Approximate Ramsey properties of Banach spaces

J. Lopez-Abad
UNED (Madrid)

Unifying Themes in Ramsey Theory
Banff, November 22nd, 2018

Introduction

We are going to discuss the Approximate Ramsey Property (ARP) of a family of finite dimensional Banach spaces. We will:

Introduction

We are going to discuss the Approximate Ramsey Property (ARP) of a family of finite dimensional Banach spaces. We will:

- Relate (ARP) with well-known properties;

Introduction

- Graham-Leeb Rothschild for the field \mathbb{R};
- "multidimensional" Borsuk-Ulam Theorem;
- Extreme amenability.

We are going to c of finite dimensional Banach spaces. We will:

- Relate (ARP) with well-known properties;

Introduction

We are going to discuss the Approximate Ramsey Property (ARP) of a family of finite dimensional Banach spaces. We will:

- Relate (ARP) with well-known properties;
- Sketch proofs of known results.

Introduction

- $\left\{\ell_{\infty}^{n}\right\}_{n}$;
- $\left\{\ell_{2}^{n}\right\}_{n}$, all f.d. Hilbert spaces;

We are of finit

- $\left\{\ell_{1}^{n}\right\}_{n}$, all $\left\{\ell_{p}^{n}\right\}$.
- Relate (ARP) with well-known roperties;
- Sketch proofs of known results.

Introduction

We are going to discuss the Approximate Ramsey Property (ARP) of a family of finite dimensional Banach spaces. We will:

- Relate (ARP) with well-known properties;
- Sketch proofs of known results.

This presentation is based on joint works with Dana Bartošová, J. LA, Martino Lupini and Brice Mbombo, and with Valentin Ferenczi, Brice Mbombo and Stevo Todorcevic.

Outline

(1) What is the Approximate Ramsey Property

Grassmannians over the field \mathbb{R}
The definition
(ARP) and Extreme amenability
Examples
Borsuk-Ulam
(2) Hints on proofs
$\left\{\ell_{\infty}^{n}\right\}_{n}$
$\left\{\ell_{2}^{n}\right\}_{n}$
$\left\{\ell_{p}^{n}\right\}_{n}$

Section 1

What is the Approximate Ramsey Property

Graham-Leeb-Rothschild

\mathbb{F} denotes a finite field. Given $d, n \in \mathbb{N}$, let $\left(\underset{\mathbb{F}^{d}}{\mathbb{F}^{n}}\right)$ be the d-Grassmannians of the vector space \mathbb{F}^{n}.

Graham-Leeb-Rothschild

\mathbb{F} denotes a finite field. Given $d, n \in \mathbb{N}$, let $\left(\underset{\mathbb{F}^{d}}{\mathbb{F}^{n}}\right)$ be the d-Grassmannians of the vector space \mathbb{F}^{n}.

Theorem (Graham-Leeb-Rothschild)

For every $d, m \in \mathbb{N}$ and $r \in \mathbb{N}$ there exists $n \geq k$ such that every r-coloring of $\binom{\mathbb{F}^{n}}{\mathbb{F}^{d}}$ has a monochromatic set of the form $\binom{V}{\mathbb{F}^{d}}$ for some $V \in\left(\frac{\mathbb{F}^{n}}{\mathbb{F}^{m}}\right)$.

Graham-Leeb-Rothschild

\mathbb{F} denotes a finite field. Given $d, n \in \mathbb{N}$, let $\left(\underset{\mathbb{F}^{d}}{\mathbb{F}^{n}}\right)$ be the d-Grassmannians of the vector space \mathbb{F}^{n}.

Theorem (Graham-Leeb-Rothschild)

For every $d, m \in \mathbb{N}$ and $r \in \mathbb{N}$ there exists $n \geq k$ such that every r-coloring of $\binom{\mathbb{F}^{n}}{\mathbb{F}^{d}}$ has a monochromatic set of the form $\binom{V}{\mathbb{F}^{d}}$ for some $V \in\left(\frac{\mathbb{F}^{n}}{\mathbb{F}^{m}}\right)$.

Question

What if $\mathbb{F}=\mathbb{R}$?

$\mathbb{F}=\mathbb{R}$

Besides other difficulties to understand colorings (signs, infinitely many values) there is the bad coloring "shape". Given a plane $\pi \in\binom{\mathbb{R}^{3}}{\mathbb{R}^{2}}$ we consider its section with the centered cube, and we record its shape

$\mathbb{F}=\mathbb{R}$

Besides other difficulties to understand colorings (signs, infinitely many values) there is the bad coloring "shape". Given a plane $\pi \in\binom{\mathbb{R}^{3}}{\mathbb{R}^{2}}$ we consider its section with the centered cube, and we record its shape

$\mathbb{F}=\mathbb{R}$

Besides other difficulties to understand colorings (signs, infinitely many values) there is the bad coloring "shape". Given a plane $\pi \in\binom{\mathbb{R}^{3}}{\mathbb{R}^{2}}$ we consider its section with the centered cube, and we record its shape

GLR for $\mathbb{F}=\mathbb{R}$

We write

$$
\binom{\ell_{p}^{n}}{\mathbb{R}^{d}}
$$

to denote the metric space of all d-dimensional subspaces of \mathbb{R}^{n} endowed with the p-opening (or gap) Λ_{p} metric.
$\Lambda_{p}(V, W)$ is the p-Hausdorff metric between the p GLR for \mathbb{F} unit ball of $V, B_{V}=B_{p} \cap V$ and that of $W, B_{W}=$ $B_{p} \cap W$.

