F-theory on Quotient Threefolds and Their Discrete Superconformal Matter

Paul-Konstantin Oehlmann

Virginia Polytechnic Institute and State University

Based on • arXiv:1801.XXXXX with: L. Anderson, J. Gray and A. Grassi

BIRS workshop on geometry and physics of F-theory, Banff January 25th 2018

Forschungsgemeinschaft

• Geometry of Torus fibered Calabi-Yau n-folds (Compact)

• Geometry of Torus fibered Calabi-Yau n-folds (Compact)

• **Physics** of 12 - 2n Dimensional Supersymmetric Gauge Theories (+Gravity)

• Geometry of Torus fibered Calabi-Yau n-folds (Compact)

• **Physics** of 12 - 2n Dimensional Supersymmetric Gauge Theories (+Gravity)

Introduction and Motivation

• Consider a torus ${\cal E}$ fibered CY-3fold Y_3 fold over a two dimensional Base B_2

$$egin{array}{ccc} \mathcal{E} & o & Y_3 \ & \downarrow \pi \ & B_2 \end{array}$$

- Treat τ of \mathcal{E} as the **axio-dilaton of IIB** (forget the Vol(\mathcal{E}))
- Power of F-theory: D7/O7 brane stacks
 - $\mathsf{SL}(2,\mathbb{Z})$ monodromies of au traced geometricaly
 - D7/O7 backreaction taken care of in B_n

Symmetries in F-theory

F-theory Setup

By **torus** \mathcal{E} fibered Calabi-Yau 3-fold we actually mean:

- Elliptic Fibration: \exists rational sections $S_r \cdot \mathcal{E} = 1 \rightarrow a$ lways a zero-section σ_0
- Genus One Fibration: $S_r \cdot \mathcal{E} = n_i \ n_i \neq 1 \ \forall i \ [Braun/Taylor, Morrison 14]$
 - ightarrow Jacobian map provides a surjective map to an elliptic fibration

Symmetries in F-theory

F-theory Setup

By **torus** \mathcal{E} fibered Calabi-Yau 3-fold we actually mean:

- Elliptic Fibration: \exists rational sections $S_r \cdot \mathcal{E} = 1 \rightarrow a$ lways a zero-section σ_0
- Genus One Fibration: $S_r \cdot \mathcal{E} = n_i \ n_i \neq 1 \ \forall i \ [Braun/Taylor, Morrison 14]$
 - ightarrow Jacobian map provides a surjective map to an elliptic fibration

Review

Symmetries in F-theory

F-theory Setup

By **torus** \mathcal{E} fibered Calabi-Yau 3-fold we actually mean:

- Elliptic Fibration: \exists rational sections $S_r \cdot \mathcal{E} = 1 \rightarrow \text{always a zero-section } \sigma_0$
- Genus One Fibration: $S_r \cdot \mathcal{E} = n_i \ n_i \neq 1 \ \forall i \ [Braun/Taylor, Morrison 14]$
 - ightarrow Jacobian map provides a **surjective** map to an elliptic fibration

Symmetries in F-theory

Review

Symmetries in F-theory

(3) Cartan Generators D_i of non-Abelian ADE Group at codim 1 [Kodaira]

Symmetries in F-theory

 Cartan Generators D_i of non-Abelian ADE Group at codim 1 [Kodaira]
 Abelian Symmetries from free part of the Mordell-Weil group [Mayrhover, Palti, Weigand; Morrison, Park '12...]

Symmetries in F-theory

() Cartan Generators D_i of non-Abelian ADE Group at codim 1 [Kodaira]

- Abelian Symmetries from free part of the Mordell-Weil group
 [Mayrhover, Palti, Weigand; Morrison, Park '12...]
- **O Discrete** \mathbb{Z}_n remnant from a massive higgsed U(1) \hat{A}_i [Braun/Taylor Morrison'14....]

6D F-theory models

For Y_3 smooth, the $\mathcal{N}=(1,0),$ 6D SUGRA theory is fully geometrized:

• Tensors $T_{(1,0)}$: Supported in the Base by $h^{1,1}(B) - 1$

• Hypers
$$H = H_{uncharged} + H_{charged}$$
:

•
$$H_{ ext{uncharged}} = h^{2,1}(Y_3) + 1$$

- $H_{charged} = Codimension two (points) in B_2 where E becomes further reducible$
- Anomalies: strong constraints on matter and representations!

Motivation and Punshline

 Kodaira Singularities, codimension two non-flat fibers, Mordell-Weil group, Tate-Shafarevich group, terminal singularities
 all have a phyiscal counterpart

Does every subtle geometric property of F-theory fibrations X admit a physical counterpart?

Motivation and Punshline

 Kodaira Singularities, codimension two non-flat fibers, Mordell-Weil group, Tate-Shafarevich group, terminal singularities
 all have a phyiscal counterpart

Does every subtle geometric property of F-theory fibrations X admit a physical counterpart?

What is F-theory Physics of a non-simply connected threefold?

