal{N}}: \mathcal{M}_+ \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\text{transposition}} \mathcal{N}_- \boxtimes_{\mathcal{B}} \mathcal{M} \xrightarrow{\text{module braiding of } \mathcal{N}} \mathcal{N}_+ \boxtimes_{\mathcal{B}} \mathcal{M}.$$

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let us combine previously mentioned equivalences:

 $B_{\mathcal{M},\mathcal{N}}: \mathcal{M}_+ \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\text{transposition}} \mathcal{N}_- \boxtimes_{\mathcal{B}} \mathcal{M} \xrightarrow{\text{module braiding of } \mathcal{N}} \mathcal{N}_+ \boxtimes_{\mathcal{B}} \mathcal{M}.$

Let us denote \mathcal{B} -**Mod**₊ simply \mathcal{B} -**Mod** and its tensor product $\boxtimes_{\mathcal{B}}$.

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let us combine previously mentioned equivalences:

 $B_{\mathcal{M},\mathcal{N}}: \mathcal{M}_+ \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\text{transposition}} \mathcal{N}_- \boxtimes_{\mathcal{B}} \mathcal{M} \xrightarrow{\text{module braiding of } \mathcal{N}} \mathcal{N}_+ \boxtimes_{\mathcal{B}} \mathcal{M}.$

Let us denote \mathcal{B} -**Mod**₊ simply \mathcal{B} -**Mod** and its tensor product $\boxtimes_{\mathcal{B}}$.

The above $B_{\mathcal{M},\mathcal{N}} : \mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\sim} \mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M}$ equips \mathcal{M} with a structure of an object in the $\mathbf{Z}(\mathcal{B}-\mathbf{Mod})$ (= the 2-center of the monoidal 2-category \mathcal{B} -**Mod**)

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let us combine previously mentioned equivalences:

 $B_{\mathcal{M},\mathcal{N}}:\mathcal{M}_+\boxtimes_{\mathcal{B}}\mathcal{N}\xrightarrow{\text{transposition}}\mathcal{N}_-\boxtimes_{\mathcal{B}}\mathcal{M}\xrightarrow{\text{module braiding of }\mathcal{N}}\mathcal{N}_+\boxtimes_{\mathcal{B}}\mathcal{M}.$

Let us denote \mathcal{B} -**Mod**₊ simply \mathcal{B} -**Mod** and its tensor product $\boxtimes_{\mathcal{B}}$.

The above $B_{\mathcal{M},\mathcal{N}} : \mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\sim} \mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M}$ equips \mathcal{M} with a structure of an object in the $Z(\mathcal{B}-Mod)$ (= the 2-center of the monoidal 2-category \mathcal{B} -Mod) and vice versa.

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let us combine previously mentioned equivalences:

 $B_{\mathcal{M},\mathcal{N}}:\mathcal{M}_+\boxtimes_{\mathcal{B}}\mathcal{N}\xrightarrow{\text{transposition}}\mathcal{N}_-\boxtimes_{\mathcal{B}}\mathcal{M}\xrightarrow{\text{module braiding of }\mathcal{N}}\mathcal{N}_+\boxtimes_{\mathcal{B}}\mathcal{M}.$

Let us denote \mathcal{B} -**Mod**₊ simply \mathcal{B} -**Mod** and its tensor product $\boxtimes_{\mathcal{B}}$.

The above $B_{\mathcal{M},\mathcal{N}} : \mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\sim} \mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M}$ equips \mathcal{M} with a structure of an object in the $Z(\mathcal{B}-Mod)$ (= the 2-center of the monoidal 2-category \mathcal{B} -Mod) and vice versa.

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let us combine previously mentioned equivalences:

 $B_{\mathcal{M},\mathcal{N}}:\mathcal{M}_+\boxtimes_{\mathcal{B}}\mathcal{N}\xrightarrow{\text{transposition}}\mathcal{N}_-\boxtimes_{\mathcal{B}}\mathcal{M}\xrightarrow{\text{module braiding of }\mathcal{N}}\mathcal{N}_+\boxtimes_{\mathcal{B}}\mathcal{M}.$

Let us denote \mathcal{B} -**Mod**₊ simply \mathcal{B} -**Mod** and its tensor product $\boxtimes_{\mathcal{B}}$.

The above $B_{\mathcal{M},\mathcal{N}} : \mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\sim} \mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M}$ equips \mathcal{M} with a structure of an object in the $Z(\mathcal{B}-Mod)$ (= the 2-center of the monoidal 2-category \mathcal{B} -Mod) and vice versa.

Thus,

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let us combine previously mentioned equivalences:

 $B_{\mathcal{M},\mathcal{N}}: \mathcal{M}_+ \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\text{transposition}} \mathcal{N}_- \boxtimes_{\mathcal{B}} \mathcal{M} \xrightarrow{\text{module braiding of } \mathcal{N}} \mathcal{N}_+ \boxtimes_{\mathcal{B}} \mathcal{M}.$

Let us denote \mathcal{B} -**Mod**₊ simply \mathcal{B} -**Mod** and its tensor product $\boxtimes_{\mathcal{B}}$.

The above $B_{\mathcal{M},\mathcal{N}} : \mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\sim} \mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M}$ equips \mathcal{M} with a structure of an object in the $Z(\mathcal{B}-Mod)$ (= the 2-center of the monoidal 2-category \mathcal{B} -Mod) and vice versa.

