F-theory on Quotient Threefolds and Their Discrete Superconformal Matter

Paul-Konstantin Oehlmann

Virginia Polytechnic Institute and State University

Based on • arXiv:1801.XXXXX with: L. Anderson, J. Gray and A. Grassi

BIRS workshop on geometry and physics of F-theory, Banff January 25th 2018

Deutsche Forschungsgemeinschaft

F-theory Dictionary

F-theory Dictionary

- Geometry of Torus fibered Calabi-Yau n-folds (Compact)

F-theory Dictionary

- Geometry of Torus fibered Calabi-Yau n-folds (Compact)

- Physics of $12-2 n$ Dimensional Supersymmetric Gauge Theories (+Gravity)

F-theory Dictionary

- Geometry of Torus fibered Calabi-Yau n-folds (Compact)

- Physics of $12-2 n$ Dimensional Supersymmetric Gauge Theories (+Gravity)

Introduction and Motivation

- Consider a torus \mathcal{E} fibered CY -3fold Y_{3} fold over a two dimensional Base B_{2}

$$
\begin{array}{lll}
\mathcal{E} \rightarrow & Y_{3} \\
& \downarrow \pi \\
& B_{2}
\end{array}
$$

- Treat τ of \mathcal{E} as the axio-dilaton of IIB (forget the $\operatorname{Vol}(\mathcal{E})$)
- Power of F-theory: D7/O7 brane stacks
- $\mathrm{SL}(2, \mathbb{Z})$ monodromies of τ traced geometricaly
- D7/O7 backreaction taken care of in B_{n}

Symmetries in F-theory

F-theory Setup

By torus \mathcal{E} fibered Calabi-Yau 3-fold we actually mean:

- Elliptic Fibration: \exists rational sections $S_{r} \cdot \mathcal{E}=1 \rightarrow$ always a zero-section σ_{0}
- Genus One Fibration: $S_{r} \cdot \mathcal{E}=n_{i} n_{i} \neq 1 \forall i \quad$ [Braun/Taylor, Morrison'14] \rightarrow Jacobian map provides a surjective map to an elliptic fibration

Symmetries in F-theory

F-theory Setup

By torus \mathcal{E} fibered Calabi-Yau 3-fold we actually mean:

- Elliptic Fibration: \exists rational sections $S_{r} \cdot \mathcal{E}=1 \rightarrow$ always a zero-section σ_{0}
- Genus One Fibration: $S_{r} \cdot \mathcal{E}=n_{i} n_{i} \neq 1 \forall i \quad$ [Braun/Taylor, Morrison'14] \rightarrow Jacobian map provides a surjective map to an elliptic fibration

Symmetries in F-theory

F-theory Setup

By torus \mathcal{E} fibered Calabi-Yau 3-fold we actually mean:

- Elliptic Fibration: \exists rational sections $S_{r} \cdot \mathcal{E}=1 \rightarrow$ always a zero-section σ_{0}
- Genus One Fibration: $S_{r} \cdot \mathcal{E}=n_{i} n_{i} \neq 1 \forall i \quad$ [Braun/Taylor, Morrison'14] \rightarrow Jacobian map provides a surjective map to an elliptic fibration

Symmetries in F-theory

Symmetries in F-theory

(1) Cartan Generators D_{i} of non-Abelian ADE Group at codim 1 [Kodaira]

Symmetries in F-theory

(1) Cartan Generators D_{i} of non-Abelian ADE Group at codim 1 [אodaira]
(2) Abelian Symmetries from free part of the Mordell-Weil group
[Mayrhover,Palti,Weigand; Morrison,Park'12...]

Symmetries in F-theory

(1) Cartan Generators D_{i} of non-Abelian ADE Group at codim 1 [kodaira]
(2) Abelian Symmetries from free part of the Mordell-Weil group
[Mayrhover,Palti,Weigand; Morrison,Park'12...]

- Discrete \mathbb{Z}_{n} remnant from a massive higgsed $\mathrm{U}(1) \hat{A}_{i}$ [Braun/Taylor Morrison'14....]

6D F-theory models

For Y_{3} smooth, the $\mathcal{N}=(1,0), 6 \mathrm{D}$ SUGRA theory is fully geometrized:

- Tensors $\mathbf{T}_{(1,0)}$: Supported in the Base by $h^{1,1}(B)-1$
- Hypers $\mathbf{H}=\mathbf{H}_{\text {uncharged }}+\mathbf{H}_{\text {charged }}$:
- $H_{\text {uncharged }}=h^{2,1}\left(Y_{3}\right)+1$
- $H_{\text {charged }}=$ Codimension two (points) in B_{2} where \mathcal{E} becomes further reducible
- Anomalies: strong constraints on matter and representations!

Motivation and Punshline

- Kodaira Singularities, codimension two non-flat fibers, Mordell-Weil group, Tate-Shafarevich group, terminal singularities all have a phyiscal counterpart

Does every subtle geometric property of F-theory fibrations X admit a physical counterpart?

Motivation and Punshline

- Kodaira Singularities, codimension two non-flat fibers, Mordell-Weil group, Tate-Shafarevich group, terminal singularities all have a phyiscal counterpart
Does every subtle geometric property of F-theory fibrations X admit a physical counterpart?

What is F-theory Physics of a non-simply connected threefold?