Geometry

- Fixed points in the Base
- with multiple fibers
- Sitting over a Lens space

Physics

- (2,0) Superconformal Matter
- **Coupled** to \mathbb{Z}_n Gauge Symmetry
- Visible at their Tensor Branch

Motivation and Punchline

Discrete Charged (2,0) Matter

- The Base contains (2,0) A_{n-1} superconformal matter
- At the **tensor branch**, there appear $n \mid_2$ fibers at codim 2
- These give *n* purely discrete charged hypermultiplets

They form a new type of 6D discrete charged (2,0) superconformal matter

Outline

- ${f 0}$ Motivation and Punchline \checkmark
- Geometric Setup
- Example: Bi-Cubic-Quotient
 - Overing Geometry and Quotient
 - Spectrum, Anomalies and M5 branes
 - Spaces and Hyperconifold transitions
 - Tensor branch theory
- Summary and more

The starting point

Start with a Calabi-Yau threefold Y_3 realized as a complete intersection $P_i = 0$ in some ambient space Z that is torus-fibered and admits

- discrete
- free
- cyclic

Automorphism Γ_n (possibly inherited from the ambient space Z) of order n

The starting point

Start with a Calabi-Yau threefold Y_3 realized as a complete intersection $P_i = 0$ in some ambient space Z that is torus-fibered and admits

- discrete
- free
- cyclic

Automorphism Γ_n (possibly inherited from the ambient space Z) of order n

Take the **quotient** threefold $\hat{Y}_3 = Y_3/\Gamma_n$ such that

•
$$\widehat{Y}_3 = Y_3 / \Gamma_n$$
 is still Calabi-Yau

- is smooth
- non-simply connected $\pi_1(\hat{Y}_3) = \mathbb{Z}_n$
- Torsion: $\operatorname{Tor}(H^2(\widehat{Y}_3,\mathbb{Z})\sim B'(\widehat{Y}_3,\mathbb{Z})=\mathbb{Z}_n$
- Want it still to be torus fibered

The starting point

Start with a Calabi-Yau threefold Y_3 realized as a complete intersection $P_i = 0$ in some ambient space Z that is torus-fibered and admits

- discrete
- free
- cyclic

Automorphism Γ_n (possibly inherited from the ambient space Z) of order n

Take the **quotient** threefold $\hat{Y}_3 = Y_3/\Gamma_n$ such that

•
$$\widehat{Y}_3 = Y_3 / \Gamma_n$$
 is still Calabi-Yau

- is smooth
- non-simply connected $\pi_1(\hat{Y}_3) = \mathbb{Z}_n$
- Torsion: $\operatorname{Tor}(H^2(\widehat{Y}_3,\mathbb{Z})\sim B'(\widehat{Y}_3,\mathbb{Z})=\mathbb{Z}_n$
- Want it still to be torus fibered

• What are the **constraints** on the Γ_n quotient?

Want $\widehat{Y}_3 = Y_3/\Gamma_n$ to be a **smooth** Calabi-Yau that is also **torus-fibered** in order to be relevant for F-theory. [Donagi, Ovrut, Pantev, Waldram'99]

Want $\widehat{Y}_3 = Y_3/\Gamma_n$ to be a **smooth** Calabi-Yau that is also **torus-fibered** in order to be relevant for F-theory. [Donagi, Ovrut, Pantev, Waldram'99] ③ \widehat{Y} stays Calabi-Yau: Γ_n leaves canonical divisor of Z invariant

Want $\widehat{Y}_3 = Y_3/\Gamma_n$ to be a **smooth** Calabi-Yau that is also **torus-fibered** in order to be relevant for F-theory. [Donagi, Ovrut, Pantev, Waldram'99]

• \widehat{Y} stays Calabi-Yau: Γ_n leaves canonical divisor of Z invariant

2 $\hat{Y}_3 = Y_3/\Gamma_n$ is smooth (freely acting)

Want $\widehat{Y}_3 = Y_3/\Gamma_n$ to be a **smooth** Calabi-Yau that is also **torus-fibered** in order to be relevant for F-theory. [Donagi, Ovrut, Pantev, Waldram '99]

- \widehat{Y} stays Calabi-Yau: Γ_n leaves canonical divisor of Z invariant
- **2** $\hat{Y}_3 = Y_3 / \Gamma_n$ is smooth (freely acting)
- Γ_n respects fibration/projecton π :

$$T/\Gamma_{n,f} \rightarrow \hat{Y} = Y/\Gamma_n$$
$$\downarrow \pi$$
$$\hat{B} = B/\Gamma_{n,b}$$

Action of Γ_n decomposable into a fiber and base part $\Gamma_n = \Gamma_{F,n} \oplus \Gamma_{b,n}$ Fiber and Base must not be mixed!

Want $\widehat{Y}_3 = Y_3/\Gamma_n$ to be a **smooth** Calabi-Yau that is also **torus-fibered** in order to be relevant for F-theory. [Donagi, Ovrut, Pantev, Waldram '99]

- \widehat{Y} stays Calabi-Yau: Γ_n leaves canonical divisor of Z invariant
- (2) $\hat{Y}_3 = Y_3 / \Gamma_n$ is smooth (freely acting)
- Γ_n respects fibration/projecton π :

$$T/\Gamma_{n,f} \rightarrow \hat{Y} = Y/\Gamma_n$$
$$\downarrow \pi$$
$$\hat{B} = B/\Gamma_{n,b}$$

Action of Γ_n decomposable into a fiber and base part $\Gamma_n = \Gamma_{F,n} \oplus \Gamma_{b,n}$ Fiber and Base must not be mixed!