Thus, \mathcal{B} -**Mod**_{br} \simeq **Z**(\mathcal{B} -**Mod**).

Let $\mathcal{N} = (\mathcal{N}, \sigma^{\mathcal{N}})$ be a braided \mathcal{B} -module category and \mathcal{M} be any \mathcal{B} -module category.

Let us combine previously mentioned equivalences:

 $B_{\mathcal{M},\mathcal{N}}: \mathcal{M}_+ \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\text{transposition}} \mathcal{N}_- \boxtimes_{\mathcal{B}} \mathcal{M} \xrightarrow{\text{module braiding of } \mathcal{N}} \mathcal{N}_+ \boxtimes_{\mathcal{B}} \mathcal{M}.$

Let us denote \mathcal{B} -**Mod**₊ simply \mathcal{B} -**Mod** and its tensor product $\boxtimes_{\mathcal{B}}$.

The above $B_{\mathcal{M},\mathcal{N}} : \mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N} \xrightarrow{\sim} \mathcal{N} \boxtimes_{\mathcal{B}} \mathcal{M}$ equips \mathcal{M} with a structure of an object in the $Z(\mathcal{B}-Mod)$ (= the 2-center of the monoidal 2-category \mathcal{B} -Mod) and vice versa.

Thus, $\mathcal{B}-Mod_{br} \simeq Z(\mathcal{B}-Mod)$. In particular, $\mathcal{B}-Mod_{br}$ is a braided monoidal 2-category.

What is a braided monoidal 2-category?

Defined by Kapranov-Voevodsky, Breen.

Defined by Kapranov-Voevodsky, Breen.

Just like usual braided category, but equalities now become isomorphisms (natural 2-cells):

$$\begin{array}{lll} \beta_{\mathcal{L},\mathcal{M},\mathcal{N}} & : & (\operatorname{id}_{\mathcal{M}} \boxtimes_{\mathcal{B}} B_{\mathcal{L},\mathcal{N}})(B_{\mathcal{L},\mathcal{M}} \boxtimes_{\mathcal{B}} \operatorname{id}_{\mathcal{N}}) \xrightarrow{\sim} B_{\mathcal{L},\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}}, \\ \gamma_{\mathcal{L},\mathcal{K},\mathcal{N}} & : & (B_{\mathcal{L},\mathcal{N}} \boxtimes_{\mathcal{B}} \operatorname{id}_{\mathcal{K}})(\operatorname{id}_{\mathcal{L}} \boxtimes_{\mathcal{B}} B_{\mathcal{K},\mathcal{N}}) \xrightarrow{\sim} B_{\mathcal{L} \boxtimes_{\mathcal{B}} \mathcal{K},\mathcal{N}} \end{array}$$

for all braided \mathcal{B} -module categories $\mathcal{L}, \mathcal{K}, \mathcal{M}, \mathcal{N}$.

Defined by Kapranov-Voevodsky, Breen.

Just like usual braided category, but equalities now become isomorphisms (natural 2-cells):

$$\begin{array}{lll} \beta_{\mathcal{L},\mathcal{M},\mathcal{N}} & : & (\operatorname{id}_{\mathcal{M}} \boxtimes_{\mathcal{B}} B_{\mathcal{L},\mathcal{N}})(B_{\mathcal{L},\mathcal{M}} \boxtimes_{\mathcal{B}} \operatorname{id}_{\mathcal{N}}) \xrightarrow{\sim} B_{\mathcal{L},\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}}, \\ \gamma_{\mathcal{L},\mathcal{K},\mathcal{N}} & : & (B_{\mathcal{L},\mathcal{N}} \boxtimes_{\mathcal{B}} \operatorname{id}_{\mathcal{K}})(\operatorname{id}_{\mathcal{L}} \boxtimes_{\mathcal{B}} B_{\mathcal{K},\mathcal{N}}) \xrightarrow{\sim} B_{\mathcal{L} \boxtimes_{\mathcal{B}} \mathcal{K},\mathcal{N}} \end{array}$$

for all braided \mathcal{B} -module categories $\mathcal{L}, \mathcal{K}, \mathcal{M}, \mathcal{N}$.

These satisfy coherence of their own.

The braided 2-categorical Picard group $Pic_{br}(\mathcal{B})$

If we view $Pic_{br}(B)$ as a 3-categorical group with a single object, then the homotopy groups of the corresponding topological space are

If we view $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ as a 3-categorical group with a single object, then the homotopy groups of the corresponding topological space are $\pi_1 = 1, \ \pi_2 = \operatorname{Pic}_{\operatorname{br}}(\mathcal{B}), \ \pi_3 = \operatorname{Inv}(\mathcal{Z}_{\operatorname{sym}}(\mathcal{B})), \ \operatorname{and} \ \pi_4 = k^{\times}.$

If we view $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ as a 3-categorical group with a single object, then the homotopy groups of the corresponding topological space are $\pi_1 = 1, \ \pi_2 = \operatorname{Pic}_{\operatorname{br}}(\mathcal{B}), \ \pi_3 = \operatorname{Inv}(\mathcal{Z}_{\operatorname{sym}}(\mathcal{B})), \ \operatorname{and} \ \pi_4 = k^{\times}.$