Geometry

- Fixed points in the Base
- with multiple fibers
- Sitting over a Lens space

Physics

- $(2,0)$ Superconformal Matter
- Coupled to \mathbb{Z}_{n} Gauge Symmetry
- Visible at their Tensor Branch

Motivation and Punchline

Discrete Charged $(2,0)$ Matter

- The Base contains $(2,0) A_{n-1}$ superconformal matter
- At the tensor branch, there appear $n \mathrm{I}_{2}$ fibers at codim 2
- These give n purely discrete charged hypermultiplets

They form a new type of 6D discrete charged $(2,0)$ superconformal matter

Outline

(1) Motivation and Punchline
(2) Geometric Setup
(3) Example: Bi-Cubic-Quotient
(1) Covering Geometry and Quotient
(2) Spectrum, Anomalies and M5 branes
(3) Lens Spaces and Hyperconifold transitions
(c) Tensor branch theory

- Summary and more

The starting point

Start with a Calabi-Yau threefold Y_{3} realized as a complete intersection $P_{i}=0$ in some ambient space Z that is torus-fibered and admits

- discrete
- free
- cyclic

Automorphism Γ_{n} (possibly inherited from the ambient space Z) of order \mathbf{n}

The starting point

Start with a Calabi-Yau threefold Y_{3} realized as a complete intersection $P_{i}=0$ in some ambient space Z that is torus-fibered and admits

- discrete
- free
- cyclic

Automorphism Γ_{n} (possibly inherited from the ambient space Z) of order \mathbf{n}
Take the quotient threefold $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ such that

- $\widehat{Y}_{3}=Y_{3} / \Gamma_{n}$ is still Calabi-Yau
- is smooth
- non-simply connected $\pi_{1}\left(\hat{Y}_{3}\right)=\mathbb{Z}_{n}$
- Torsion: $\operatorname{Tor}\left(H^{2}\left(\widehat{Y}_{3}, \mathbb{Z}\right) \sim B^{\prime}\left(\widehat{Y}_{3}, \mathbb{Z}\right)=\mathbb{Z}_{n}\right.$
- Want it still to be torus fibered

The starting point

Start with a Calabi-Yau threefold Y_{3} realized as a complete intersection $P_{i}=0$ in some ambient space Z that is torus-fibered and admits

- discrete
- free
- cyclic

Automorphism Γ_{n} (possibly inherited from the ambient space Z) of order \mathbf{n}
Take the quotient threefold $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ such that

- $\widehat{Y}_{3}=Y_{3} / \Gamma_{n}$ is still Calabi-Yau
- is smooth
- non-simply connected $\pi_{1}\left(\hat{Y}_{3}\right)=\mathbb{Z}_{n}$
- Torsion: $\operatorname{Tor}\left(H^{2}\left(\widehat{Y}_{3}, \mathbb{Z}\right) \sim B^{\prime}\left(\widehat{Y}_{3}, \mathbb{Z}\right)=\mathbb{Z}_{n}\right.$
- Want it still to be torus fibered
- What are the constraints on the Γ_{n} quotient?

Quotient Calabi-Yau Geometries

Want $\widehat{Y}_{3}=Y_{3} / \Gamma_{n}$ to be a smooth Calabi-Yau that is also torus-fibered in order to be relevant for F-theory. [Donagi, Ovrut, Pantev, Waldram'99]

Quotient Calabi-Yau Geometries

Want $\widehat{Y}_{3}=Y_{3} / \Gamma_{n}$ to be a smooth Calabi-Yau that is also torus-fibered in order to be relevant for F-theory. [Donagi. Ourut, Pantev, Waldram'9g]
(1) \hat{Y} stays Calabi-Yau: Γ_{n} leaves canonical divisor of Z invariant

Quotient Calabi-Yau Geometries

Want $\widehat{Y}_{3}=Y_{3} / \Gamma_{n}$ to be a smooth Calabi-Yau that is also torus-fibered in order to be relevant for F-theory. [Donagi, Ovrut, Pantev, Waldram'99]
(1) \hat{Y} stays Calabi-Yau: Γ_{n} leaves canonical divisor of Z invariant
(2) $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ is smooth (freely acting)

Quotient Calabi-Yau Geometries

Want $\widehat{Y}_{3}=Y_{3} / \Gamma_{n}$ to be a smooth Calabi-Yau that is also torus-fibered in order to be relevant for F-theory. [Donagi, Ovrut, Pantev, Waldram'99]
(1) \hat{Y} stays Calabi-Yau: Γ_{n} leaves canonical divisor of Z invariant
(c) $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ is smooth (freely acting)
(0) Γ_{n} respects fibration/projecton π :

$$
\begin{aligned}
T / \Gamma_{n, f} \rightarrow & \hat{Y}=Y / \Gamma_{n} \\
& \downarrow \pi \\
& \hat{B}=B / \Gamma_{n, b}
\end{aligned}
$$

Action of Γ_{n} decomposable into a fiber and base part $\Gamma_{n}=\Gamma_{F, n} \oplus \Gamma_{b, n}$
Fiber and Base must not be mixed!

Quotient Calabi-Yau Geometries

Want $\widehat{Y}_{3}=Y_{3} / \Gamma_{n}$ to be a smooth Calabi-Yau that is also torus-fibered in order to be relevant for F-theory. [Donagi, Ovrut, Pantev, Waldram'99]
(1) \widehat{Y} stays Calabi-Yau: Γ_{n} leaves canonical divisor of Z invariant
(c) $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ is smooth (freely acting)
(0) Γ_{n} respects fibration/projecton π :

$$
\begin{aligned}
T / \Gamma_{n, f} \rightarrow & \hat{Y}=Y / \Gamma_{n} \\
& \downarrow \pi \\
& \hat{B}=B / \Gamma_{n, b}
\end{aligned}
$$

Action of Γ_{n} decomposable into a fiber and base part $\Gamma_{n}=\Gamma_{F, n} \oplus \Gamma_{b, n}$

Fiber and Base must not be mixed!