- **Quotient base** \hat{B} allowed to have **orbifold fixed points**
- **③** Singularity in the base must be compensated by a fiber translation to keep \hat{Y} smooth

Must compensate the $\Gamma_{n,b}$ orbifold fixed point in the base • To avoid a fixed fiber, $\Gamma_{f,n}$ must act as a fiber rotation

Must **compensate** the $\Gamma_{n,b}$ orbifold fixed point in the base

- To avoid a fixed fiber, $\Gamma_{f,n}$ must act as a fiber rotation
- T = C is a genus-one fibration: Over the fixed point, there must be n-sections that translate into each other

$$s_n^j \xrightarrow{\Gamma_{n,f}} s_n^j$$
 with $j = i + 1 \mod n$ (1)

Must **compensate** the $\Gamma_{n,b}$ orbifold fixed point in the base

- To avoid a fixed fiber, $\Gamma_{f,n}$ must act as a fiber rotation
- T = C is a genus-one fibration: Over the fixed point, there must be n-sections that translate into each other

$$s_n^i \xrightarrow{\Gamma_{n,f}} s_n^j$$
 with $j = i+1 \mod n$ (1)

2 $T = \mathcal{E}$ is an elliptic fibration: Γ_n must be a homomorphism into MW_{tor}

Must **compensate** the $\Gamma_{n,b}$ orbifold fixed point in the base

- To avoid a fixed fiber, $\Gamma_{f,n}$ must act as a fiber rotation
- T = C is a genus-one fibration: Over the fixed point, there must be n-sections that translate into each other

$$s_n^j \xrightarrow{\Gamma_{n,f}} s_n^j$$
 with $j = i + 1 \mod n$ (1)

2 $T = \mathcal{E}$ is an elliptic fibration: Γ_n must be a homomorphism into MW_{tor} Quotient Results in a genus-one fibration with multiple fibers

Quotient Geometry

Multiple Fiber

- Over a point in the base $s\in \widehat{B}$ the fiber is $\mathcal{C}_s=\pi^{-1}(s)$
- ullet The fiber \mathcal{C}_s is singular everywhere o multiple fiber [Gross 93]

Quotient Geometry

Multiple Fiber

- Over a point in the base $s\in\widehat{B}$ the fiber is $\mathcal{C}_s=\pi^{-1}(s)$
- The fiber \mathcal{C}_s is singular everywhere ightarrow multiple fiber [Gross 93]

Fibration away from the fixed points

- Genus-one fibration away from the fixed point
- Allow for reducible fibers at codim 1 and 2
- Note: All ADE divisors miss the fixed points \rightarrow Cartier in $H_2(\widehat{B},\mathbb{Z})$.

Example: The bi-cubic

Take ambient space $Z = (\mathbb{P}^2 imes \mathbb{P}^2)$ with 4D polytope spanned by

x_0	x_1	<i>x</i> ₂	<i>y</i> 0	y_1	<i>y</i> ₂
1	0	-1	0	0	0
0	1	-1	0	0	0
0	0	0	1	0	-1
0	0	0	0	1	-1

- Genus-one fibered threefold with hypersurface
 - $P = s_1 x_0^3 + s_2 x_0^2 x_1 + s_3 x_0 x_1^2 + s_4 x_1^3 + s_5 x_0^2 x_2 + s_6 x_0 x_1 x_2 + s_7 x_1^2 x_2 + s_8 x_0 x_2^2 + s_9 x_1 x_2^2 + s_{10} x_2^3$
- Sections of the base $s_i \in K_b^{-1} = 3H_b$
- they are generic cubic polynomials (too) $s_i = \sum_{i+j+k=3} a_{i,j,k} y_0^i y_1^j y_2^k$
- Hodge numbers: $(h^{(1,1)}, h^{(2,1)})_{\chi} = (2,68)_{-163}$

Example: Bi-Cubic

• every toric divisor on Y intersects fiber trice: $C \cdot D_{x_i} = 3$

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $C \cdot D_{x_i} = 3$
- Hodge numbers: $(h^{(1,1)}, h^{(2,1)})_{\chi} = (2,83)_{-162}$
- \mathbb{Z}_3 Gauge Symmetry

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $C \cdot D_{x_i} = 3$
- Hodge numbers: $(h^{(1,1)}, h^{(2,1)})_{\chi} = (2, 83)_{-162}$
- \mathbb{Z}_3 Gauge Symmetry
- several charged matter singlets [Klevers, Mayorga, Piragua, P-Κ.Ο., Reuter]
Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $C \cdot D_{x_i} = 3$
- Hodge numbers: $(h^{(1,1)}, h^{(2,1)})_{\chi} = (2, 83)_{-162}$
- \mathbb{Z}_3 Gauge Symmetry
- several charged matter singlets [Klevers, Mayorga, Piragua, P-K.O., Reuter]

Full Spectrum

Tensors:0
$$H_{uncharged}$$
: $h^{2,1}(Y) + 1$ Vectors:0 $H_{charged}$: $21(K_b^{-1})^2$