There is an exact sequence for the underlying group $\operatorname{Pic}_{br}(\mathcal{B})$ of $\operatorname{Pic}_{br}(\mathcal{B})$:

 $0 \to \mathsf{Inv}(\mathcal{Z}_{\mathit{sym}}(\mathcal{B})) \to \mathsf{Inv}(\mathcal{B}) \to \mathsf{Aut}_{\otimes}(\mathsf{id}_{\mathcal{B}}) \to \mathsf{Pic}_{\mathit{br}}(\mathcal{B}) \to \mathsf{Pic}(\mathcal{B}) \to \mathsf{Aut}_{\mathit{br}}(\mathcal{B}).$

If we view $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ as a 3-categorical group with a single object, then the homotopy groups of the corresponding topological space are $\pi_1 = 1, \ \pi_2 = \operatorname{Pic}_{\operatorname{br}}(\mathcal{B}), \ \pi_3 = \operatorname{Inv}(\mathcal{Z}_{\operatorname{sym}}(\mathcal{B})), \ \operatorname{and} \ \pi_4 = k^{\times}.$

There is an exact sequence for the underlying group $\operatorname{Pic}_{br}(\mathcal{B})$ of $\operatorname{Pic}_{br}(\mathcal{B})$:

 $0 \to \mathsf{Inv}(\mathcal{Z}_{\mathit{sym}}(\mathcal{B})) \to \mathsf{Inv}(\mathcal{B}) \to \mathsf{Aut}_{\otimes}(\mathsf{id}_{\mathcal{B}}) \to \mathsf{Pic}_{\mathit{br}}(\mathcal{B}) \to \mathsf{Pic}(\mathcal{B}) \to \mathsf{Aut}_{\mathit{br}}(\mathcal{B}).$

Here Inv() denotes the group of invertible objects, Pic(B) is the usual Picard group of B.

So there is a canonical quadratic form

$$Q_{\mathcal{B}}: \mathsf{Pic}_{br}(\mathcal{B})
ightarrow \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))$$

by [Joyal-Street].

So there is a canonical quadratic form

$$Q_{\mathcal{B}}: \mathsf{Pic}_{br}(\mathcal{B}) \to \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))$$

by [Joyal-Street]. This comes from $\pi_2 \times \pi_2 \rightarrow \pi_3$.

So there is a canonical quadratic form

$$Q_{\mathcal{B}}: \mathsf{Pic}_{br}(\mathcal{B}) \to \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))$$

by [Joyal-Street]. This comes from $\pi_2 \times \pi_2 \rightarrow \pi_3$.

So there is a canonical quadratic form

$$Q_{\mathcal{B}}: \mathsf{Pic}_{br}(\mathcal{B}) \to \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))$$

by [Joyal-Street]. This comes from $\pi_2 \times \pi_2 \to \pi_3$.

There is a well-defined bilinear map

$$\mathcal{P}_{\mathcal{B}}: \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B})) imes \mathsf{Pic}_{br}(\mathcal{B}) o k^{ imes}$$

given by $P_{\mathcal{B}}(Z, \mathcal{M}) = \sigma_{Z,X} \in \operatorname{Aut}(Z \otimes X) = k^{\times}, X \in \mathcal{M}.$

So there is a canonical quadratic form

$$Q_{\mathcal{B}}: \mathsf{Pic}_{br}(\mathcal{B}) \to \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))$$

by [Joyal-Street]. This comes from $\pi_2 \times \pi_2 \rightarrow \pi_3$.

There is a well-defined bilinear map

$$\mathcal{P}_{\mathcal{B}}: \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B})) imes \mathsf{Pic}_{br}(\mathcal{B}) o k^{ imes}$$

given by $P_{\mathcal{B}}(Z, \mathcal{M}) = \sigma_{Z,X} \in \operatorname{Aut}(Z \otimes X) = k^{\times}, X \in \mathcal{M}$. This is $\pi_3 \times \pi_2 \to \pi_4$.

I Graded extensions of fusion categories

Braided module categories over braided fusion categories

Braided extensions

Let A be a finite Abelian group. Let \mathcal{B} be a braided fusion category with braiding c.

Let A be a finite Abelian group. Let \mathcal{B} be a braided fusion category with braiding c.

Given a braided extension

$$\mathcal{C} = \bigoplus_{x \in \mathcal{A}} \mathcal{C}_x, \qquad \mathcal{C}_1 = \mathcal{B},$$

we have $C_x \in \operatorname{Pic}_{br}(\mathcal{B}), x \in X$ with the module braiding given by $\sigma_{X, V} = c_{X, V} c_{V, X}, V \in \mathcal{B}, X \in C_x$.

Let A be a finite Abelian group. Let \mathcal{B} be a braided fusion category with braiding c.

Given a braided extension

$$\mathcal{C} = \bigoplus_{x \in \mathcal{A}} \mathcal{C}_x, \qquad \mathcal{C}_1 = \mathcal{B},$$

we have $C_x \in \operatorname{Pic}_{br}(\mathcal{B}), x \in X$ with the module braiding given by $\sigma_{X, V} = c_{X, V} c_{V, X}, V \in \mathcal{B}, X \in C_x$.

Let A be a finite Abelian group. Let \mathcal{B} be a braided fusion category with braiding c.