- Quotient base \hat{B} allowed to have orbifold fixed points
(- Singularity in the base must be compensated by a fiber translation to keep \hat{Y} smooth

Quotient Fiber Action

Must compensate the $\Gamma_{n, b}$ orbifold fixed point in the base

- To avoid a fixed fiber, $\Gamma_{f, n}$ must act as a fiber rotation

Quotient Fiber Action

Must compensate the $\Gamma_{n, b}$ orbifold fixed point in the base

- To avoid a fixed fiber, $\Gamma_{f, n}$ must act as a fiber rotation
(1) $T=\mathcal{C}$ is a genus-one fibration: Over the fixed point, there must be n-sections that translate into each other

$$
\begin{equation*}
s_{n}^{i} \xrightarrow{\Gamma_{n, f}} s_{n}^{j} \text { with } j=i+1 \bmod n \tag{1}
\end{equation*}
$$

Quotient Fiber Action

Must compensate the $\Gamma_{n, b}$ orbifold fixed point in the base

- To avoid a fixed fiber, $\Gamma_{f, n}$ must act as a fiber rotation
(1) $T=\mathcal{C}$ is a genus-one fibration: Over the fixed point, there must be n-sections that translate into each other

$$
\begin{equation*}
s_{n}^{i} \xrightarrow{\Gamma_{n, f}} s_{n}^{j} \text { with } j=i+1 \bmod n \tag{1}
\end{equation*}
$$

(2) $T=\mathcal{E}$ is an elliptic fibration: Γ_{n} must be a homomorpshism into $M W_{\text {tor }}$

Quotient Fiber Action

Must compensate the $\Gamma_{n, b}$ orbifold fixed point in the base

- To avoid a fixed fiber, $\Gamma_{f, n}$ must act as a fiber rotation
(1) $T=\mathcal{C}$ is a genus-one fibration: Over the fixed point, there must be n-sections that translate into each other

$$
\begin{equation*}
s_{n}^{i} \xrightarrow{\Gamma_{n, f}} s_{n}^{j} \text { with } j=i+1 \bmod n \tag{1}
\end{equation*}
$$

(2) $T=\mathcal{E}$ is an elliptic fibration: Γ_{n} must be a homomorpshism into $M W_{\text {tor }}$ Quotient Results in a genus-one fibration with multiple fibers

Quotient Geometry

Multiple Fiber

- Over a point in the base $s \in \widehat{B}$ the fiber is

$$
\mathcal{C}_{s}=\pi^{-1}(s)
$$

- The fiber \mathcal{C}_{s} is singular everywhere \rightarrow multiple fiber [Gross'93]

Quotient Geometry

Multiple Fiber

- Over a point in the base $s \in \widehat{B}$ the fiber is

$$
\mathcal{C}_{s}=\pi^{-1}(s)
$$

- The fiber \mathcal{C}_{s} is singular everywhere \rightarrow multiple fiber [Gross'93]

Fibration away from the fixed points

- Genus-one fibration away from the fixed point
- Allow for reducible fibers at codim 1 and 2
- Note: All ADE divisors miss the fixed points \rightarrow Cartier in $H_{2}(\widehat{B}, \mathbb{Z})$.

Example: The bi-cubic

Take ambient space $Z=\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$ with 4 D polytope spanned by

x_{0}	x_{1}	x_{2}	y_{0}	y_{1}	y_{2}
1	0	-1	0	0	0
0	1	-1	0	0	0
0	0	0	1	0	-1
0	0	0	0	1	-1

- Genus-one fibered threefold with hypersurface

$$
P=s_{1} x_{0}^{3}+s_{2} x_{0}^{2} x_{1}+s_{3} x_{0} x_{1}^{2}+s_{4} x_{1}^{3}+s_{5} x_{0}^{2} x_{2}+s_{6} x_{0} x_{1} x_{2}+s_{7} x_{1}^{2} x_{2}+s_{8} x_{0} x_{2}^{2}+s_{9} x_{1} x_{2}^{2}+s_{10} x_{2}^{3}
$$

- Sections of the base $s_{i} \in K_{b}^{-1}=3 H_{b}$
- they are generic cubic polynomials (too) $s_{i}=\sum_{i+j+k=3} a_{i, j, k} y_{0}^{i} y_{1}^{j} y_{2}^{k}$
- Hodge numbers: $\left(h^{(1,1)}, h^{(2,1)}\right)_{\chi}=(2,68)_{-163}$

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $\mathcal{C} \cdot D_{x_{i}}=3$

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $\mathcal{C} \cdot D_{x_{i}}=3$
- Hodge numbers: $\left(h^{(1,1)}, h^{(2,1)}\right)_{\chi}=(2,83)_{-162}$
- \mathbb{Z}_{3} Gauge Symmetry

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $\mathcal{C} \cdot D_{x_{i}}=3$
- Hodge numbers: $\left(h^{(1,1)}, h^{(2,1)}\right)_{\chi}=(2,83)_{-162}$
- \mathbb{Z}_{3} Gauge Symmetry
- several charged matter singlets [Klevers, Mayorga, Piragua, P-к.O., Reuter]

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $\mathcal{C} \cdot D_{x_{i}}=3$
- Hodge numbers: $\left(h^{(1,1)}, h^{(2,1)}\right)_{\chi}=(2,83)_{-162}$
- \mathbb{Z}_{3} Gauge Symmetry
- several charged matter singlets [Klevers, Mayorga, Piragua, P-к.O., Reuter]

Full Spectrum

$$
\begin{array}{ll|ll}
\text { Tensors: } & 0 & H_{\text {uncharged }}: & h^{2,1}(Y)+1 \\
\text { Vectors: } & 0 & H_{\text {charged }}: & 21\left(K_{b}^{-1}\right)^{2}
\end{array}
$$

- Using $K_{b}^{-1} \cdot K_{b}^{-1}=9$

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $\mathcal{C} \cdot D_{x_{i}}=3$
- Hodge numbers: $\left(h^{(1,1)}, h^{(2,1)}\right)_{\chi}=(2,83)_{-162}$
- \mathbb{Z}_{3} Gauge Symmetry
- several charged matter singlets [Klevers, Mayorga, Piragua, p-к.o., Reuter]

Full Spectrum

$$
\begin{array}{ll|ll}
\text { Tensors: } & 0 & H_{\text {uncharged }}: & h^{2,1}(Y)+1=84 \\
\text { Vectors: } & 0 & H_{\text {charged }}: & 21\left(K_{b}^{-1}\right)^{2}=189
\end{array}
$$