We write
to denote the
 ,wed with the p-opening (or gap) Λ_{p} metric.

GLR for $\mathbb{F}=\mathbb{R}$

We write

$$
\binom{\ell_{p}^{n}}{\mathbb{R}^{d}}
$$

to denote the metric space of all d-dimensional subspaces of \mathbb{R}^{n} endowed with the p-opening (or gap) Λ_{p} metric.
Similarly, for a f.d. normed space X of dimension d, we write $\binom{\ell_{p}^{n}}{X}$ to denote the set of all d-dimensional subspaces of ℓ_{p}^{n} that are isometric to X.

In the next $p \neq 4,6,8, \ldots$

Theorem (GLR Theorem for \mathbb{R}, p-version)

For every $d, m \varepsilon>0$ and every $\left(K, d_{K}\right)$ compact metric there is n such that for every 1-Lipschitz coloring $c:\binom{\ell_{p}^{n}}{\mathbb{R}^{d}} \rightarrow\left(K, d_{K}\right)$ there is some $\mathbf{V} \in\left(\begin{array}{c}\left.\begin{array}{c}\ell_{p}^{n} \\ \ell_{p}^{m}\end{array}\right)\end{array}\right)$ and a 1-Lipschitz $\widehat{c}:\left(\mathcal{B}_{k}^{p}, \gamma_{p}\right) \rightarrow\left(K, d_{K}\right)$ such that

- $\mathcal{B}_{k}^{p}=$ isometric types of subspaces of $L_{p}[0,1]$;
- this is a compactum, endowed with the Banach-Mazur metric;
- the metric γ_{p} is the Gromov-Hausdorff metric associated to Λ_{E}, that is uniformly equivalent to the Banach-Mazur metric every 1-Ltpscrutz coloring $\sim:\left(\mathbb{R}^{d}\right) \rightarrow\left(\mathbf{\Lambda}, a_{K}\right)$ inere is some $\mathbf{v} \in\left(\ell_{p}^{m}\right)$ ana a 1-Lipschitz $\widehat{c}:\left(\mathcal{B}_{k}^{p}, \gamma_{p}\right) \rightarrow\left(K, d_{K}\right)$ such that

GLR Theorem for \mathbb{R}, Euclidean version

It follows from Dvoretzky theorem

GLR Theorem for \mathbb{R}, Euclidean version

n-dimensional normed spaces have almost Hilbertian subspaces of dimension uniformly proportional to $\log (n)$.

It follows from Dvoretzky theorem

GLR Theorem for \mathbb{R}, Euclidean version

It follows from Dvoretzky theorem

Theorem

For every $d, m, \varepsilon>0$ and every \mathcal{K} compact metric there is $n \geq k$ such that for every norm M on \mathbb{R}^{n}, every 1-Lipschitz coloring of $\binom{\left(\mathbb{R}^{n}, M\right)}{\mathbb{R}^{d}} \rightarrow \mathcal{K} \varepsilon$-stabilizes in $\left(\begin{array}{c}\mathbf{\mathbb { R } ^ { d }}\end{array}\right)$ for some $\in\binom{\left(\mathbb{R}^{n}, M\right)}{\mathbb{R}^{m}}$, such that

$$
\operatorname{diam}_{K}\left(c\binom{\mathbf{V}}{\mathbb{R}^{d}}\right)<\varepsilon
$$

The Approximate Ramsey Property

Let \mathcal{F} be a collection of finite dimensional normed spaces.
Definition

The Approximate Ramsey Property

Let \mathcal{F} be a collection of finite dimensional normed spaces.

Definition

- \mathcal{F} has the Approximate Structural Ramsey Property when for every $F, G \in \mathcal{F}$ and $\varepsilon>0$ there exists $H \in \mathcal{F}$ such that every continuous coloring $c:\binom{H}{F} \rightarrow[0,1] \varepsilon$-stabilizes on $\binom{\mathbf{G}}{F}$ for some $\mathbf{G} \in\binom{H}{G}$.