• Using $K_b^{-1} \cdot K_b^{-1} = 9$

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $C \cdot D_{x_i} = 3$
- Hodge numbers: $(h^{(1,1)}, h^{(2,1)})_{\chi} = (2, 83)_{-162}$
- \mathbb{Z}_3 Gauge Symmetry
- several charged matter singlets [Klevers, Mayorga, Piragua, P-K.O., Reuter]

Full Spectrum

Tensors:
 0

$$H_{uncharged}$$
:
 $h^{2,1}(Y) + 1 = 84$

 Vectors:
 0
 $H_{charged}$:
 $21(K_b^{-1})^2 = 189$

• Using $K_b^{-1} \cdot K_b^{-1} = 9$

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $C \cdot D_{x_i} = 3$
- Hodge numbers: $(h^{(1,1)}, h^{(2,1)})_{\chi} = (2, 83)_{-162}$
- \mathbb{Z}_3 Gauge Symmetry
- several charged matter singlets [Klevers, Mayorga, Piragua, P-K.O., Reuter]

Full Spectrum

Tensors: 0
$$H_{uncharged}$$
: $h^{2,1}(Y) + 1 = 84$
Vectors: 0 $H_{charged}$: $21(K_b^{-1})^2 = 189$

• Using
$$K_b^{-1} \cdot K_b^{-1} = 9$$

• Check Gravitational Anomalies:

$$H - V + 29T = 273\sqrt{9 - T} = (\mathcal{K}_{b}^{-1})^{2}\sqrt{2}$$

Toric quotient of ambient space Z: refined polytope lattice

x_0	x_1	<i>x</i> ₂	<i>y</i> 0	y_1	<i>Y</i> 2
1	0	-1	0	0	0
0	1	-1	0	0	0
0	0	0	1	0	-1
0	0	0	0	1	-1

Toric quotient of ambient space Z: refined polytope lattice

x_0	x_1	<i>x</i> ₂	<i>y</i> 0	y_1	<i>y</i> ₂
1	0	-1	0	1	-1
0	1	-1	0	-1	1
0	0	0	1	1	-2
0	0	0	0	3	-3

.

- \mathbb{Z}_3 Lattice refinement incorporates identification $\Gamma_3 = e^{(2\pi i/3)}$ [Batyrev, Kreutzer'05]
- Additional coordinate relation: $(x_0, x_1, x_2|y_0, y_1, y_2) \sim (x_0, \Gamma_3 x_1, \Gamma_3^2 x_2|y_0, \Gamma_3 y_1, \Gamma_3^2 y_2)$

Toric quotient of ambient space Z: refined polytope lattice

x_0	x_1	<i>x</i> ₂	<i>y</i> 0	y_1	<i>Y</i> 2
1	0	-1	0	1	-1
0	1	-1	0	-1	1
0	0	0	1	1	-2
0	0	0	0	3	-3

- \mathbb{Z}_3 Lattice refinement incorporates identification $\Gamma_3 = e^{(2\pi i/3)}$ [Batyrev, Kreutzer'05]
- Additional coordinate relation:
 - $(x_0, x_1, x_2|y_0, y_1, y_2) \sim (x_0, \Gamma_3 x_1, \Gamma_3^2 x_2|y_0, \Gamma_3 y_1, \Gamma_3^2 y_2)$
- Back to the hypersurface P $P = s_1 x_0^3 + s_2 x_0^2 x_1 + s_3 x_0 x_1^2 + s_4 x_1^3 + s_5 x_0^2 x_2 + s_6 x_0 x_1 x_2 + s_7 x_1^2 x_2 + s_8 x_0 x_2^2 + s_9 x_1 x_2^2 + s_{10} x_2^3$
- Not every monomial in P is Γ_3 invariant: $s_1 \ni a_1 y_0^3 \checkmark + a_2 y_0^2 y_1 X + ...$

Toric quotient of ambient space Z: refined polytope lattice

x_0	x_1	<i>x</i> ₂	<i>y</i> 0	y_1	<i>y</i> ₂
1	0	-1	0	1	-1
0	1	-1	0	-1	1
0	0	0	1	1	-2
0	0	0	0	3	-3

- \mathbb{Z}_3 Lattice refinement incorporates identification $\Gamma_3 = e^{(2\pi i/3)}$ [Batyrev, Kreutzer'05]
- Additional coordinate relation: $(x_0, x_1, x_2|y_0, y_1, y_2) \sim (x_0, \Gamma_3 x_1, \Gamma_3^2 x_2|y_0, \Gamma_3 y_1, \Gamma_3^2 y_2)$
- Consider the Γ_3 invariant Calabi-Yau hypersurface P

$$P = s_1^{(0)} x_0^3 + s_2^{(2)} x_0^2 x_1 + s_3^{(1)} x_0 x_1^2 + s_4^{(0)} x_1^3 + s_5^{(1)} x_0^2 x_2 + s_6^{(0)} x_0 x_1 x_2 + s_7^{(2)} x_1^2 x_2 + s_8^{(2)} x_0 x_2^2 + s_9^{(1)} x_1 x_2^2 + s_{10}^{(0)} x_2^3$$