Given a braided extension

$$\mathcal{C} = \bigoplus_{x \in \mathcal{A}} \mathcal{C}_x, \qquad \mathcal{C}_1 = \mathcal{B},$$

we have $C_x \in \operatorname{Pic}_{br}(\mathcal{B}), x \in X$ with the module braiding given by $\sigma_{X, V} = c_{X, V} c_{V, X}, V \in \mathcal{B}, X \in C_x$.

Furthermore, the tensor products $\otimes_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ gives rise to \mathcal{B} -module equivalences $M_{x,y} : \mathcal{C}_x \times \mathcal{C}_y \xrightarrow{\sim} \mathcal{C}_{xy}$.

Let A be a finite Abelian group. Let \mathcal{B} be a braided fusion category with braiding c.

Given a braided extension

$$\mathcal{C} = \bigoplus_{x \in \mathcal{A}} \mathcal{C}_x, \qquad \mathcal{C}_1 = \mathcal{B},$$

we have $C_x \in \operatorname{Pic}_{br}(\mathcal{B}), x \in X$ with the module braiding given by $\sigma_{X, V} = c_{X, V} c_{V, X}, V \in \mathcal{B}, X \in C_x$.

Furthermore, the tensor products $\otimes_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ gives rise to \mathcal{B} -module equivalences $M_{x,y} : \mathcal{C}_x \times \mathcal{C}_y \xrightarrow{\sim} \mathcal{C}_{xy}$.

Let A be a finite Abelian group. Let \mathcal{B} be a braided fusion category with braiding c.

Given a braided extension

$$\mathcal{C} = \bigoplus_{x \in \mathcal{A}} \mathcal{C}_x, \qquad \mathcal{C}_1 = \mathcal{B},$$

we have $C_x \in \operatorname{Pic}_{br}(\mathcal{B}), x \in X$ with the module braiding given by $\sigma_{X, V} = c_{X, V} c_{V, X}, V \in \mathcal{B}, X \in C_x$.

Furthermore, the tensor products $\otimes_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ gives rise to \mathcal{B} -module equivalences $M_{x,y} : \mathcal{C}_x \times \mathcal{C}_y \xrightarrow{\sim} \mathcal{C}_{xy}$.

This gives a (usual) monoidal functor

$$A
ightarrow \mathsf{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x.$$

Let A be a finite Abelian group. Let \mathcal{B} be a braided fusion category with braiding c.

Given a braided extension

$$\mathcal{C} = \bigoplus_{x \in \mathcal{A}} \mathcal{C}_x, \qquad \mathcal{C}_1 = \mathcal{B},$$

we have $C_x \in \operatorname{Pic}_{br}(\mathcal{B}), x \in X$ with the module braiding given by $\sigma_{X, V} = c_{X, V} c_{V, X}, V \in \mathcal{B}, X \in C_x$.

Furthermore, the tensor products $\otimes_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ gives rise to \mathcal{B} -module equivalences $M_{x,y} : \mathcal{C}_x \times \mathcal{C}_y \xrightarrow{\sim} \mathcal{C}_{xy}$.

This gives a (usual) monoidal functor

$$A
ightarrow \mathsf{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x.$$

Let A be a finite Abelian group. Let \mathcal{B} be a braided fusion category with braiding c.

Given a braided extension

$$\mathcal{C} = \bigoplus_{x \in \mathcal{A}} \mathcal{C}_x, \qquad \mathcal{C}_1 = \mathcal{B},$$

we have $C_x \in \operatorname{Pic}_{br}(\mathcal{B}), x \in X$ with the module braiding given by $\sigma_{X, V} = c_{X, V} c_{V, X}, V \in \mathcal{B}, X \in C_x$.

Furthermore, the tensor products $\otimes_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ gives rise to \mathcal{B} -module equivalences $M_{x,y} : \mathcal{C}_x \times \mathcal{C}_y \xrightarrow{\sim} \mathcal{C}_{xy}$.

This gives a (usual) monoidal functor

$$A
ightarrow \mathsf{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x.$$

Namely, the associativity and braiding constraints of C give rise to natural 2-cells involving $M_{x,y}$, $x, y \in A$:

Namely, the associativity and braiding constraints of C give rise to natural 2-cells involving $M_{x,y}$, $x, y \in A$:

and

Here $B_{x,y}$ is the braiding in **Pic**_{br}(\mathcal{B}).

The moral: Structure morphisms in $\mathcal{C} \longleftrightarrow$ structure 2-cells in **Pic**_{br}(\mathcal{B}).

Consequently, the pentagon (for the associativity of C) and two hexagons (for the braiding of C) diagrams \longleftrightarrow commuting polytopes in $\mathbf{Pic}_{br}(\mathcal{B})$.

Consequently, the pentagon (for the associativity of C) and two hexagons (for the braiding of C) diagrams \longleftrightarrow commuting polytopes in **Pic**_{br}(\mathcal{B}).

Namely, the pentagon becomes a cube:

Consequently, the pentagon (for the associativity of C) and two hexagons (for the braiding of C) diagrams \longleftrightarrow commuting polytopes in **Pic**_{br}(\mathcal{B}).