The Approximate Ramsey Property

Let \mathcal{F} be a collection of finite dimensional normed spaces.
Definition

- 1-Lipschitz mapping every
$F, G \in \mathcal{F}$ and $\varepsilon>0$ there exists $H \in \mathcal{F}$ such that every continuous coloring $c:\binom{H}{F} \rightarrow[0,1] \quad \varepsilon$-stabilizes on $\binom{\mathbf{G}}{F}$ for some $\mathbf{G} \in\binom{H}{G}$.

The Approximate Ramsey Property

Let \mathcal{F} be a collection of finite dimensional normed spaces.
Defi $\binom{H}{F}$ endowed with the H-induced Hausdorff distance between unit balls.
every
 coloring $c:\binom{H}{F} \rightarrow[0,1] \varepsilon$-stabilizes on $\binom{\mathbf{G}}{F}$ for some $\mathbf{G} \in\binom{H}{G}$.

The Approximate Ramsey Property

Let \mathcal{F} be a collection of finite dimensional normed spaces.

Definition

- \mathcal{F} has the Approximate Structural Ramsey Property when for every $F, G \in \mathcal{F}$ and $\varepsilon>0$ there exists $H \in \mathcal{F}$ such that every continuous coloring $c:\binom{H}{F} \rightarrow[0,1] \varepsilon$-stabilizes on $\binom{\mathbf{G}}{F}$ for some $\mathbf{G} \in\binom{H}{G}$.
- \mathcal{F} has the Approximate Ramsey Property when for every $F, G \in \mathcal{F}$ and
$\varepsilon>0$ there exists $H \in \mathcal{F}$ such that every continuous coloring $c: \operatorname{Emb}(F, H) \rightarrow[0,1] \varepsilon$-stabilizes on $\varrho \circ \operatorname{Emb}(X, Y)$ for some $\varrho \in \operatorname{Emb}(G, H)$.

The Approximate Ramsey Property

Let \mathcal{F} be a collection of finite dimensional normed spaces.

Definition

$\operatorname{Emb}(F, H)$ is the space of isometric linear embeddings inuous $\max _{\|x\|_{F} \leq 1}\|\gamma x-\eta x\|_{H}$. $G \in \mathcal{F}$ and
$\varepsilon>0$ there exists $H \in \mathcal{F}$ such that every continuous coloring $c: \operatorname{Emb}(F, H) \rightarrow[0,1] \varepsilon$-stabilizes on $\varrho \circ \operatorname{Emb}(X, Y)$ for some $\varrho \in \operatorname{Emb}(G, H)$.

(ARP) and Extreme Amenability

Theorem (KPT correspondence)

For E approximately ultrahomogeneous the following are equivalent:

(ARP) and Extreme Amenability

Theorem (KPT correspondence)

For E approximately ultrahomogeneous the following are equivalent:

- $\operatorname{Iso}(E)$ is extremely amenable.

(ARP) and Extreme Amenability

Theorem (KPT correspondence)

For E approximately ultrahomogeneous the following are equivalent:

- Iso (E) is extremely amenable.
- Age (E) has the approximate Ramsey property.

Examples

- $\left\{\ell_{2}^{n}\right\}_{n}$.

Examples

- $\left\{\ell_{2}^{n}\right\}_{n}$.
- $\operatorname{Age}\left(L_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.

Examples

- $\left\{\ell_{2}^{n}\right\}_{n}$.
- $\operatorname{Age}\left(L_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- $\operatorname{Age}\left(\ell_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.

Examples

- $\left\{\ell_{2}^{n}\right\}_{n}$.
- $\operatorname{Age}\left(L_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- $\operatorname{Age}\left(\ell_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- $\left\{\ell_{p}^{n}\right\}_{n}$ all $0<p<\infty$.

Examples

- $\left\{\ell_{2}^{n}\right\}_{n}$.
- $\operatorname{Age}\left(L_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- $\operatorname{Age}\left(\ell_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- $\left\{\ell_{p}^{n}\right\}_{n}$ all $0<p<\infty$.
- $\left\{\ell_{\infty}^{n}\right\}_{n}$.

Examples

- $\left\{\ell_{2}^{n}\right\}_{n}$.
- $\operatorname{Age}\left(L_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- $\operatorname{Age}\left(\ell_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- $\left\{\ell_{p}^{n}\right\}_{n}$ all $0<p<\infty$.
- $\left\{\ell_{\infty}^{n}\right\}_{n}$.
- Polyhedral spaces.

Examples

- $\left\{\ell_{2}^{n}\right\}_{n}$.
- Age $\left(L_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- Age (${ }^{\text {The unit ball has only finitely many extreme points }}$
- $\left\{\ell_{p}^{n}\right\}_{n}$ all $0<p<\infty$.
- $\left\{\ell_{\infty}^{n}\right\}_{n}$.
- Polyhedral spaces.