• The s_i transform Γ_3 covariantly $s_i^{(j)} \rightarrow \Gamma_3^j s_i^{(j)}$

Properties of Quotient Geometry

Generic structure of the fiber stays the same (still generic cubic)

$$P = s_1^{(0)} x_0^3 + s_2^{(2)} x_0^2 x_1 + s_3^{(1)} x_0 x_1^2 + s_4^{(0)} x_1^3 + s_5^{(1)} e_1 x_0^2 x_2 + s_6^{(0)} x_0 x_1 x_2 + s_7^{(2)} x_1^2 x_2 + s_8^{(2)} x_0 x_2^2 + s_9^{(1)} x_1 x_2^2 + s_{10}^{(0)} x_2^3$$

Properties of Quotient Geometry

Generic structure of the fiber stays the same (still generic cubic)

$$P = s_1^{(0)} x_0^3 + s_2^{(2)} x_0^2 x_1 + s_3^{(1)} x_0 x_1^2 + s_4^{(0)} x_1^3 + s_5^{(1)} e_1 x_0^2 x_2 + s_6^{(0)} x_0 x_1 x_2 + s_7^{(2)} x_1^2 x_2 + s_8^{(2)} x_0 x_2^2 + s_9^{(1)} x_1 x_2^2 + s_{10}^{(0)} x_2^3$$

Note:

• $(\mathbb{P}^2 \times \mathbb{P}^2)/\mathbb{Z}_3$ ambient space contains 9 codimension 4 orbifold singularities: $(x_0, x_1, x_2|y_0, y_1, y_2) \sim (\underline{0, 0, 1}|0, 0, 1)$

Properties of Quotient Geometry

Generic structure of the fiber stays the same (still generic cubic)

$$P = s_1^{(0)} x_0^3 + s_2^{(2)} x_0^2 x_1 + s_3^{(1)} x_0 x_1^2 + s_4^{(0)} x_1^3 + s_5^{(1)} e_1 x_0^2 x_2 + s_6^{(0)} x_0 x_1 x_2 + s_7^{(2)} x_1^2 x_2 + s_8^{(2)} x_0 x_2^2 + s_9^{(1)} x_1 x_2^2 + s_{10}^{(0)} x_2^3$$

Note:

- $(\mathbb{P}^2 \times \mathbb{P}^2)/\mathbb{Z}_3$ ambient space contains 9 codimension 4 orbifold singularities: $(x_0, x_1, x_2|y_0, y_1, y_2) \sim (\underline{0, 0, 1}|0, 0, \underline{1})$
- \bullet Those project onto 3, A_2 singularities in the base: $\mathbb{P}^2/\mathbb{Z}_3$
- All fixed points miss the hypersurface $\rightarrow \widehat{Y}$ is smooth
- Justifies Euler number computation $\chi(\widehat{Y}) = \chi(Y)/3$

How does the F-theory spectrum change?

- Before the quotient we had
- $(h^{1,1}, h^{2,1})_{\chi}(\hat{Y}_3) = (2,83)_{-163}$: \mathbb{Z}_3 gauge symmetry + 0 Tensor

How does the F-theory spectrum change?

- Before the quotient we had
- $(h^{1,1}, h^{2,1})_{\chi}(\hat{Y}_3) = (2, 83)_{-163}$: \mathbb{Z}_3 gauge symmetry + 0 Tensor
- with the intersection $(K_b^{-1})^2 = 9$

 $\begin{array}{c|c} H_{\text{charged}}: & \mathbf{1}_{(1)}: & 21(K_b^{-1})^2 & = 189 \\ H_{\text{uncharged}} & : 84 \end{array}$

How does the F-theory spectrum change?

- Before the quotient we had
- $(h^{1,1}, h^{2,1})_{\chi}(\hat{Y}_3) = (2,83)_{-163}$: \mathbb{Z}_3 gauge symmetry + 0 Tensor

• with the intersection $(K_b^{-1})^2 = 9$ $H_{charged}$: $\mathbf{1}_{(1)}$: $21(K_b^{-1})^2 = 189$ $H_{uncharged}$: 84

• With satisfied anomalies

Grav⁴
$$\underbrace{H}_{=273} - \underbrace{V}_{=0} -29 \underbrace{T}_{=0} -273 = 0$$
 $9 - \underbrace{T}_{=0} - \underbrace{(K_b^{-1})^2}_{=9} = 0\sqrt{2}$

How does the F-theory spectrum change?

- After taking the quotient we have
- $(h^{1,1}, h^{2,1})_{\chi}(\hat{Y}_3) = (2, 29)_{-54}$: \mathbb{Z}_3 gauge symmetry + 0 Tensor

How does the F-theory spectrum change?

- After taking the quotient we have
- $(h^{1,1},h^{2,1})_{\chi}(\hat{Y}_3) = (2,29)_{-54}$: \mathbb{Z}_3 gauge symmetry + 0 Tensor
- Intersection change $(K_b^{-1})^2 = 9 \rightarrow (K_{\hat{b}}^{-1})^2 = 3$

 $\begin{array}{ccc} H_{\text{charged}}: & \mathbf{1}_{(1)}: & 21(K_b^{-1})^2 &= 63 \\ H_{\text{uncharged}} &= 30 \end{array}$

How does the F-theory spectrum change?