Namely, the pentagon becomes a cube:

Dmitri Nikshych (University of New Hampshi

and hexagons become octahedra:

and hexagons become octahedra:

and

A functor $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ with these structures (associativity and braiding cells α and δ) such that the above polytopes commute is a *braided monoidal 2-functor*. So we went from extensions to functors.

A functor $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ with these structures (associativity and braiding cells α and δ) such that the above polytopes commute is a *braided monoidal 2-functor*. So we went from extensions to functors.

Conversely, given a braided monoidal 2-functor $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B}), x \mapsto \mathcal{C}_x$, i.e., $M_{x,y} : \mathcal{C}_x \times \mathcal{C}_y \xrightarrow{\sim} \mathcal{C}_{xy} (x, y \in A)$ and cells α and δ such that the polytopes commute we form a fusion category

$$\mathcal{C} = \oplus_{x \in \mathcal{A}} \, \mathcal{C}_x, \qquad \mathcal{C}_1 = \mathcal{B}$$

and equip it with the tensor product $\otimes_{x,y} : C_x \times C_y \to C_{xy}$ (coming from $M_{x,y}$) and associativity and braiding constraints (coming from α and δ) and get a braided fusion category.

A functor $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ with these structures (associativity and braiding cells α and δ) such that the above polytopes commute is a *braided monoidal 2-functor*. So we went from extensions to functors.

Conversely, given a braided monoidal 2-functor $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B}), x \mapsto \mathcal{C}_x$, i.e., $M_{x,y} : \mathcal{C}_x \times \mathcal{C}_y \xrightarrow{\sim} \mathcal{C}_{xy} (x, y \in A)$ and cells α and δ such that the polytopes commute we form a fusion category

$$\mathcal{C} = \oplus_{x \in \mathcal{A}} \, \mathcal{C}_x, \qquad \mathcal{C}_1 = \mathcal{B}$$

and equip it with the tensor product $\otimes_{x,y} : C_x \times C_y \to C_{xy}$ (coming from $M_{x,y}$) and associativity and braiding constraints (coming from α and δ) and get a braided fusion category.

Main theorem

 $\{ \text{ Groupoid of braided } A\text{-extensions of } \mathcal{B} \ \} \simeq \{ \text{ groupoid of braided } monoidal \ 2\text{-functors } \boxed{A \to \mathbf{Pic}_{\mathbf{br}}(\mathcal{B})} \}$

Braided monoidal 2-functors $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ can be understood using the Eilenberg-MacLane cohomology of abelian groups

 $H^{n}_{ab}(A, N) = H^{n+1}(K(A, 2), N).$

Braided monoidal 2-functors $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ can be understood using the Eilenberg-MacLane cohomology of abelian groups $H^n_{ab}(A, N) = H^{n+1}(K(A, 2), N).$

- H²_{ab}(A, N) = Ext_ℤ(A, N): symmetric 2-cocycles → abelian groups,
- H³_{ab}(A, N) = Quad(A, N): abelian 3-cocycles = (ω : A³ → N, c : A² → N) satisfying pentagon + 2 hexagons → braided categorical groups ,
- H⁴_{ab}(A, N) = triples (a : A⁴ → N, β, γ : A³ → N) satisfying certain coherence conditions (cf. polytopes in the definition of a braided monoidal 2-category) → braided 2-categorical groups.

Braided monoidal 2-functors $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ can be understood using the Eilenberg-MacLane cohomology of abelian groups $H^n_{ab}(A, N) = H^{n+1}(K(A, 2), N).$

- H²_{ab}(A, N) = Ext_ℤ(A, N): symmetric 2-cocycles → abelian groups,
- $H^3_{ab}(A, N) = \text{Quad}(A, N)$: abelian 3-cocycles = $(\omega : A^3 \to N, c : A^2 \to N)$ satisfying pentagon + 2 hexagons \longrightarrow braided categorical groups ,
- H⁴_{ab}(A, N) = triples (a : A⁴ → N, β, γ : A³ → N) satisfying certain coherence conditions (cf. polytopes in the definition of a braided monoidal 2-category) → braided 2-categorical groups.

Braided monoidal 2-functors $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ can be understood using the Eilenberg-MacLane cohomology of abelian groups $H^n_{ab}(A, N) = H^{n+1}(K(A, 2), N).$

- H²_{ab}(A, N) = Ext_ℤ(A, N): symmetric 2-cocycles → abelian groups,
- $H^3_{ab}(A, N) = \text{Quad}(A, N)$: abelian 3-cocycles = $(\omega : A^3 \to N, c : A^2 \to N)$ satisfying pentagon + 2 hexagons \longrightarrow braided categorical groups ,
- H⁴_{ab}(A, N) = triples (a : A⁴ → N, β, γ : A³ → N) satisfying certain coherence conditions (cf. polytopes in the definition of a braided monoidal 2-category) → braided 2-categorical groups.

A (usual) braided monoidal functor $M : A \to \operatorname{Pic}_{br}(\mathcal{B})$ gives rise to a braided monoidal 2-functor (i.e., to a braided A-extension of \mathcal{B}) \iff

Braided monoidal 2-functors $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ can be understood using the Eilenberg-MacLane cohomology of abelian groups $H^n_{ab}(A, N) = H^{n+1}(K(A, 2), N).$

- H²_{ab}(A, N) = Ext_ℤ(A, N): symmetric 2-cocycles → abelian groups,
- H³_{ab}(A, N) = Quad(A, N): abelian 3-cocycles = (ω : A³ → N, c : A² → N) satisfying pentagon + 2 hexagons → braided categorical groups ,
- H⁴_{ab}(A, N) = triples (a : A⁴ → N, β, γ : A³ → N) satisfying certain coherence conditions (cf. polytopes in the definition of a braided monoidal 2-category) → braided 2-categorical groups.

