Multiple Fibrations, in Calabi-Yau Geometries

James Gray - Virginia Tech

Based on work with:
Alexander Haupt and Andre Lukas: arXiv:1303.1832, arXiv:1405.2073

Lara Anderson, Xin Gao and Seung-Joo Lee arXiv:1608.07554, 1608.07555 \& 1708.07907

Lara Anderson and Brian Hammack arXiv:1803.XXXXX

Complete Intersection Calabi-Yau (CICYs)

- A family of CICYs is described by a configuration matrix:

$$
[\mathbf{n} \mid \mathbf{q}] \equiv\left[\begin{array}{c|ccc}
n_{1} & q_{1}^{1} & \ldots & q_{K}^{1} \\
\vdots & \vdots & \ddots & \vdots \\
n_{m} & q_{1}^{m} & \ldots & q_{K}^{m}
\end{array}\right]
$$

with m rows and $K+1$ columns.

- Ambient space is $\mathbb{P}^{n_{1}} \times \ldots \times \mathbb{P}^{n_{m}}$
- Remaining columns give degree of defining relations:

Calabi-Yau condition:

$$
\sum_{\alpha=1}^{K} q_{\alpha}^{r}=n_{r}+1
$$

$$
\sum_{r} n_{r}-K \stackrel{!}{=} D
$$

Example:

- An example of a configuration matrix (CICY four-fold 244):

$$
\left[\begin{array}{l|ll}
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{2} & 1 & 2 \\
\mathbb{P}^{3} & 0 & 4
\end{array}\right]
$$

- The different choices of defining relation corresponds to a redundant description of part of complex structure moduli space:

$$
p_{1}=\sum_{i, a} c_{i, a} x^{i} y^{a} \quad p_{2}=\sum_{i, \ldots, \delta} d_{i a b \alpha \beta \gamma \delta} x^{i} y^{a} y^{b} z^{\alpha} z^{\beta} z^{\gamma} z^{\delta}
$$

- This example is a Calabi-Yau four-fold.

CICY Data Sets:

- Three-Folds:
- Hübsch, Commun.Math.Phys. 108 (1987) 291
- Green et al, Commun.Math.Phys. 109 (1987) 99
- Candelas et al, Nucl.Phys. B 298 (1988) 493
- Candelas et al, Nucl.Phys. B 306 (1988) 113
- Data Set classified: 7890 configuration matrices in the set.
- This data set has been used extensively in the study of compactifications of heterotic string theory.
- Four-Folds:
- Brunner et al, Nucl.Phys. B498 (1997) 156-174
- JG et al, JHEP 1307 (2013) 070
-JG et al, JHEP 1409 (2014) 093
- Data set classified: 921,497 configuration matrices in the set.
- Technology is being developed to use this data set for studying F-theory compactifications- as I will describe later.
- All Hodge data etc. are available for these manifolds:

Example: fourfold Hodge data

Properties of CICYs: Torus Fibrations

- Consider configuration matrices which can be put in the form:

- This is an torus fibred four-fold
- Essentially all CICYs are fibered in this manner. For example 7837 out of 7890 threefolds (99.3\%)
- Example:

$$
\left(\begin{array}{c|cc:cccc}
\mathbb{P}^{2} & 0 & 0 & 0 & 0 & 2 & 1 \\
\mathbb{P}^{3} & 0 & 0 & 1 & 1 & 1 & 1 \\
\hdashline \mathbb{P}^{1} & 1 & 0 & 1 & 0 & 0 & 0 \\
\mathbb{P}^{1} & 0 & 1 & 0 & 1 & 0 & 0 \\
\mathbb{P}^{2} & 1 & 2 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- This is not an artifact of the threefolds. For fourfolds 921,020 out of 921,497 configuration matrices are obviously torus fibered in this way (99.9\%)
- See also related work for other constructions: arXiv:1406.0514 and 1605.08052 by S. Johnson and W. Taylor.
- A given manifold/configuration matrix may admit many obvious elliptic fibrations...