- After taking the quotient we have
- $(h^{1,1}, h^{2,1})_{\chi}(\hat{Y}_3) = (2, 29)_{-54}$: \mathbb{Z}_3 gauge symmetry + 0 Tensor
- Intersection change $({\cal K}_b^{-1})^2=9
 ightarrow ({\cal K}_{\hat b}^{-1})^2=3$

 $\begin{array}{c|c} H_{charged}: & 1_{(1)}: & 21(K_b^{-1})^2 &= 63 \\ H_{uncharged} &= 30 \end{array}$

• with **unsatisfied** (gravitational) anomalies:

$$\underbrace{H}_{=93} - \underbrace{V}_{=0} -29 \underbrace{T}_{=0} -273 = -(2 \cdot 3) \cdot 30 \qquad 9 - \underbrace{T}_{=0} - \underbrace{(K_b^{-1})^2}_{=3} = 2 \cdot 3$$

How does the F-theory spectrum change?

- After taking the quotient we have
- $(h^{1,1}, h^{2,1})_{\chi}(\hat{Y}_3) = (2, 29)_{-54}$: \mathbb{Z}_3 gauge symmetry + 0 Tensor
- Intersection change $({\cal K}_b^{-1})^2=9
 ightarrow ({\cal K}_{\hat{b}}^{-1})^2=3$

 $\begin{array}{c|c} H_{charged}: & 1_{(1)}: & 21(K_b^{-1})^2 & = 63 \\ H_{uncharged} & = 30 \end{array}$

• with **unsatisfied** (gravitational) anomalies:

$$\underbrace{H}_{=93} - \underbrace{V}_{=0} -29 \underbrace{T}_{=0} -273 = -(2 \cdot 3) \cdot 30 \qquad 9 - \underbrace{T}_{=0} - \underbrace{(K_b^{-1})^2}_{=3} = 2 \cdot 3$$

We need new states to cure the gravitational anomalies

Cure for the gravitational Anomaly

- M5 brane stacks that probe the $\mathbb{C}^2/\mathbb{Z}_3$ singularities
- Each Γ_3 orbifold fixed point in \widehat{B} contributes an A_2 free $\mathcal{N} = (2,0)$ Tensor multiplet $\mathcal{T}_{(2,0)}$ [Harvey, Minasian, Moore'98]
- In a $\mathcal{N} = (1,0)$ language a free $\mathcal{N} = (2,0)$ Tensor multiplet consists of:

$$T_{(2,0)} \to H_{1_0} \oplus T_{(1,0)}$$

Cure for the gravitational Anomaly

- M5 brane stacks that probe the $\mathbb{C}^2/\mathbb{Z}_3$ singularities
- Each Γ_3 orbifold fixed point in \widehat{B} contributes an A_2 free $\mathcal{N} = (2,0)$ Tensor multiplet $\mathcal{T}_{(2,0)}$ [Harvey, Minasian, Moore'98]
- In a $\mathcal{N} = (1,0)$ language a free $\mathcal{N} = (2,0)$ Tensor multiplet consists of: $T_{(2,0)} \rightarrow H_1 \oplus T_{(1,0)}$

$$\underbrace{H}_{=93} - \underbrace{V}_{=0} - 29 \underbrace{T_{(1,0)}}_{=0} + 30 \underbrace{T_{(2,0)}}_{3\cdot 2} = 273 \quad , \quad 9 - \underbrace{T}_{=0} = \underbrace{(K_b^{-1})^2}_{=3} + \underbrace{T_{(2,0)}}_{3\cdot 2} \checkmark$$

Superconformal matter contribution

Summary of the Physics (up to now)

The quotient Γ_n action on the Base

- Reduced matter spectrum by 1/n consistent with all gauge anomalies
- Introduces $T_{(2,0)} = (K_b^{-1})^2 (\frac{n-1}{n})$ free Tensor multiplets that cures the gravitational anomaly [del Zotto, Heckman, Morrison, Park 14]

Superconformal matter contribution

Summary of the Physics (up to now)

The quotient Γ_n action on the Base

- Reduced matter spectrum by 1/n consistent with all gauge anomalies
- Introduces $T_{(2,0)} = (K_b^{-1})^2 (\frac{n-1}{n})$ free Tensor multiplets that cures the gravitational anomaly [del Zotto, Heckman, Morrison, Park'14]

Is that Everything?

- All massless degrees of freedom captured
- What about the multiple fiber over the fixed points?
- Is that a regular A_{n-1} (2,0) theory?

Superconformal matter contribution

Summary of the Physics (up to now)

The quotient Γ_n action on the Base

- Reduced matter spectrum by 1/n consistent with all gauge anomalies
- Introduces $T_{(2,0)} = (K_b^{-1})^2 (\frac{n-1}{n})$ free Tensor multiplets that cures the gravitational anomaly [del Zotto, Heckman, Morrison, Park'14]

Is that Everything?

- All massless degrees of freedom captured
- What about the multiple fiber over the fixed points?
- Is that a regular A_{n-1} (2,0) theory?