Examples

- $\left\{\ell_{2}^{n}\right\}_{n}$.
- $\operatorname{Age}\left(L_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- $\operatorname{Age}\left(\ell_{p}(0,1)\right)$ for all $p \neq 4,6,8, \ldots$.
- $\left\{\ell_{p}^{n}\right\}_{n}$ all $0<p<\infty$.
- $\left\{\ell_{\infty}^{n}\right\}_{n}$.
- Polyhedral spaces.
- All f.d. normed spaces.

non-Examples

Theorem

For every $p \in 2 \mathbb{N}, p>2$, the family $\operatorname{Age}\left(L_{p}[0,1]\right)$ does not have the (ARP)
The reason is that on those L_{p} 's there are $X \equiv Y$ subspaces of L_{p} such that X is C-complemented

non-Examples

Th There is a projection $P: L_{p} \rightarrow X$ of norm $\leq C$
For every $p \in \angle V, p>\angle$ me jarmuy Age $\left(L_{p}[0,1]\right)$ aves not have the (ARP)
The reason is that on those L_{p} 's there are $X \equiv Y$ subspaces of L_{p} such that X is C-complemented

non-Examples

Theorem

For every $p \in 2 \mathbb{N}, p>2$, the family $\operatorname{Age}\left(L_{p}[0,1]\right)$ does not have the (ARP)
The reason is that on those L_{p} 's there are $X \equiv Y$ subspaces of L_{p} such that X is C-complemented and Y is not $2 C$ complemented. The coloring "being C-complemented or not" is a bad one.

(ARP) and Borsuk-Ulam

Recall that one of the several equivalent versions of the Borsuk-Ulam theorem states that

Theorem (Lusternik and Shnirel'man)

When the unit sphere \mathbb{S}^{n} of ℓ_{2}^{n+1} is covered by $n+1$ many open sets, one of them contains a point x and its antipodal $-x$.

(ARP) and Borsuk-Ulam

Recall that one of the several equivalent versions of the Borsuk-Ulam theorem states that

Theorem (Lusternik and Shnirel'man)

When the unit sphere \mathbb{S}^{n} of ℓ_{2}^{n+1} is covered by $n+1$ many open sets, one of them contains a point x and its antipodal $-x$.

Definition

Let (X, d) be a metric space, $\varepsilon>0$. We say that an open covering \mathcal{U} of X is ε-fat when $\left\{U_{-\varepsilon}\right\}_{U \in \mathcal{U}}$ is still a covering of X.

(ARP) and Borsuk-Ulam

Recall that one of the several equivalent versions of the Borsuk-Ulam theorem states that

Theorem (Lusternik and Shnirel'man)

When the unit sphere \mathbb{S}^{n} of ℓ_{2}^{n+1} is covered by $n+1$ many open sets, one of them contains a point x and its antipodal $-x$.

Definition

Let (X, d) be a metric space, $\varepsilon>0$. We say that an open covering \mathcal{U} of X is ε-fat when $\left\{U_{-\varepsilon}\right\}_{U \in \mathcal{U}}$ is still a covering of X.

(ARP) and Borsuk-Ulam

Recall that one states that

Theorem (Lu:
When the unit them contains

Definition

Let (X, d) be a mf ric space, $\varepsilon>0$. We say that an open covering \mathcal{U} of X is ε-fat when $\left\{U_{-\varepsilon}\right\}_{U \in \mathcal{U}} \quad$ is still a covering of X.

It is not difficult to see that if X is compact, then every open covering is ε-fat for some $\varepsilon>0$.

Theorem

The (ARP) of $\left\{\ell_{p}^{n}\right\}_{n}$ states that

Theorem

The (ARP) of $\left\{\ell_{p}^{n}\right\}_{n}$ states that for every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some n such that for every ε-fat open covering \mathcal{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there is an open set of \mathcal{U} containing $\varrho \circ \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ for some $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$. Denote by $\mathbf{n}_{p}(d, m, r, \varepsilon)$ the minimal such n.

Theorem

The (ARP) of $\left\{\ell_{p}^{n}\right\}_{n}$ states that for every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some n such that for every ε-fat open covering \mathcal{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there is an open set of \mathcal{U} containing $\varrho \circ \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ for some $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$. Denote by $\mathbf{n}_{p}(d, m, r, \varepsilon)$ the minimal such n.

Borsuk-Ulam Theorem is the statement

Theorem

The (ARP) of $\left\{\ell_{p}^{n}\right\}_{n}$ states that
for every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some n such that for every ε-fat open covering \mathcal{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there is an open set of \mathcal{U} containing $\varrho \circ \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ for some $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$. Denote by $\mathbf{n}_{p}(d, m, r, \varepsilon)$ the minimal such n.