Number of torus fibrations per threefold:

- 139,597 fibrations in total.
- The average CICY threefold admits 17.7 different fibrations

- The largest number of fibrations admitted by one example is 93 .
- In our simple example we also have:

$$
\left(\begin{array}{c|c:ccccc}
\mathbb{P}^{1} & 0 & 1 & 1 & 0 & 0 & 0 \\
\mathbb{P}^{2} & 0 & 0 & 0 & 0 & 2 & 1 \\
\mathbb{P}^{3} & 0 & 0 & 1 & 1 & 1 & 1 \\
\hdashline \overline{\mathbb{P}}^{1} & 1 & 0 & 0 & 1 & 0 & 0 \\
\mathbb{P}^{2} & 2 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{c|c:ccccc}
\mathbb{P}^{1} & 0 & 0 & 1 & 1 & 0 & 0 \\
\mathbb{P}^{2} & 0 & 0 & 0 & 0 & 2 & 1 \\
\mathbb{P}^{3} & 0 & 1 & 0 & 1 & 1 & 1 \\
\hdashline \bar{P}^{1} & 1 & 1 & 0 & 0 & 0 & 0 \\
\mathbb{P}^{2} & 1 & 0 & 2 & 0 & 0 & 0
\end{array}\right)
$$

$\left(\begin{array}{c|cccccc}\mathbb{P}^{2} & 0 & 0 & 0 & 0 & 2 & 1 \\ \mathbb{P}^{2} & 1 & 0 & 2 & 0 & 0 & 0 \\ \mathbb{P}^{3} & 0 & 1 & 0 & 1 & 1 & 1 \\ \hdashline \mathbb{P}^{1} & 1 & 1 & 0 & 0 & 0 & 0 \\ \mathbb{P}^{1} & 0 & 0 & 1 & 1 & 0 & 0\end{array}\right)\left(\begin{array}{c:cccccc}\mathbb{P}^{1} & 1 & 1 & 1 & 0 & 0 & 0 \\ \mathbb{P}^{1} & 0 \\ \mathbb{P}^{2} & 0 & 0 & 1 & 1 & 0 & 0 \\ \mathbb{P}^{2} & 0 & 0 & 0 & 0 & 2 & 1 \\ \mathbb{P}^{3} & 0 & 1 & 0 & 1 & 1 & 1 \\ \hdashline \mathbb{P}^{2} & 1 & 0 & 2 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{c:cccccc}\mathbb{P}^{1} & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 \\ \mathbb{P}^{1} & 0 & 0 & 1 & 1 & 0 & 0 \\ \mathbb{P}^{2} & 1 & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & 0 \\ \mathbb{P}^{3} & 0 & 1 & 0 & 1 & 1 & 1 \\ \hdashline \mathbb{P}^{2} & 0 & 0 & 0 & 0 & 2 & 1\end{array}\right)$

- Note that we have a variety of different bases here (Hirzebruchs, $\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{2}$ etc in this case).
- It doesn't just have to be torus fibration structures that exist in a CICY...

Number of K3 fibrations per

 threefold:- 98.5\% of CICY threefolds are K3 fibered.
- 30,974 fibrations in total
- The average CICY threefold admits 3.9
 different fibrations
- The largest number of fibrations admitted by one example is 9 .
- In our simple example:
- Again this example is slightly less rich than the average case...
- One could ask if the K3 fibers are elliptically fibred...