Check the Tensor Branch

• When **blowing up** the A_{n-1} points: do we obtain anything **in addition** to the blow-up modes (additional singular fibers?) (Yes we do)

Ambient Space Polytope

x_0	x_1	<i>x</i> ₂	y_0	y_1	<i>y</i> ₂
1	0	-1	0	1	-1
0	1	-1	0	-1	1
0	0	0	1	1	-2
0	0	0	0	3	-3

Hyperconifold Resolution

x_0	x_1	<i>x</i> ₂	y_0	y_1	<i>y</i> ₂	<i>e</i> _{1,1}	<i>e</i> _{1,2}	<i>e</i> _{2,1}	<i>e</i> _{2,2}	<i>e</i> _{3,1}	<i>e</i> _{3,2}
1	0	-1	0	1	-1	1	0	0	0	1	1
0	1	-1	0	-1	1	0	1	1	1	0	0
0	0	0	1	1	-2	0	-1	-1	0	1	1
0	0	0	0	3	-3	1	-1	-2	-1	1	2

Hyperconifold Resolution

- Resolution of base $\mathbb{P}^2/\mathbb{Z}_3 \to dP_6$
- Obtain a smooth simply connected CY (by removal of 3 Lens Spaces) $(h^{1,1}, h^{2,1})_{\chi} = (2, 29)_{-54} \xrightarrow{3 \cdot Hyperconifold} (h^{1,1}, h^{2,1})_{\chi} = (8, 26)_{-36}$

Hyperconifold Resolution

- Resolution of base $\mathbb{P}^2/\mathbb{Z}_3 o dP_6$
- Obtain a smooth simply connected CY (by removal of 3 Lens Spaces) $(h^{1,1}, h^{2,1})_{\chi} = (2, 29)_{-54} \xrightarrow{3 \cdot Hyperconifold} (h^{1,1}, h^{2,1})_{\chi} = (8, 26)_{-36}$
- The discriminant (of the Jacobian) factorizes resolution divisors $\Delta = e_{1,1}e_{1,2}e_{2,1}e_{2,2}e_{3,1}e_{3,1}\left(P_1 + \mathcal{O}((e_{1,1}e_{1,2}e_{2,1}e_{2,2}e_{3,1}e_{3,1})^2)\right)$

Hyperconifold Resolution

- Resolution of base $\mathbb{P}^2/\mathbb{Z}_3 o dP_6$
- Obtain a smooth simply connected CY (by removal of 3 Lens Spaces) $(h^{1,1}, h^{2,1})_{\chi} = (2, 29)_{-54} \xrightarrow{3 \cdot Hyperconifold} (h^{1,1}, h^{2,1})_{\chi} = (8, 26)_{-36}$
- The discriminant (of the Jacobian) factorizes resolution divisors $\Delta = e_{1,1}e_{1,2}e_{2,1}e_{2,2}e_{3,1}e_{3,1}\left(P_1 + \mathcal{O}((e_{1,1}e_{1,2}e_{2,1}e_{2,2}e_{3,1}e_{3,1})^2)\right)$
- I_2 fibers over $e_{i,1} = e_{i,2} = 0$ and $e_{i,j} = P_1 = 0$

\mathcal{A}_{n-1} tensor branch matter

Hyperconifold Tensor Branch

- Additional purely discrete charged states appear, all anomalies satisfied \checkmark
- I₂ Factorization of the smooth genus-one curve explicitly confirmed \checkmark

Summary and

Summary and

•
$$\hat{Y}_3 = Y_3/\Gamma_n$$
 is non-simply connected, $\pi_1(\hat{Y}_3) = n$

Summary and

- $\hat{Y}_3 = Y_3 / \Gamma_n$ is non-simply connected, $\pi_1(\hat{Y}_3) = n$
- **2** \hat{Y}_3 has no section but only **multi-sections** $\rightarrow \mathbb{Z}_n$ symmetries.

Summary and

- $\hat{Y}_3 = Y_3 / \Gamma_n$ is non-simply connected, $\pi_1(\hat{Y}_3) = n$
- **2** \hat{Y}_3 has no section but only **multi-sections** $\to \mathbb{Z}_n$ symmetries.
- Fibration contains isolated multiple fibers over \mathbb{Z}_n orbifold singularities in the base.

Summary and

- $\hat{Y}_3 = Y_3 / \Gamma_n$ is non-simply connected, $\pi_1(\hat{Y}_3) = n$
- **2** \hat{Y}_3 has no section but only **multi-sections** $\to \mathbb{Z}_n$ symmetries.
- Fibration contains isolated multiple fibers over \mathbb{Z}_n orbifold singularities in the base.

Summary and

We have taken **freely acting quotients** Γ_n of genus-one fibered CY three-folds Y_3

- $\hat{Y}_3 = Y_3 / \Gamma_n$ is non-simply connected, $\pi_1(\hat{Y}_3) = n$
- ② \hat{Y}_3 has no section but only **multi-sections** $\rightarrow \mathbb{Z}_n$ symmetries.
- Fibration contains isolated multiple fibers over \mathbb{Z}_n orbifold singularities in the base.

The Physics of the Multiple Fiber

- Contributes the d.o.f. of a free A_{n-1} (2,0) superconformal point
- Tensor branch obtained by resolution of a Lens space
- Over the Tensor branch, n hypers appear charged under the discrete Z_n gauged symmetry

 \rightarrow new discrete charged superconformal matter

...More

Further Highlights in the paper

- Coupling the (2,0) theory to the un-Higgsed U(1)
- General anomaly cancellation proven
- More concrete examples with additional gauge symmetries

...More

Further Highlights in the paper

- Coupling the (2,0) theory to the un-Higgsed U(1)
- General anomaly cancellation proven
- More concrete examples with additional gauge symmetries

Further Directions

- Understand the precise connection of multiple fibers, Tate-Shafarevich VS. Weil-Châtelet
- New class of SCFTs or Little String Theories after decompactification?
- Understand the M-theory F-theory lift with multiple fibers
- Many more.....