Borsuk-Ulam Theorem is the statement

$$
\mathbf{n}_{2}(1,1, r, \varepsilon)=r \text { for all } \varepsilon>0
$$

Theorem

The (ARP) of $\left\{\ell_{p}^{n}\right\}_{n}$ states that
for every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some n such that for every ε-fat open covering \mathcal{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there is an onon cot nf11 containino $n \cap \mathrm{Fmb}(\mathrm{od}$ on far como
$\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$. because $\operatorname{Emb}\left(\ell_{p}^{1}, \ell_{p}^{r}\right)=\mathbb{S}_{p}^{r-1}, \operatorname{and} \operatorname{Emb}\left(\ell_{p}^{1}, \ell_{p}^{1}\right)=\left\{ \pm \operatorname{Id}_{\mathbb{R}}\right\}$
Borsuk-Ulam Theorem is the statement

$$
\mathbf{n}_{2}(1,1, r, \varepsilon)=r \text { for all } \varepsilon>0
$$

Theorem

The (ARP) of $\left\{\ell_{p}^{n}\right\}_{n}$ states that
for every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some n such that for every ε-fat open covering \mathcal{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there is an open set of \mathcal{U} containing $\varrho \circ \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ for some $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$. Denote by $\mathbf{n}_{p}(d, m, r, \varepsilon)$ the minimal such n.

Borsuk-Ulam Theorem is the statement

$$
\mathbf{n}_{2}(1,1, r, \varepsilon)=r \text { for all } \varepsilon>0
$$

Problem

Is $\mathbf{n}_{p}(d, m, r, \varepsilon)$ independent of ε ?

Section 2

Hints on proofs

Matoušek-Rödl spreads

The case of $d=1$ (i.e. coloring points of spheres) was proved independently by E. Odell, H. Rosenthal and Th. Schlumprecht

Matoušek-Rödl spreads

Using tools from Banach space theory (like unconditionality) to find many symmetries

The case of $d=1$ (i.e. coloring points of sph.eres) was proved independently by E. Odell, H. Rosenthal and Th. Schlumprecht

Matoušek-Rödl spreads

The case of $d=1$ (i.e. coloring points of spheres) was proved independently by E. Odell, H. Rosenthal and Th. Schlumprecht and by J. Matoušek and V. Rödl combinatorially using the notion of spread: Given a vector $a=\left(a_{j}\right)_{j<m} \in \mathbb{R}^{m}$, and a set $s=\left\{k_{0}<k_{1}<\cdots<k_{m}\right\}$ of integers, let

$$
\operatorname{Spread}(a, s):=\sum_{j<m} a_{j} u_{k_{j}}
$$

Matoušek-Rödl spreads

The case of $d=1$ (i.e. coloring points of spheres) was proved indebendentlv by E. Odell, H. Rosenth: u_{s} is the vector with 1 in position s and 0 everywhere Rödl combinatorially us else
$a=\left(a_{j}\right)_{j<m} \in \mathbb{R}^{m}$, and a set $s=\left\{k_{0}<k_{1}<\cdots<z_{m}\right\}$ of integers, let

$$
\operatorname{Spread}(a, s):=\sum_{j<m} a_{j} u_{k_{j}} .
$$

Matoušek-Rödl spreads

The case of $d=1$ (i.e. coloring points of spheres) was proved independently by E. Odell, H. Rosenthal and Th. Schlumprecht and by J. Matoušek and V. Rödl combinatorially using the notion of spread: Given a vector $a=\left(a_{j}\right)_{j<m} \in \mathbb{R}^{m}$, and a set $s=\left\{k_{0}<k_{1}<\cdots<k_{m}\right\}$ of integers, let

$$
\operatorname{Spread}(a, s):=\sum_{j<m} a_{j} u_{k_{j}}
$$

Theorem

For every $p<\infty, m \in \mathbb{N}$ and $\varepsilon>0$ there is some vector a and $n \in \mathbb{N}$ such that every Lipschitz coloring of the unit sphere $S_{\ell_{p}^{n}} \varepsilon$-stabilizes on the unit sphere of the span of $\operatorname{Spread}\left(a, s_{0}\right), \ldots, \operatorname{Spread}\left(a, s_{m-1}\right)$ for some pairwise disjoint sequence s_{0}, \ldots, s_{m-1} of subsets of n.