A (usual) braided monoidal functor $M : A \to \operatorname{Pic}_{br}(\mathcal{B})$ gives rise to a braided monoidal 2-functor (i.e., to a braided A-extension of $\mathcal{B}) \iff$ an obstruction $\boxed{o_4(M) \in H_{ab}^4(A, k^{\times})}$ (given by the cube + 2 octahedra above) vanishes.

Braided monoidal 2-functors $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ can be understood using the Eilenberg-MacLane cohomology of abelian groups $H^n_{ab}(A, N) = H^{n+1}(K(A, 2), N).$

- $H^2_{ab}(A, N) = \operatorname{Ext}_{\mathbb{Z}}(A, N)$: symmetric 2-cocycles \longrightarrow abelian groups,
- $H^3_{ab}(A, N) = \text{Quad}(A, N)$: abelian 3-cocycles = $(\omega : A^3 \rightarrow N, c : A^2 \rightarrow N)$ satisfying pentagon + 2 hexagons \longrightarrow braided categorical groups ,
- H⁴_{ab}(A, N) = triples (a : A⁴ → N, β, γ : A³ → N) satisfying certain coherence conditions (cf. polytopes in the definition of a braided monoidal 2-category) → braided 2-categorical groups.

A (usual) braided monoidal functor $M : A \to \operatorname{Pic}_{br}(\mathcal{B})$ gives rise to a braided monoidal 2-functor (i.e., to a braided A-extension of \mathcal{B}) \iff an obstruction $\boxed{o_4(M) \in H_{ab}^4(A, k^{\times})}$ (given by the cube + 2 octahedra above) vanishes. In this case 2-functors are parameterized by an $H_{ab}^3(A, k^{\times})$ -torsor.

Braided monoidal 2-functors $A \to \operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ can be understood using the Eilenberg-MacLane cohomology of abelian groups $H^n_{ab}(A, N) = H^{n+1}(K(A, 2), N).$

- $H^2_{ab}(A, N) = \operatorname{Ext}_{\mathbb{Z}}(A, N)$: symmetric 2-cocycles \longrightarrow abelian groups,
- $H^3_{ab}(A, N) = \text{Quad}(A, N)$: abelian 3-cocycles = $(\omega : A^3 \rightarrow N, c : A^2 \rightarrow N)$ satisfying pentagon + 2 hexagons \longrightarrow braided categorical groups ,
- H⁴_{ab}(A, N) = triples (a : A⁴ → N, β, γ : A³ → N) satisfying certain coherence conditions (cf. polytopes in the definition of a braided monoidal 2-category) → braided 2-categorical groups.

A (usual) braided monoidal functor $M : A \to \operatorname{Pic}_{br}(\mathcal{B})$ gives rise to a braided monoidal 2-functor (i.e., to a braided A-extension of \mathcal{B}) \iff an obstruction $\boxed{o_4(M) \in H_{ab}^4(A, k^{\times})}$ (given by the cube + 2 octahedra above) vanishes. In this case 2-functors are parameterized by an $H_{ab}^3(A, k^{\times})$ -torsor.

Braided monoidal functors $M : A \to \operatorname{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x$ form a torsor over $H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Braided monoidal functors $M : A \to \operatorname{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x$ form a torsor over $H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Braided monoidal functors $M : A \to \operatorname{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x$ form a torsor over $H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Given $L \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})))$ compose $M_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ with the tensor multiplication by $L_{x,y}$. Denote the new functor $L \circ M$.

Braided monoidal functors $M : A \to \operatorname{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x$ form a torsor over $H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Given $L \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})))$ compose $M_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ with the tensor multiplication by $L_{x,y}$. Denote the new functor $L \circ M$.

Braided monoidal functors $M : A \to \operatorname{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x$ form a torsor over $H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Given $L \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})))$ compose $M_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ with the tensor multiplication by $L_{x,y}$. Denote the new functor $L \circ M$. (So the tensor product $V_x \otimes U_y$ is replaced by $L_{x,y} \otimes V_x \otimes U_y$ etc. This was called "zesting" in the literature).

Braided monoidal functors $M : A \to \operatorname{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x$ form a torsor over $H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Given $L \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})))$ compose $M_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ with the tensor multiplication by $L_{x,y}$. Denote the new functor $L \circ M$. (So the tensor product $V_x \otimes U_y$ is replaced by $L_{x,y} \otimes V_x \otimes U_y$ etc. This was called "zesting" in the literature).