Number of nested fibrations per threefold:

- 208,987 torus fibrations nested in K3 fibrations.
- The average CICY threefold admits 26.6 different such
 structures.
- The largest number of such nested fibration structures admitted by one example is 174 .
- Note these numbers are bigger than the related numbers for torus fibrations on their own...
- Example in our case:
(there are six in total in the two K3 fibrations)

Can we go beyond these obvious

 fibrations?- Conjecture by Kollar (rough description):

A Calabi-Yau threefold is genus one fibered if and only if there exists a divisor D such that
$D \cdot C \geq 0$ for every algebraic curve C

$$
\begin{aligned}
& D^{3}=0 \\
& D^{2} \neq 0
\end{aligned}
$$

(and similarly in higher dimensional cases)

- Proven in threefold case by Oguiso, Wilson.
- The question is, do we have good computational control over all of the elements of $h^{1,1}$?
- In favorable cases we do. For example in the case,

$$
X=\left[\begin{array}{l|l}
\mathbb{P}^{2} & 3 \\
\mathbb{P}^{2} & 3
\end{array}\right]
$$

all divisor classes descend from divisor classes in the ambient space.

- In non-favorable cases we don't. For example

$$
X^{\prime}=\left[\begin{array}{l|ll}
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{2} & 3 & 0 \\
\mathbb{P}^{2} & 0 & 3
\end{array}\right]
$$

has $h^{1,1}=19$ but $h^{1,1}$ of the ambient space is only 3 .

- Of 7890 CICY threefolds in the original list, only 4874 are favorable.
- We can obtain new configuration matrices describing the same manifolds by the process of contraction/splitting:
$\left[\begin{array}{c|ccccc}n & 1 & 1 & \ldots & 1 & 0 \\ \mathbf{n} & \mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{n+1} & \mathbf{q}\end{array}\right] \longleftrightarrow\left[\mathbf{n} \mid \sum_{a=1}^{n+1} \mathbf{u}_{a} \quad \mathbf{q}\right]$
Euler number doesn't change \Leftrightarrow manifolds same
- Use this to increase the size of the ambient space affording the configuration a better chance of being favorable
- By splitting we have obtained favorable descriptions of all but 7842 of the 7890 CICYS.
- We can then compute data such as intersection numbers, line bundle cohomology etc completely in these cases.

What about the remaining 48?

- It turns out that these can all be written as hypersurfaces in direct products of del Pezzo surfaces.
- For example:

$$
X_{3}=\left[\begin{array}{l|llll}
\mathbb{P}^{1} & 1 & 0 & 0 & 1 \\
\mathbb{P}^{2} & 2 & 0 & 0 & 1 \\
\mathbb{P}^{4} & 0 & 2 & 2 & 1
\end{array}\right]
$$

can be written as the anti-canonical hypersurface inside

$$
d P_{4}=\left[\begin{array}{l|l}
\mathbb{P}^{1} & 1 \\
\mathbb{P}^{2} & 2
\end{array}\right] \quad \text { times } \quad d P_{5}=\left[\begin{array}{lll}
\mathbb{P}^{4} & 2 & 2
\end{array}\right]
$$

- Enough is known about the divisors of del Pezzo's that we can then find a favorable description of these spaces too.

Thus we find a favorable description of all CICYs.

- The final ingredient required to investigation the fibrations of CICYs is knowledge of the Kahler cone.
- We have been able to show that the Kahler cone descends simply from the ambient product of projective spaces in 4874 cases (we call these Kahler favorable).
- For the Kahler favorable cases, obvious fibrations and Kollar fibrations coincide.

However, in general there can be many more Kollar fibrations than obvious ones.

- A good example is the Split-Bicubic/Schoen manifold which admits an infinite number of genus one fibrations!
> (See also Grassi,Morrison; Aspinwall, Gross;
> Oguiso; Piateckii-Shapiro, Shafarevich).