1. It is a consequence of Dual Ramsey
2. It is a consequence of Dual Ramsey
3. An linear $\gamma: \ell_{\infty}^{d} \rightarrow \ell_{\infty}^{n}$ represented in the unit basis by a matrix A is an isometry if and only if the rows of $\operatorname{rows}(A) \subseteq B_{\ell_{1}^{d}}$, and each $u_{j} \in \pm \operatorname{rows}(A)$.
4. It is a conseque
5. An linear $\gamma: \ell_{\infty}^{d} \rightarrow-\infty$ represented in the unit basis by a matrix A is an isometry if and oriy if the rows of rows $(A) \subseteq B_{\ell_{1}^{d}}$, and each $u_{j} \in \pm \operatorname{rows}(A)$.
6. It is a consequence of Dual Ramsey
7. An linear $\gamma: \ell_{\infty}^{d} \rightarrow \ell_{\infty}^{n}$ represented in the unit basis by a matrix A is an isometry if and only if the rows of rows $(A) \subseteq B_{\ell_{1}^{d}}$, and each $u_{j} \in \pm \operatorname{rows}(A)$.
8. Given $D \subseteq B_{\ell_{1}^{d}}$ a (rigid) surjection $\sigma: n \rightarrow D$ we can define the $d \times n$-matrix A_{σ} whose $j^{\text {th }}$-row is $\sigma(j)$. When $\left\{u_{j}\right\}_{j<d} \subseteq \pm D, A_{\sigma}^{t}$ represents an isometric embedding.
9. It is a consequence of Dual Ramsey
10. An linear $\gamma: \ell_{\infty}^{d} \rightarrow \ell_{\infty}^{n}$ represented in the unit basis by a matrix A is an isometry if and only if the rows of rows $(A) \subseteq B_{\ell_{1}^{d}}$, and each $u_{j} \in \pm \operatorname{rows}(A)$.
11. Given $D \subseteq B_{\ell_{1}^{d}}$ a (rigid) surjection $\sigma: n \rightarrow D$ we can define the $d \times n$-matrix A_{σ} whose $j^{\text {th }}$-row is $\sigma(j)$. When $\left\{u_{j}\right\}_{j<d} \subseteq \pm D, A_{\sigma}^{t}$ represents an isometric embedding.

After proving (ARP) of $\left\{\ell_{\infty}^{n}\right\}_{n}$, one proves the (ARP) of the f.d. polyhedral spaces, and then of all of f.d. normed spaces.

Hints of the Proof on Hilbertian

We want to prove that for every d, m and r, and every $\varepsilon>0$ there is n such that r-colorings of $\operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$ have ε-monochromatic sets of the form $\varrho \circ \operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$.

Hints of the Proof on Hilbertian

We want to prove that for every d, m and r, and every $\varepsilon>0$ there is n such that r-colorings of $\operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$ have ε-monochromatic sets of the form $\varrho \circ \operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$.

1. Since every Hilbert space is ultrahomogeneous, we may assume that $d=m$; Let D be a finite $\varepsilon / 2$ dense subset of U_{m} such that $D=D^{-1}$ and containing the identity.

Hints of the Prr

We want to prove tl that r-colorings of] $\varrho \circ \operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$.

1. Since eve y Hilbert space is ultrahomogeneous, we may assume that $d=m ; \quad$ Let D be a finite $\varepsilon / 2$ dense subset of U_{m} such that $D=D^{-1}$ and containing the identity.

Hints of the Proof on Hilbertian

We want to prove that for every d, m and r, and every $\varepsilon>0$ there is n such that r-colorings of $\operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$ have ε-monochromatic sets of the form $\varrho \circ \operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$.

1. Since every Hilbert space is ultrahomogeneous, we may assume that $d=m$; Let D be a finite $\varepsilon / 2$ dense subset of U_{m} such that $D=D^{-1}$ and containing the identity.
2. We use now that $\left(U_{n}, d_{n}, \mu_{n}\right)_{n}$ is Lévy to find n such that if $\mu_{n}(A) \geq 1 / r$, then $\mu_{n}\left((A)_{\varepsilon / 2}\right)>1-1 / \# D$. Then n works

Hints of the Proof on Hilbertian

We want to prove that for every d, m and r, and every $\varepsilon>0$ there is n such that r-colorings of $\operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$ have ε-monochromatic sets of the form $\varrho \circ \operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$.

1. Since every Hilbert space is ultrahomogeneous, we may assume that
d_{n} is the norm metric, μ_{n} is the Haar probability measure on $U_{n} \quad \mathrm{~J}^{-1}$ and
2. We use now that $\left(U_{n}, d_{n}, \mu_{n}\right)_{n}$ is Lévy to find n such that if $\mu_{n}(A) \geq 1 / r$, then $\mu_{n}\left((A)_{\varepsilon / 2}\right)>1-1 / \# D$. Then n works

Hints of the Proof on Hilbertian

We want to prove that for every d, m and r, and every $\varepsilon>0$ there is n such that r-colorings of $\operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$ have ε-monochromatic sets of the form $\varrho \circ \operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$.

1. Since every Hilbert space is ultrahomogeneous, we may assume that $d=m$; Let D be a finite $\varepsilon / 2$ dense subset of U_{m} such that $D=D^{-1}$ and containing the identity.
2. We use now that $\left(U_{n}, d_{n}, \mu_{n}\right)_{n}$ is Lévy to find n such that if $\mu_{n}(A) \geq 1 / r$, then $\mu_{n}\left((A)_{\varepsilon / 2}\right)>1-1 / \# D$. Then n works
3. For suppose that $c: \operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right) \rightarrow r$; We define $\mathbf{c}: U_{n} \rightarrow r$ by $\mathbf{c}(A):=c\left(A_{t}\right)$.