Braided monoidal functors $M : A \to \operatorname{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x$ form a torsor over $H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Given $L \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})))$ compose $M_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ with the tensor multiplication by $L_{x,y}$. Denote the new functor $L \circ M$. (So the tensor product $V_x \otimes U_y$ is replaced by $L_{x,y} \otimes V_x \otimes U_y$ etc. This was called "zesting" in the literature).

$$o_4(L \circ M) = o_4(M) pw_M(L) \quad \text{ in } H^4_{ab}(A, \, k^{\times}),$$

Braided monoidal functors $M : A \to \operatorname{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x$ form a torsor over $H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Given $L \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})))$ compose $M_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ with the tensor multiplication by $L_{x,y}$. Denote the new functor $L \circ M$. (So the tensor product $V_x \otimes U_y$ is replaced by $L_{x,y} \otimes V_x \otimes U_y$ etc. This was called "zesting" in the literature).

$$o_4(L \circ M) = o_4(M)pw_M(L)$$
 in $H^4_{ab}(A, k^{\times})$,

where $pw_M(L) = (a(L), \beta_M(L), \gamma_M(L))$ with

Braided monoidal functors $M : A \to \operatorname{Pic}_{br}(\mathcal{B}) : x \mapsto \mathcal{C}_x$ form a torsor over $H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Given $L \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})))$ compose $M_{x,y} : \mathcal{C}_x \boxtimes_{\mathcal{B}} \mathcal{C}_y \to \mathcal{C}_{xy}$ with the tensor multiplication by $L_{x,y}$. Denote the new functor $L \circ M$. (So the tensor product $V_x \otimes U_y$ is replaced by $L_{x,y} \otimes V_x \otimes U_y$ etc. This was called "zesting" in the literature).

$$o_4(L \circ M) = o_4(M)pw_M(L)$$
 in $H^4_{ab}(A, k^{\times})$,

where $pw_M(L) = (a(L), \beta_M(L), \gamma_M(L))$ with

$$\begin{array}{rcl} a(L) & : & A^4 \to k^{\times}, \\ \beta_M(L) & : & A^3 \to k^{\times}, \\ \gamma_M(L) & : & A^3 \to k^{\times} \end{array}$$

defined as follows:

Dmitri Nikshych (University of New Hampshi

Here $L = \{L_{x,y}\} \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$

Here
$$L = \{L_{x,y}\} \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

 $a(L) \in H^4(A, k^{\times})$ comes from the self braiding $\operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})) \to \mathbb{Z}_2 \subset k^{\times} : Z \mapsto c_{Z,Z}$ (in our case it is a homomorphism) composed with the cup product square:

Here
$$L = \{L_{x,y}\} \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

 $a(L) \in H^4(A, k^{\times})$ comes from the self braiding $\operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})) \to \mathbb{Z}_2 \subset k^{\times} : Z \mapsto c_{Z,Z}$ (in our case it is a homomorphism) composed with the cup product square:

$$H^2_{ab}(A,\,\operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))) o H^2_{ab}(A,\,\mathbb{Z}_2)\stackrel{\cup^2}{\longrightarrow} H^4(A,\,\mathbb{Z}_2) o H^4(A,\,k^ imes),$$

Here
$$L = \{L_{x,y}\} \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

 $a(L) \in H^4(A, k^{\times})$ comes from the self braiding $\operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})) \to \mathbb{Z}_2 \subset k^{\times} : Z \mapsto c_{Z,Z}$ (in our case it is a homomorphism) composed with the cup product square:

$$H^2_{ab}(A,\, {
m Inv}(\mathcal{Z}_{sym}(\mathcal{B}))) o H^2_{ab}(A,\, \mathbb{Z}_2) \stackrel{\cup^2}{\longrightarrow} H^4(A,\, \mathbb{Z}_2) o H^4(A,\, k^{ imes})$$

 $\beta_M(L), \gamma_M(L) : A^3 \to k^{\times}$ are defined using the map $P_{\mathcal{B}} : \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})) \times \operatorname{Pic}_{br}(\mathcal{B}) \to k^{\times}$ (i.e., $\pi_3 \times \pi_2 \to \pi_4$) by

Here
$$L = \{L_{x,y}\} \in H^2_{ab}(A, \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

 $a(L) \in H^4(A, k^{\times})$ comes from the self braiding $\operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})) \to \mathbb{Z}_2 \subset k^{\times} : Z \mapsto c_{Z,Z}$ (in our case it is a homomorphism) composed with the cup product square:

$$\mathcal{H}^2_{ab}(A,\, \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))) o \mathcal{H}^2_{ab}(A,\,\mathbb{Z}_2) \stackrel{\cup^2}{\longrightarrow} \mathcal{H}^4(A,\,\mathbb{Z}_2) o \mathcal{H}^4(A,\,k^{ imes})$$

$$\begin{array}{lll} \beta_{M}(L), \gamma_{M}(L) : A^{3} \rightarrow k^{\times} \text{ are defined using the map} \\ P_{\mathcal{B}} : \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B})) \times \operatorname{Pic}_{br}(\mathcal{B}) \rightarrow k^{\times} \mbox{ (i.e., } \pi_{3} \times \pi_{2} \rightarrow \pi_{4}) \mbox{ by} \\ & \beta_{M}(L)(x, y, z) = P_{\mathcal{B}}(L_{y, z}, \mathcal{C}_{x}) \\ & \gamma_{M}(L)(x, y, z) = P_{\mathcal{B}}(L_{x, y}, \mathcal{C}_{z}). \end{array}$$

Computing $Pic_{br}(B)$

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \mathsf{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \mathsf{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

Example: \mathcal{B} is non-degenerate

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \mathsf{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

Example: \mathcal{B} is non-degenerate

Then $\mathbf{Pic}_{\mathbf{br}}(\mathcal{B})$ is trivial (i.e., contactible).