Fibrations and quotients

- One can create a new (non-simply connected) Calabi-Yau by quotienting a CICY by a freely acting symmetry.
- Example: Take the bicubic:

$$
X=\left[\begin{array}{l|l}
\mathbb{P}^{2} & 3 \\
\mathbb{P}^{2} & 3
\end{array}\right]
$$

- With homogeneous coordinates:

$$
x_{a, i} \quad a=1,2 \quad i=0,1,2
$$

- And quotient by the following \mathbb{Z}_{3} group action:

$$
g: x_{a, j} \rightarrow \omega^{j} x_{a, j}
$$

- Clear in this case, the quotienting preserves the fibration.
- More generally what can we say about fibrations in quotients of CICYs ?
- Classification of symmetries:
- Braun, JHEP 1104 (2011) 005
(The equivalent classifications for the four-folds has not yet been carried out.)
- A lot of work has already been done classifying the properties of the associated quotients:
- Candelas et al, arXiv:1602.06303
- Braun et al, arXiv:1512.08367
- Candelas et al, arXiv:1511.01103
- Constantin et al, arXiv:1607.01830

Unpublished work with Lara Anderson and Brian

 Hammack:- Of the 1632 symmetry-CICY pairs (for manifolds with fibration), 1552 of them preserve some fibration (95\%).
- Of 20700 fibration/symmetry pairs, 17161 preserved.

Symmetry	Fibs preserved	Fibs not preserved	\%preserved
\mathbb{Z}_{2}	8812	464	95%
\mathbb{Z}_{3}	175	201	46.5%
\mathbb{Z}_{4}	120	244	33.0%
\mathbb{Z}_{5}	0	30	0.0%
\mathbb{Z}_{6}	62	438	12.4%
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	7711	1488	83.8%
$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	105	200	34.4%
$\mathbb{Z}_{3} \times \mathbb{Z}_{3}$	176	0	100%

- There are several larger symmetries that appear (including non-Abelian symmetries), none of which preserve any fibrations:

$$
\begin{array}{r}
\mathbb{Z}_{8}, \mathbb{Z}_{10}, \mathbb{Z}_{12}, Q_{8}, \mathbb{Z}_{2} \times Q_{8}, \mathbb{Z}_{3} \rtimes \mathbb{Z}_{4} \\
\mathbb{Z}_{8} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \rtimes \mathbb{Z}_{4}, \mathbb{Z}_{8} \rtimes \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{4} \\
\mathbb{Z}_{10} \times \mathbb{Z}_{2}
\end{array}
$$

- In any case where the fibration is preserved, the base of the quotiented fibration is divided by same group as total space.
- Classifications of the bases that appear will be provided in the paper.

Multiple fibrations and F-theory

- We can use these multiple nested fibration structures to derive some interesting dualities in F theory. For example:
- Start with two different fibrations of the same Calabi-Yau. This will correspond to two F-theory models that share an M-theory limit.
- Start with two different fibrations of the same Calabi-Yau in a heterotic compactification. These will have seemingly different F-theory duals which actually give the same physics.
- And so on...

Example:

- Let us consider the first of those possibilities in this case:

$$
\left[\begin{array}{c|cccc}
\mathbb{P}^{1} & 1 & 1 & 0 & 0 \\
\mathbb{P}^{2} & 1 & 0 & 2 & 0 \\
\mathbb{P}^{2} & 0 & 1 & 1 & 1 \\
\hdashline \mathbb{P}^{2} & 1 & 0 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{c|c:ccc}
\mathbb{P}^{2} & 0 & 1 & 2 & 0 \\
\mathbb{P}^{2} & 0 & 1 & 1 & 1 \\
\hdashline \mathbb{P}^{1} & 1 & 1 & 0 & 0 \\
\mathbb{P}^{2} & 1 & 0 & 1 & 1
\end{array}\right]
$$

Just considering these two possible fibrations - one with \mathbb{P}^{2} and one with \mathbb{F}_{1} base.