- Using $K_{b}^{-1} \cdot K_{b}^{-1}=9$

Example: Bi-Cubic

- every toric divisor on Y intersects fiber trice: $\mathcal{C} \cdot D_{x_{i}}=3$
- Hodge numbers: $\left(h^{(1,1)}, h^{(2,1)}\right)_{\chi}=(2,83)_{-162}$
- \mathbb{Z}_{3} Gauge Symmetry
- several charged matter singlets [Klevers, Mayorga, Piragua, p-к.о., Reuter]

Full Spectrum

Tensors:	0	$H_{\text {uncharged }}:$	$h^{2,1}(Y)+1=84$
Vectors:	0	$H_{\text {charged }}:$	$21\left(K_{b}^{-1}\right)^{2}=189$

- Using $K_{b}^{-1} \cdot K_{b}^{-1}=9$
- Check Gravitational Anomalies:

$$
H-V+29 T=273 \checkmark \quad 9-T=\left(\mathcal{K}_{b}^{-1}\right)^{2} \checkmark
$$

Quotient Geometry

Toric quotient of ambient space Z : refined polytope lattice

x_{0}	x_{1}	x_{2}	y_{0}	y_{1}	y_{2}
1	0	-1	0	0	0
0	1	-1	0	0	0
0	0	0	1	0	-1
0	0	0	0	1	-1

Quotient Geometry

Toric quotient of ambient space Z : refined polytope lattice

x_{0}	x_{1}	x_{2}	y_{0}	y_{1}	y_{2}
1	0	-1	0	1	-1
0	1	-1	0	-1	1
0	0	0	1	1	-2
0	0	0	0	3	-3

- \mathbb{Z}_{3} Lattice refinement incorporates identification $\Gamma_{3}=e^{(2 \pi i / 3)}{ }_{[B a t y r e v,}$ Kreutzer' 05]
- Additional coordinate relation:

$$
\left(x_{0}, x_{1}, x_{2} \mid y_{0}, y_{1}, y_{2}\right) \sim\left(x_{0}, \Gamma_{3} x_{1}, \Gamma_{3}^{2} x_{2} \mid y_{0}, \Gamma_{3} y_{1}, \Gamma_{3}^{2} y_{2}\right)
$$

Quotient Geometry

Toric quotient of ambient space Z : refined polytope lattice

x_{0}	x_{1}	x_{2}	y_{0}	y_{1}	y_{2}
1	0	-1	0	1	-1
0	1	-1	0	-1	1
0	0	0	1	1	-2
0	0	0	0	3	-3

- \mathbb{Z}_{3} Lattice refinement incorporates identification $\Gamma_{3}=e^{(2 \pi i / 3)}{ }_{[B a t y r e v,}$ Kreutzer' 05]
- Additional coordinate relation:

$$
\left(x_{0}, x_{1}, x_{2} \mid y_{0}, y_{1}, y_{2}\right) \sim\left(x_{0}, \Gamma_{3} x_{1}, \Gamma_{3}^{2} x_{2} \mid y_{0}, \Gamma_{3} y_{1}, \Gamma_{3}^{2} y_{2}\right)
$$

- Back to the hypersurface P $P=s_{1} x_{0}^{3}+s_{2} x_{0}^{2} x_{1}+s_{3} x_{0} x_{1}^{2}+s_{4} x_{1}^{3}+s_{5} x_{0}^{2} x_{2}+s_{6} x_{0} x_{1} x_{2}+s_{7} x_{1}^{2} x_{2}+s_{8} x_{0} x_{2}^{2}+s_{9} x_{1} x_{2}^{2}+s_{10} x_{2}^{3}$
- Not every monomial in P is Γ_{3} invariant: $s_{1} \ni a_{1} y_{0}^{3} \checkmark+a_{2} y_{0}^{2} y_{1} X+\ldots$

Quotient Geometry

Toric quotient of ambient space Z : refined polytope lattice

x_{0}	x_{1}	x_{2}	y_{0}	y_{1}	y_{2}
1	0	-1	0	1	-1
0	1	-1	0	-1	1
0	0	0	1	1	-2
0	0	0	0	3	-3

- \mathbb{Z}_{3} Lattice refinement incorporates identification $\Gamma_{3}=e^{(2 \pi i / 3)}{ }_{\text {[Batyrev, }}$ Kreutzer'05]
- Additional coordinate relation:
$\left(x_{0}, x_{1}, x_{2} \mid y_{0}, y_{1}, y_{2}\right) \sim\left(x_{0}, \Gamma_{3} x_{1}, \Gamma_{3}^{2} x_{2} \mid y_{0}, \Gamma_{3} y_{1}, \Gamma_{3}^{2} y_{2}\right)$
- Consider the Γ_{3} invariant Calabi-Yau hypersurface P

$$
\begin{aligned}
P= & s_{1}^{(0)} x_{0}^{3}+s_{2}^{(2)} x_{0}^{2} x_{1}+s_{3}^{(1)} x_{0} x_{1}^{2}+s_{4}^{(0)} x_{1}^{3}+s_{5}^{(1)} x_{0}^{2} x_{2}+ \\
& s_{6}^{(0)} x_{0} x_{1} x_{2}+s_{7}^{(2)} x_{1}^{2} x_{2}+s_{8}^{(2)} x_{0} x_{2}^{2}+s_{9}^{(1)} x_{1} x_{2}^{2}+s_{10}^{(0)} x_{2}^{3}
\end{aligned}
$$

- The s_{i} transform Γ_{3} covariantly $s_{i}^{(j)} \rightarrow \Gamma_{3}^{j} s_{i}^{(j)}$