Hints of the Proof on Hilbertian

We want to prove that for every d, m and r, and every $\varepsilon>0$ there is n such
 $\varrho \circ \operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right)$.

1. Since every $d=m$; Le containing
2. We use now uat ($\left., u_{n}, \mu_{n}\right) n$ io Luvy w mau n such that if $\mu_{n}(A) \geq 1 / r$, then $\mu_{n}\left((A)_{\varepsilon / 2}\right)>1-1 / \# D$. Then n works
3. For suppose that $c: \operatorname{Emb}\left(\ell_{2}^{d}, \ell_{2}^{n}\right) \rightarrow r$; We define $\mathbf{c}: U_{n} \rightarrow r$ by $\mathbf{c}(A):=c\left(A_{t}\right)$.
4. Let $i<r$ be such that $\mu_{n}\left(\mathbf{c}^{-1}(i)\right) \geq 1 / r$. Then,

$$
\mu_{n}\left(\left(\mathbf{c}^{-1}(i)\right)_{\varepsilon / 2}\right)>1-\frac{1}{\# D}
$$

4. Let $i<r$ be such that $\mu_{n}\left(\mathbf{c}^{-1}(i)\right) \geq 1 / r$. Then,

$$
\mu_{n}\left(\left(\mathbf{c}^{-1}(i)\right)_{\varepsilon / 2}\right)>1-\frac{1}{\# D}
$$

5. Consider the embedding $A \in U_{m} \mapsto A_{e}:=U_{n}$.
6. Let $i<r$ be such that $\mu_{n}\left(\mathbf{c}^{-1}(i)\right)$

$$
\mu_{n}\left(\left(\mathbf{c}^{-1}(i)\right)_{\varepsilon / 2}\right)>1-\frac{}{\# D}
$$

5. Consider the embedding $A \in U_{m} \mapsto A_{e}:=U_{n}$.
6. Let $i<r$ be such that $\mu_{n}\left(\mathbf{c}^{-1}(i)\right) \geq 1 / r$. Then,

$$
\mu_{n}\left(\left(\mathbf{c}^{-1}(i)\right)_{\varepsilon / 2}\right)>1-\frac{1}{\# D}
$$

5. Consider the embedding $A \in U_{m} \mapsto A_{e}:=U_{n}$. Since

$$
\mu_{n}\left(\bigcap_{A \in D} A_{e} \cdot\left(c^{-1}(i)\right)_{\varepsilon / 2}\right)>0
$$

Id $\in D,\left(A^{-1}\right)_{e}=\left(A_{e}\right)^{-1}$ and $D=D^{-1}$, we can pick $B \in\left(c^{-1}(i)\right)_{\varepsilon / 2}$ such that $A_{e} \cdot B \in\left(c^{-1}(i)\right)_{\varepsilon / 2}$ for all $A \in D$.
4. Let $i<r$ be such that $\mu_{n}\left(\mathbf{c}^{-1}(i)\right) \geq 1 / r$. Then,

$$
\mu_{n}\left(\left(\mathbf{c}^{-1}(i)\right)_{\varepsilon / 2}\right)>1-\frac{1}{\# D}
$$

5. Consider the embedding $A \in U_{m} \mapsto A_{e}:=U_{n}$. Since

$$
\mu_{n}\left(\bigcap_{A \in D} A_{e} \cdot\left(c^{-1}(i)\right)_{\varepsilon / 2}\right)>0
$$

Id $\in D,\left(A^{-1}\right)_{e}=\left(A_{e}\right)^{-1}$ and $D=D^{-1}$, we can pick $B \in\left(c^{-1}(i)\right)_{\varepsilon / 2}$ such that $A_{e} \cdot B \in\left(c^{-1}(i)\right)_{\varepsilon / 2}$ for all $A \in D$.
6. A simple analysis shows that $A_{t} \cdot U_{m} \subseteq\left(c^{-1}(i)\right)_{\varepsilon}$.

Strategy of proof for the other p 's

Strategy of proof for the other p 's

1. Because of the Mazur map, and because $\gamma \in \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ satisfies that $\gamma\left(u_{j}\right)$ and $\gamma\left(u_{k}\right)$ are disjointly supported for $j \neq k$,

Strategy of proof for the other p 's

1. Because of the Mazur map, and because $\gamma \in \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ satisfies that $\gamma\left(u_{j}\right)$ and $\gamma\left(u_{k}\right)$ are disjointly supported for $j \neq k$,

Strategy of proof for the other p 's

1. Because of the Mazur map, and because $\gamma \in \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ satisfies that $\gamma\left(u_{j}\right)$ and $\gamma\left(u_{k}\right)$ are disjointly supported for $j \neq k$,

Strategy of proof for the other p 's

1. Because of the Mazur map, and because $\gamma \in \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ satisfies that $\gamma\left(u_{j}\right)$ and $\gamma\left(u_{k}\right)$ are disjointly supported for $j \neq k$, all cases reduce to $p=1$.