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \mathsf{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \mathsf{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

Example: \mathcal{B} is non-degenerate

Then $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ is trivial (i.e., contactible). Only trivial braided extensions (tensoring with a pointed category): $\mathcal{C} = \mathcal{B} \boxtimes \mathcal{C}(A, q)$.

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \operatorname{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

Example: \mathcal{B} is non-degenerate

Then $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ is trivial (i.e., contactible). Only trivial braided extensions (tensoring with a pointed category): $\mathcal{C} = \mathcal{B} \boxtimes \mathcal{C}(A, q)$.

Example: $\mathcal{B} = sVec$

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \operatorname{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

Example: \mathcal{B} is non-degenerate

Then $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ is trivial (i.e., contactible). Only trivial braided extensions (tensoring with a pointed category): $\mathcal{C} = \mathcal{B} \boxtimes \mathcal{C}(A, q)$.

Example: $\mathcal{B} = sVec$

 $\operatorname{Pic}_{br}(\operatorname{sVec}) \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \operatorname{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

Example: \mathcal{B} is non-degenerate

Then $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ is trivial (i.e., contactible). Only trivial braided extensions (tensoring with a pointed category): $\mathcal{C} = \mathcal{B} \boxtimes \mathcal{C}(A, q)$.

Example: $\mathcal{B} = sVec$

$$\begin{split} \mathsf{Pic}_{br}(\mathsf{sVec}) &\cong \mathbb{Z}_2 \times \mathbb{Z}_2. \\ \mathcal{Q}_{\mathsf{sVec}} \text{ takes values } \{I, I, I, \Pi\}, \text{ where } \mathsf{Inv}(\mathsf{sVec}) = \{I, \Pi\}. \end{split}$$

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \operatorname{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

Example: \mathcal{B} is non-degenerate

Then $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ is trivial (i.e., contactible). Only trivial braided extensions (tensoring with a pointed category): $\mathcal{C} = \mathcal{B} \boxtimes \mathcal{C}(A, q)$.

Example: $\mathcal{B} = sVec$

$$\begin{split} \mathsf{Pic}_{br}(\mathsf{sVec}) &\cong \mathbb{Z}_2 \times \mathbb{Z}_2. \\ \mathcal{Q}_{\mathsf{sVec}} \text{ takes values } \{I, I, I, \Pi\}, \text{ where } \mathsf{Inv}(\mathsf{sVec}) = \{I, \Pi\}. \end{split}$$

Example: \mathcal{B} is Tannakian

Dmitri Nikshych (University of New Hampshi

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \operatorname{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

Example: \mathcal{B} is non-degenerate

Then $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ is trivial (i.e., contactible). Only trivial braided extensions (tensoring with a pointed category): $\mathcal{C} = \mathcal{B} \boxtimes \mathcal{C}(A, q)$.

Example: $\mathcal{B} = sVec$

$$\begin{split} \mathsf{Pic}_{br}(\mathsf{sVec}) &\cong \mathbb{Z}_2 \times \mathbb{Z}_2. \\ \mathcal{Q}_{\mathsf{sVec}} \text{ takes values } \{I, I, I, \Pi\}, \text{ where } \mathsf{Inv}(\mathsf{sVec}) = \{I, \Pi\}. \end{split}$$

Example: \mathcal{B} is Tannakian

 $\operatorname{Pic}_{br}(\operatorname{Rep}(G)) \cong H^2(G, k^{\times}) \times Z(G)$ with
Computing $Pic_{br}(\mathcal{B})$

The braided categorical group structure is determined by the canonical quadratic form

$$Q_{\mathcal{B}}: \pi_2 = \operatorname{Pic}_{br}(\mathcal{B}) \longrightarrow \pi_3 = \operatorname{Inv}(\mathcal{Z}_{sym}(\mathcal{B}))).$$

Example: \mathcal{B} is non-degenerate

Then $\operatorname{Pic}_{\operatorname{br}}(\mathcal{B})$ is trivial (i.e., contactible). Only trivial braided extensions (tensoring with a pointed category): $\mathcal{C} = \mathcal{B} \boxtimes \mathcal{C}(A, q)$.

Example: $\mathcal{B} = sVec$

$$\begin{split} \mathsf{Pic}_{br}(\mathsf{sVec}) &\cong \mathbb{Z}_2 \times \mathbb{Z}_2. \\ \mathcal{Q}_{\mathsf{sVec}} \text{ takes values } \{I, I, I, \Pi\}, \text{ where } \mathsf{Inv}(\mathsf{sVec}) = \{I, \Pi\}. \end{split}$$

Example: \mathcal{B} is Tannakian

$$\operatorname{Pic}_{br}(\operatorname{Rep}(G)) \cong H^2(G, \, k^{\times}) \times Z(G) ext{ with } Q_{\operatorname{Rep}(G)} : H^2(G, \, k^{\times}) \times Z(G) o \widehat{G},$$

 $Q_{\operatorname{Rep}(G)}(\mu, z) = \frac{\mu(z, -)}{\mu(-, z)}.$

Thanks for listening!