Properties of Quotient Geometry

Generic structure of the fiber stays the same (still generic cubic)

$$
\begin{aligned}
& P=s_{1}^{(0)} x_{0}^{3}+s_{2}^{(2)} x_{0}^{2} x_{1}+s_{3}^{(1)} x_{0} x_{1}^{2}+s_{4}^{(0)} x_{1}^{3}+s_{5}^{(1)} e_{1} x_{0}^{2} x_{2}+ \\
& s_{6}^{(0)} x_{0} x_{1} x_{2}+s_{7}^{(2)} x_{1}^{2} x_{2}+s_{8}^{(2)} x_{0} x_{2}^{2}+s_{9}^{(1)} x_{1} x_{2}^{2}+s_{10}^{(0)} x_{2}^{3}
\end{aligned}
$$

Properties of Quotient Geometry

Generic structure of the fiber stays the same (still generic cubic)

$$
\begin{aligned}
P= & s_{1}^{(0)} x_{0}^{3}+s_{2}^{(2)} x_{0}^{2} x_{1}+s_{3}^{(1)} x_{0} x_{1}^{2}+s_{4}^{(0)} x_{1}^{3}+s_{5}^{(1)} e_{1} x_{0}^{2} x_{2}+ \\
& s_{6}^{(0)} x_{0} x_{1} x_{2}+s_{7}^{(2)} x_{1}^{2} x_{2}+s_{8}^{(2)} x_{0} x_{2}^{2}+s_{9}^{(1)} x_{1} x_{2}^{2}+s_{10}^{(0)} x_{2}^{3}
\end{aligned}
$$

Note:

- $\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right) / \mathbb{Z}_{3}$ ambient space contains 9 codimension 4 orbifold singularities: $\left(x_{0}, x_{1}, x_{2} \mid y_{0}, y_{1}, y_{2}\right) \sim(\underline{0,0,1} \underline{0,0,1})$

Properties of Quotient Geometry

x_{0}	x_{1}	x_{2}	y_{0}	y_{1}	y_{2}
1	0	-1	0	1	-1
0	1	-1	0	-1	1
0	0	0	1	1	-2
0	0	0	0	3	-3

Generic structure of the fiber stays the same (still generic cubic)

$$
\begin{aligned}
P= & s_{1}^{(0)} x_{0}^{3}+s_{2}^{(2)} x_{0}^{2} x_{1}+s_{3}^{(1)} x_{0} x_{1}^{2}+s_{4}^{(0)} x_{1}^{3}+s_{5}^{(1)} e_{1} x_{0}^{2} x_{2}+ \\
& s_{6}^{(0)} x_{0} x_{1} x_{2}+s_{7}^{(2)} x_{1}^{2} x_{2}+s_{8}^{(2)} x_{0} x_{2}^{2}+s_{9}^{(1)} x_{1} x_{2}^{2}+s_{10}^{(0)} x_{2}^{3}
\end{aligned}
$$

Note:

- $\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right) / \mathbb{Z}_{3}$ ambient space contains 9 codimension 4 orbifold singularities: $\left(x_{0}, x_{1}, x_{2} \mid y_{0}, y_{1}, y_{2}\right) \sim(\underline{0,0,1} \underline{0,0,1})$
- Those project onto $3, A_{2}$ singularities in the base: $\mathbb{P}^{2} / \mathbb{Z}_{3}$
- All fixed points miss the hypersurface $\rightarrow \widehat{Y}$ is smooth
- Justifies Euler number computation $\chi(\widehat{Y})=\chi(Y) / 3$

F-theory Physics of the Quotient

How does the F-theory spectrum change?

- Before the quotient we had
- $\left(h^{1,1}, h^{2,1}\right)_{\chi}\left(\hat{Y}_{3}\right)=(2,83)_{-163}: \mathbb{Z}_{3}$ gauge symmetry +0 Tensor

F-theory Physics of the Quotient

How does the F-theory spectrum change?

- Before the quotient we had
- $\left(h^{1,1}, h^{2,1}\right)_{\chi}\left(\hat{Y}_{3}\right)=(2,83)_{-163}: \mathbb{Z}_{3}$ gauge symmetry +0 Tensor
- with the intersection $\left(K_{b}^{-1}\right)^{2}=9$

$$
\begin{aligned}
& H_{\text {charged }}: \quad \mathbf{1}_{(1)}: 21\left(K_{b}^{-1}\right)^{2}=189 \\
& H_{\text {uncharged }}: 84
\end{aligned}
$$

F-theory Physics of the Quotient

How does the F-theory spectrum change?

- Before the quotient we had
- $\left(h^{1,1}, h^{2,1}\right)_{\chi}\left(\hat{Y}_{3}\right)=(2,83)_{-163}: \mathbb{Z}_{3}$ gauge symmetry +0 Tensor
- with the intersection $\left(K_{b}^{-1}\right)^{2}=9$

$$
\begin{aligned}
& H_{\text {charged }}: \quad \mathbf{1}_{(1)}: 21\left(K_{b}^{-1}\right)^{2}=189 \\
& H_{\text {uncharged }}: 84
\end{aligned}
$$

- With satisfied anomalies

F-theory Physics of the Quotient

How does the F-theory spectrum change?

- After taking the quotient we have
- $\left(h^{1,1}, h^{2,1}\right)_{\chi}\left(\hat{Y}_{3}\right)=(2,29)_{-54}: \mathbb{Z}_{3}$ gauge symmetry +0 Tensor

F-theory Physics of the Quotient

How does the F-theory spectrum change?

- After taking the quotient we have
- $\left(h^{1,1}, h^{2,1}\right)_{\chi}\left(\hat{Y}_{3}\right)=(2,29)_{-54}: \mathbb{Z}_{3}$ gauge symmetry +0 Tensor
- Intersection change $\left(K_{b}^{-1}\right)^{2}=9 \rightarrow\left(K_{b}^{-1}\right)^{2}=3$

$H_{\text {charged }}:$	$\mathbf{1}_{(1)}: \quad 21\left(K_{b}^{-1}\right)^{2} \quad=63$
$H_{\text {uncharged }}$	$=30$

F-theory Physics of the Quotient

How does the F-theory spectrum change?