...More

Further Highlights in the paper

- Coupling the (2,0) theory to the un-Higgsed U(1)
- General anomaly cancellation proven
- More concrete examples with additional gauge symmetries

Thank You Very Much!

Further Directions

- Understand the precise connection of multiple fibers, Tate-Shafarevich VS. Weil-Châtelet
- New class of SCFTs or Little String Theories after decompactification?
- Understand the M-theory F-theory lift with multiple fibers
- Many more.....
The Hyperconifold Transition

Tune in an ambient space fixed point onto \widehat{Y}

The Hyperconifold Transition

Tune in an ambient space fixed point onto \widehat{Y}

A Conifold Transition on the covering space

Tuning in a cusp singularity on the covering Calabi-Yau Y

•
$$p = y_1 y_4 - y_2 y_3 = 0$$

• With Toric Fan

$$\Sigma_1: \left\{ v_1 = (1,0,0) \, , \, v_2 = (1,1,0) \, , \, v_3 = (1,0,1) \, , \, v_4 = (1,1,1) \, \right\}$$

• \mathbb{S}^3 Deformation phase, \mathbb{S}^2 resolution phase

The Hyperconifold Transition

Tune in an ambient space fixed point onto \widehat{Y}

A Hyperconifold Transition

This is the quotient of a conifold transition [Davis'13]

- Quotient: $(y_1, y_2, y_3, y_4) \sim (\Gamma_n y_1, \Gamma_n^k y_2, \Gamma_n^{-k} y_3 \Gamma_n^{-1} y_4)$
- Refined lattice fan: $\Sigma'_1 = \{(1,0,0), (1,1,0), (1,k,n), (1,k+1,n)\}$
- The two phases correspond to:
 - Deformation Phase: lens space L(n, k) (twisted \mathbb{S}^3)
 - **Resolution Phase**: Chain of $n-1 \mathbb{P}^1$'s

Topological Properties of a Hyperconifold

Global Properties of a Hyperconifold transition $\widehat{Y} \to X$ [Davis'13]

• Change in Hodge Numbers

$$(\Delta h^{1,1},\Delta(h^{2,1}))_{\Delta\chi}=(n-1,-1)_{2n}$$

- Seifert-van Kampen theorem: $\pi_1(X) = \pi_1(\widehat{Y})/\pi_1(L(m,k)) = \mathbb{Z}_{n/m}$.
- Resolves an orbifold singularity in the Base

$$h^{1,1}(B_{\rm res}) = h^{1,1}(\widehat{B}) + n - 1$$

Change in Spectrum

Change in the gravitational anomaly $H - V + 29T_{(1,0)} + 30T_{(2,0)} - 273 = 0$

Topological Properties of a Hyperconifold

Global Properties of a Hyperconifold transition $\widehat{Y} \to X$ [Davis'13]

• Change in Hodge Numbers

$$(\Delta h^{1,1},\Delta(h^{2,1}))_{\Delta\chi}=(n-1,-1)_{2n}$$

- Seifert-van Kampen theorem: $\pi_1(X) = \pi_1(\widehat{Y})/\pi_1(L(m,k)) = \mathbb{Z}_{n/m}$.
- Resolves an orbifold singularity in the Base

$$h^{1,1}(B_{\rm res}) = h^{1,1}(\widehat{B}) + n - 1$$

Change in Spectrum

Change in the gravitational anomaly

$$H - V + 29T_{(1,0)} + 30T_{(2,0)} - 273 = 0$$

 \downarrow
 $H - 1 - V + 29(T_{(1,0)} + n - 1) + 30(T_{(2,0)} - n + 1) - 273 = -n$

Topological Properties of a Hyperconifold

Global Properties of a Hyperconifold transition $\widehat{Y} o X$ [Davis 13]

• Change in Hodge Numbers

$$(\Delta h^{1,1},\Delta(h^{2,1}))_{\Delta\chi}=(n-1,-1)_{2n}$$

- Seifert-van Kampen theorem: $\pi_1(X) = \pi_1(\widehat{Y})/\pi_1(L(m,k)) = \mathbb{Z}_{n/m}$.
- Resolves an orbifold singularity in the Base

$$h^{1,1}(B_{\rm res}) = h^{1,1}(\widehat{B}) + n - 1$$

Change in Spectrum

Change in the gravitational anomaly

$$H - V + 29T_{(1,0)} + 30T_{(2,0)} - 273 = 0$$

 \downarrow
 $H - 1 - V + 29(T_{(1,0)} + n - 1) + 30(T_{(2,0)} - n + 1) - 273 = -n$

- The hyperconifold implies a necessary missmatch of *n* charged hypers
- All gauge divisors are Cartier: No change in the matter
- genus-one symmetry $\leftrightarrow \mathbb{Z}_n$ gauged matter is the only candidate!