- To analyze this it would be nice to put these two cases in Weierstrass form (blow down every component of the fiber that doesn't intersect zero section).
- To do this we need sections of these fibrations.
- Necessary conditions that a divisor, \mathcal{S}, describing a section must obey:
- Oguiso (intersection number with fiber should be generically one).
- A condition on the cohomology of the associated line bundle:

$$
h^{0}(\mathcal{O}(\mathcal{S}))=1
$$

- A condition on the Euler number c.f. that of the base:

$$
\chi(\mathcal{S}) \geq \chi(\mathcal{B})
$$

- A condition following from birationality to the base (see Morrison, Park, JHEP 1210 (2012) 128):

$$
\mathcal{S} \cdot \mathcal{S} \cdot D_{\alpha}=-c_{1}(\mathcal{B}) \cdot S \cdot D_{\alpha}
$$

- Koszul derivation of second condition as example:

$$
\begin{array}{lccc}
0 \rightarrow \\
h^{0} & ? & 1 & 1 \\
h^{1} & ? & 0 & 0 \\
h^{2} & ? & 0 & 0 \\
h^{3} & ? & 1 & 0 \\
& \Rightarrow h^{3}(\mathcal{X}, \mathcal{O}(-S))=1 \\
& \Rightarrow h_{\mathcal{S}}^{0}(\mathcal{X}, \mathcal{O}(S))=1
\end{array}
$$

- For $\left[\begin{array}{l|llll}\mathbb{P}^{1} & 1 & 1 & 0 & 0 \\ \mathbb{P}^{2} & 1 & 0 & 2 & 0 \\ \mathbb{P}^{2} & 0 & & 1\end{array}\right]$, for example we find the
following section: $\mathcal{O}(\mathcal{S})=\mathcal{O}(-1,1,0,1)$
- Build the explicit description of the section (remember $h^{0}(\mathcal{O}(\mathcal{S}))=1$) in the same way we built gCICYs.
- Now we have an explicit section we can put the fibration in Weierstrass form using the Deligne procedure.
- (see Ovrut, Pantev and Park, JHEP 0005 (2000) 045)
- Idea:

$$
\begin{array}{cc}
z \in H^{0}(\mathcal{X}, \mathcal{S}) & h^{0}(\mathcal{X}, \mathcal{S})=1 \\
x \in H^{0}\left(\mathcal{X}, \mathcal{S}^{2} \otimes K_{\mathcal{B}}^{-2}\right) & h^{0}\left(\mathcal{X}, \mathcal{S}^{2} \otimes K_{\mathcal{B}}^{-2}\right)=29 \\
y \in H^{0}\left(\mathcal{X}, \mathcal{S}^{3} \otimes K_{\mathcal{B}}^{-3}\right) \\
h^{0}\left(\mathcal{X}, \mathcal{S}^{3} \otimes K_{\mathcal{B}}^{-3}\right)=66
\end{array}
$$

- Then get (Weierstrass) relation between them in:

$$
W \in H^{0}\left(\mathcal{X}, \mathcal{S}^{6} \otimes K_{\mathcal{B}}^{-6}\right)
$$

What do the theories look like:

- M-Theory:
- 3 Vector multiplets
- 48 Hyper multiplets
- F-theory 1:
- $S U(2) \times U(1)$ gauge group
- 0 Tensor multiplets
- 4 Vector multiplets
- 277 Hyper multiplets (48 Neutral)
- F-theory 2:
- $U(1)$ gauge group
- 1 Tensor multiplet
- 1 Vector multiplet
- 245 Hyper multiplets (48 Neutral)
- As a slightly more non-trivial example, consider the following configuration matrix:

$$
X_{3}^{\mathbb{E}_{1}}=\left[\begin{array}{c|c:cccccccc}
\mathbb{P}^{1} & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\mathbb{P}^{2} & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\mathbb{P}^{2} & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
\mathbb{P}^{2} & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\mathbb{P}^{2} & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hdashline \mathbb{P}^{1} & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbb{P}^{2} & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

- This admits nine obvious genus one fibrations...

Figure 7: F-theory models in $6 D$ with the same $5 D$-theory limit where $n_{V}^{(5 D)}=6$ and $n_{H}^{(5 D)}=27$.