- After taking the quotient we have
- $\left(h^{1,1}, h^{2,1}\right)_{\chi}\left(\hat{Y}_{3}\right)=(2,29)_{-54}: \mathbb{Z}_{3}$ gauge symmetry +0 Tensor
- Intersection change $\left(K_{b}^{-1}\right)^{2}=9 \rightarrow\left(K_{\hat{b}}^{-1}\right)^{2}=3$

$$
\begin{array}{ll}
H_{\text {charged }}: & \mathbf{1}_{(1)}: 21\left(K_{b}^{-1}\right)^{2}=63 \\
H_{\text {uncharged }} & =30
\end{array}
$$

- with unsatisfied (gravitational) anomalies:

$$
\underbrace{H}_{=93}-\underbrace{V}_{=0}-29 \underbrace{T}_{=0}-273=-(2 \cdot 3) \cdot 30 \quad 9-\underbrace{T}_{=0}-\underbrace{\left(K_{b}^{-1}\right)^{2}}_{=3}=2 \cdot 3
$$

F-theory Physics of the Quotient

How does the F-theory spectrum change?

- After taking the quotient we have
- $\left(h^{1,1}, h^{2,1}\right)_{\chi}\left(\hat{Y}_{3}\right)=(2,29)_{-54}: \mathbb{Z}_{3}$ gauge symmetry +0 Tensor
- Intersection change $\left(K_{b}^{-1}\right)^{2}=9 \rightarrow\left(K_{\hat{b}}^{-1}\right)^{2}=3$

$H_{\text {charged }}:$	$\mathbf{1}_{(1)}: 21\left(K_{b}^{-1}\right)^{2}=63$
$H_{\text {uncharged }}$	$=30$

- with unsatisfied (gravitational) anomalies:

$$
\underbrace{H}_{=93}-\underbrace{V}_{=0}-29 \underbrace{T}_{=0}-273=-(2 \cdot 3) \cdot 30 \quad 9-\underbrace{T}_{=0}-\underbrace{\left(K_{b}^{-1}\right)^{2}}_{=3}=2 \cdot 3
$$

We need new states to cure the gravitational anomalies

Cure for the gravitational Anomaly

- M5 brane stacks that probe the $\mathbb{C}^{2} / \mathbb{Z}_{3}$ singularities
- Each Γ_{3} orbifold fixed point in \widehat{B} contributes an A_{2} free $\mathcal{N}=(2,0)$ Tensor multiplet $T_{(2,0)}$ [Harvey, Minasian, Moore' '8s]
- In a $\mathcal{N}=(1,0)$ language a free $\mathcal{N}=(2,0)$ Tensor multiplet consists of:

$$
T_{(2,0)} \rightarrow H_{1_{\mathrm{o}}} \oplus T_{(1,0)}
$$

Cure for the gravitational Anomaly

- M5 brane stacks that probe the $\mathbb{C}^{2} / \mathbb{Z}_{3}$ singularities
- Each Γ_{3} orbifold fixed point in \widehat{B} contributes an A_{2} free $\mathcal{N}=(2,0)$ Tensor multiplet $T_{(2,0)}$ [Harvey, Minasian, Moore' '8s]
- In a $\mathcal{N}=(1,0)$ language a free $\mathcal{N}=(2,0)$ Tensor multiplet consists of:

$$
\begin{aligned}
& \underbrace{}_{(2,0)} \rightarrow H_{1_{0}} \oplus T_{(1,0)} \\
&=93
\end{aligned} \underbrace{V}_{=0}-29 \underbrace{T_{(1,0)}}_{=0}+30 \underbrace{T_{(2,0)}}_{3 \cdot 2}=273,9-\underbrace{T}_{=0}=\underbrace{\left(K_{b}^{-1}\right)^{2}}_{=3}+\underbrace{T_{(2,0)}}_{3 \cdot 2}
$$

Superconformal matter contribution

Summary of the Physics (up to now)
The quotient Γ_{n} action on the Base

- Reduced matter spectrum by $1 / \mathrm{n}$ consistent with all gauge anomalies
- Introduces $T_{(2,0)}=\left(K_{b}^{-1}\right)^{2}\left(\frac{n-1}{n}\right)$ free Tensor multiplets that cures the gravitational anomaly [del Zotto, Heckman, Morrison,Park' 14]

Superconformal matter contribution

Summary of the Physics (up to now)
The quotient Γ_{n} action on the Base

- Reduced matter spectrum by $1 / \mathrm{n}$ consistent with all gauge anomalies
- Introduces $T_{(2,0)}=\left(K_{b}^{-1}\right)^{2}\left(\frac{n-1}{n}\right)$ free Tensor multiplets that cures the gravitational anomaly [del Zotto, Heckman, Morrison,Park' 14]

Is that Everything?

- All massless degrees of freedom captured
- What about the multiple fiber over the fixed points?
- Is that a regular $A_{n-1}(2,0)$ theory?

Superconformal matter contribution

Summary of the Physics (up to now)
The quotient Γ_{n} action on the Base

- Reduced matter spectrum by $1 / n$ consistent with all gauge anomalies
- Introduces $T_{(2,0)}=\left(K_{b}^{-1}\right)^{2}\left(\frac{n-1}{n}\right)$ free Tensor multiplets that cures the gravitational anomaly [del Zotto, Heckman,Morrison, Park'14]

Is that Everything?

- All massless degrees of freedom captured
- What about the multiple fiber over the fixed points?
- Is that a regular $A_{n-1}(2,0)$ theory?

Check the Tensor Branch

- When blowing up the A_{n-1} points: do we obtain anything in addition to the blow-up modes (additional singular fibers?) (Yes we do)

Back to the Bicubic

Ambient Space Polytope

x_{0}	x_{1}	x_{2}	y_{0}	y_{1}	y_{2}
1	0	-1	0	1	-1
0	1	-1	0	-1	1
0	0	0	1	1	-2
0	0	0	0	3	-3

Hyperconifold Resolution
Let three ambient space fixed points hit the threefold Y and resolve

Back to the Bicubic

x_{0}	x_{1}	x_{2}	y_{0}	y_{1}	y_{2}	$e_{1,1}$	$e_{1,2}$	$e_{2,1}$	$e_{2,2}$	$e_{3,1}$	$e_{3,2}$
1	0	-1	0	1	-1	1	0	0	0	1	1
0	1	-1	0	-1	1	0	1	1	1	0	0
	0	0	1	1	-2	0	-1	-1	0	1	1
0	0	0	0	3	-3	1	-1	-2	-1	1	2

Hyperconifold Resolution
Let three ambient space fixed points hit the threefold Y and resolve

- Resolution of base $\mathbb{P}^{2} / \mathbb{Z}_{3} \rightarrow d P_{6}$
- Obtain a smooth simply connected CY (by removal of 3 Lens Spaces)

$$
\left(h^{1,1}, h^{2,1}\right)_{\chi}=(2,29)_{-54} \xrightarrow{3 \cdot H y p e r c o n i f o l d}\left(h^{1,1}, h^{2,1}\right)_{\chi}=(8,26)_{-36}
$$

Back to the Bicubic

Hyperconifold Resolution
Let three ambient space fixed points hit the threefold Y and resolve

- Resolution of base $\mathbb{P}^{2} / \mathbb{Z}_{3} \rightarrow d P_{6}$
- Obtain a smooth simply connected CY (by removal of 3 Lens Spaces)

$$
\left(h^{1,1}, h^{2,1}\right)_{\chi}=(2,29)_{-54} \xrightarrow{3 \cdot H y p e r c o n i f o l d}\left(h^{1,1}, h^{2,1}\right)_{\chi}=(8,26)_{-36}
$$

- The discriminant (of the Jacobian) factorizes resolution divisors $\Delta=e_{1,1} e_{1,2} e_{2,1} e_{2,2} e_{3,1} e_{3,1}\left(P_{1}+\mathcal{O}\left(\left(e_{1,1} e_{1,2} e_{2,1} e_{2,2} e_{3,1} e_{3,1}\right)^{2}\right)\right)$

Back to the Bicubic

Hyperconifold Resolution
Let three ambient space fixed points hit the threefold Y and resolve

- Resolution of base $\mathbb{P}^{2} / \mathbb{Z}_{3} \rightarrow d P_{6}$
- Obtain a smooth simply connected CY (by removal of 3 Lens Spaces) $\left(h^{1,1}, h^{2,1}\right)_{\chi}=(2,29)_{-54} \xrightarrow{3 . \text { Hyperconifold }}\left(h^{1,1}, h^{2,1}\right)_{\chi}=(8,26)_{-36}$
- The discriminant (of the Jacobian) factorizes resolution divisors $\Delta=e_{1,1} e_{1,2} e_{2,1} e_{2,2} e_{3,1} e_{3,1}\left(P_{1}+\mathcal{O}\left(\left(e_{1,1} e_{1,2} e_{2,1} e_{2,2} e_{3,1} e_{3,1}\right)^{2}\right)\right)$
- I_{2} fibers over $e_{i, 1}=e_{i, 2}=0$ and $e_{i, j}=P_{1}=0$

\mathcal{A}_{n-1} tensor branch matter

Hyperconifold Tensor Branch

- Additional purely discrete charged states appear, all anomalies satisfied
- I_{2} Factorization of the smooth genus-one curve explicitly confirmed \checkmark

Summary and

We have taken freely acting quotients Γ_{n} of genus-one fibered CY three-folds Y_{3}

Summary and

We have taken freely acting quotients Γ_{n} of genus-one fibered CY three-folds Y_{3}
(1) $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ is non-simply connected, $\pi_{1}\left(\hat{Y}_{3}\right)=n$

Summary and

We have taken freely acting quotients Γ_{n} of genus-one fibered CY three-folds Y_{3}
(1) $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ is non-simply connected, $\pi_{1}\left(\hat{Y}_{3}\right)=n$
(2) \hat{Y}_{3} has no section but only multi-sections $\rightarrow \mathbb{Z}_{n}$ symmetries.

Summary and

We have taken freely acting quotients Γ_{n} of genus-one fibered CY three-folds Y_{3}
(1) $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ is non-simply connected, $\pi_{1}\left(\hat{Y}_{3}\right)=n$
(2) \hat{Y}_{3} has no section but only multi-sections $\rightarrow \mathbb{Z}_{n}$ symmetries.
(3) Fibration contains isolated multiple fibers over \mathbb{Z}_{n} orbifold singularities in the base.

Summary and

We have taken freely acting quotients Γ_{n} of genus-one fibered CY three-folds Y_{3}
(1) $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ is non-simply connected, $\pi_{1}\left(\hat{Y}_{3}\right)=n$
(2) \hat{Y}_{3} has no section but only multi-sections $\rightarrow \mathbb{Z}_{n}$ symmetries.
(3) Fibration contains isolated multiple fibers over \mathbb{Z}_{n} orbifold singularities in the base.

Summary and

We have taken freely acting quotients Γ_{n} of genus-one fibered CY three-folds Y_{3}
(1) $\hat{Y}_{3}=Y_{3} / \Gamma_{n}$ is non-simply connected, $\pi_{1}\left(\hat{Y}_{3}\right)=n$
(2) \hat{Y}_{3} has no section but only multi-sections $\rightarrow \mathbb{Z}_{n}$ symmetries.
(3) Fibration contains isolated multiple fibers over \mathbb{Z}_{n} orbifold singularities in the base.

The Physics of the Multiple Fiber

- Contributes the d.o.f. of a free $A_{n-1}(2,0)$ superconformal point
- Tensor branch obtained by resolution of a Lens space
- Over the Tensor branch, n hypers appear charged under the discrete \mathbb{Z}_{n} gauged symmetry
\rightarrow new discrete charged superconformal matter

More

Further Highlights in the paper

- Coupling the $(2,0)$ theory to the un-Higgsed U(1)
- General anomaly cancellation proven
- More concrete examples with additional gauge symmetries

More

Further Highlights in the paper

- Coupling the $(2,0)$ theory to the un-Higgsed U(1)
- General anomaly cancellation proven
- More concrete examples with additional gauge symmetries

Further Directions

- Understand the precise connection of multiple fibers, Tate-Shafarevich VS. Weil-Châtelet
- New class of SCFTs or Little String Theories after decompactification?
- Understand the M-theory - F-theory lift with multiple fibers
- Many more.....

Further Highlights in the paper

- Coupling the $(2,0)$ theory to the un-Higgsed U(1)
- General anomaly cancellation proven
- More concrete examples with additional gauge symmetries

Thank You Very Much!

Further Directions

- Understand the precise connection of multiple fibers, Tate-Shafarevich VS. Weil-Châtelet
- New class of SCFTs or Little String Theories after decompactification?
- Understand the M-theory - F-theory lift with multiple fibers
- Many more.....

The Hyperconifold Transition

Tune in an ambient space fixed point onto \widehat{Y}

The Hyperconifold Transition

Tune in an ambient space fixed point onto \widehat{Y}

A Conifold Transition on the covering space
Tuning in a cusp singularity on the covering Calabi-Yau Y

- $p=y_{1} y_{4}-y_{2} y_{3}=0$
- With Toric Fan

$$
\Sigma_{1}:\left\{v_{1}=(1,0,0), v_{2}=(1,1,0), v_{3}=(1,0,1), v_{4}=(1,1,1)\right\}
$$

- \mathbb{S}^{3} Deformation phase, \mathbb{S}^{2} resolution phase

The Hyperconifold Transition

Tune in an ambient space fixed point onto \widehat{Y}
A Hyperconifold Transition
This is the quotient of a conifold transition [Davis' ${ }^{13]}$

- Quotient: $\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \sim\left(\Gamma_{n} y_{1}, \Gamma_{n}^{k} y_{2}, \Gamma_{n}^{-k} y_{3} \Gamma_{n}^{-1} y_{4}\right)$
- Refined lattice fan: $\Sigma_{1}^{\prime}=\{(1,0,0),(1,1,0),(1, k, n),(1, k+1, n)\}$
- The two phases correspond to:
- Deformation Phase: lens space $L(n, k)$ (twisted \mathbb{S}^{3})
- Resolution Phase:Chain of $n-1 \mathbb{P}^{1}$'s

Topological Properties of a Hyperconifold

Global Properties of a Hyperconifold transition $\widehat{Y} \rightarrow X$ [Davis' 13$]$

- Change in Hodge Numbers

$$
\left(\Delta h^{1,1}, \Delta\left(h^{2,1}\right)\right)_{\Delta \chi}=(n-1,-1)_{2 n}
$$

- Seifert-van Kampen theorem: $\pi_{1}(X)=\pi_{1}(\widehat{Y}) / \pi_{1}(L(m, k))=\mathbb{Z}_{n / m}$
- Resolves an orbifold singularity in the Base

$$
h^{1,1}\left(B_{\mathrm{res}}\right)=h^{1,1}(\widehat{B})+n-1
$$

Change in Spectrum
Change in the gravitational anomaly

$$
H-V+29 T_{(1,0)}+30 T_{(2,0)}-273=0
$$

Topological Properties of a Hyperconifold

Global Properties of a Hyperconifold transition $\widehat{Y} \rightarrow X$ [Davis' 13$]$

- Change in Hodge Numbers

$$
\left(\Delta h^{1,1}, \Delta\left(h^{2,1}\right)\right)_{\Delta \chi}=(n-1,-1)_{2 n}
$$

- Seifert-van Kampen theorem: $\pi_{1}(X)=\pi_{1}(\hat{Y}) / \pi_{1}(L(m, k))=\mathbb{Z}_{n / m}$
- Resolves an orbifold singularity in the Base

$$
h^{1,1}\left(B_{\mathrm{res}}\right)=h^{1,1}(\widehat{B})+n-1
$$

Change in Spectrum
Change in the gravitational anomaly

$$
\begin{aligned}
H-V & +29 T_{(1,0)}+30 T_{(2,0)}-273=0 \\
& \downarrow \\
H-1 & -V+29\left(T_{(1,0)}+n-1\right)+30\left(T_{(2,0)}-n+1\right)-273=-n
\end{aligned}
$$

Topological Properties of a Hyperconifold

Global Properties of a Hyperconifold transition $\widehat{Y} \rightarrow X$ [Davis' 13]

- Change in Hodge Numbers

$$
\left(\Delta h^{1,1}, \Delta\left(h^{2,1}\right)\right)_{\Delta \chi}=(n-1,-1)_{2 n}
$$

- Seifert-van Kampen theorem: $\pi_{1}(X)=\pi_{1}(\hat{Y}) / \pi_{1}(L(m, k))=\mathbb{Z}_{n / m}$
- Resolves an orbifold singularity in the Base

$$
h^{1,1}\left(B_{\mathrm{res}}\right)=h^{1,1}(\widehat{B})+n-1
$$

Change in Spectrum

Change in the gravitational anomaly

$$
\begin{aligned}
H-V & +29 T_{(1,0)}+30 T_{(2,0)}-273=0 \\
& \downarrow \\
H-1 & -V+29\left(T_{(1,0)}+n-1\right)+30\left(T_{(2,0)}-n+1\right)-273=-n
\end{aligned}
$$

- The hyperconifold implies a necessary missmatch of n charged hypers
- All gauge divisors are Cartier: No change in the matter
- genus-one symmetry $\leftrightarrow \mathbb{Z}_{n}$ gauged matter is the only candidate!