Strategy of proof for the other p 's

1. Because of the Mazur map, and because $\gamma \in \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ satisfies that $\gamma\left(u_{j}\right)$ and $\gamma\left(u_{k}\right)$ are disjointly supported for $j \neq k$, all cases reduce to $p=1$.
2. Observe that when for $\gamma \in \operatorname{Emb}\left(\ell_{1}^{d}, \ell_{1}^{m}\right)$ we impose that $\gamma(1)=1$ then necessarily $d \mid m$ and $\gamma\left(u_{j}\right)=\mathbb{1}_{s_{j}}$ where $\left\{s_{j}\right\}_{j<d}$ is an equipartition of m into d-many equally sized pieces

Strategy of proof for the $\quad \cdots \cdots \cdots$

1. Because of the Mazur mas $\gamma\left(u_{j}\right)$ and $\gamma\left(u_{k}\right)$ are disjoil $p=1$.
2. Observe that when for $\gamma \in \ldots \ldots,{ }^{\sim} 1,{ }^{\circ} 1, \ldots \ldots \ldots \sim \ldots$ necessarily $d \mid m$ and $\gamma\left(u_{j}\right)=\mathbb{1}_{s_{j}}$ where $\left\{s_{j}\right\}_{j<d}$ is an equipartition of m into d-many equally sized pieces

Strategy of proof for the other p 's

1. Because of the Mazur map, and because $\gamma \in \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ satisfies that $\gamma\left(u_{j}\right)$ and $\gamma\left(u_{k}\right)$ are disjointly supported for $j \neq k$, all cases reduce to $p=1$.
2. Observe that when for $\gamma \in \operatorname{Emb}\left(\ell_{1}^{d}, \ell_{1}^{m}\right)$ we impose that $\gamma(1)=1$ then necessarily $d \mid m$ and $\gamma\left(u_{j}\right)=\mathbb{1}_{s_{j}}$ where $\left\{s_{j}\right\}_{j<d}$ is an equipartition of m into d-many equally sized pieces
3. The proof of the (ARP) of $\left\{\ell_{1}^{n}\right\}_{n}$ is a consequence of the Matoušek-Rödl, and the following

EquiDual Ramsey

Theorem

For every $d \mid m$ and every r there is n divided by m such that every r-coloring of $\mathcal{E} \mathcal{Q}_{d}(n)$ has a monochromatic set of the form $\langle\mathcal{R}\rangle_{d}^{\mathrm{eq}}$ for some $\mathcal{R} \in \mathcal{E} \mathcal{Q}_{m}(n)$
the collection of d-equipartitions of n

For every $d m$ and every r there is n divided by m such that every r-coloring of $\mathcal{E} \mathcal{Q}_{d}(n) \quad$ has a monochromatic set of the form $\langle\mathcal{R}\rangle_{d}^{\text {eq }}$ for some $\mathcal{R} \in \mathcal{E} \mathcal{Q}_{m}(n)$
the collection of d-equipartitions of n coarser than \mathcal{R}

For every $d \mid m$ and every r there is n divided by m such that every r-coloring of $\mathcal{E} \mathcal{Q}_{d}(n)$ has a monochromatic set of the form $\langle\mathcal{R}\rangle_{d}^{\text {eq }}$ for some $\mathcal{R} \in \mathcal{E} \mathcal{Q}_{m}(n)$

Conjecture

For every $d \mid m$ and every r there is n divided by m such that every r-coloring of $\mathcal{E} \mathcal{Q}_{d}(n)$ has a monochromatic set of the form $\langle\mathcal{R}\rangle_{d}^{\text {eq }}$ for some $\mathcal{R} \in \mathcal{E} \mathcal{Q}_{m}(n)$

For every $d \mid m$ and every r there is n divided by m such that every r-coloring of $\mathcal{E} \mathcal{Q}_{d}(n)$ has a monochromatic set of the form $\langle\mathcal{R}\rangle_{d}^{\mathrm{eq}}$ for some $\mathcal{R} \in \mathcal{E} \mathcal{Q}_{m}(n)$

Luckily for us, the following is true

Theorem (ARP of equipartitions)

For every $d \mid m$ and every r and $\varepsilon>0$ there is n divided by m such that every r-coloring of $\mathcal{E} \mathcal{Q}_{d}(n)$ has an ε-monochromatic set of the form $\langle\mathcal{P}\rangle_{d}^{\mathrm{eq}}$ for some $\mathcal{R} \in \mathcal{E} \mathcal{Q}_{m}(n)$

For eve $\mathcal{E} \mathcal{Q}_{d}(n)$
 with respect to the normalized Hamming metric on $\mathcal{E} \mathcal{Q}_{d}(n)$
 Luckily for us, the following is true
 Theorem (ARP of equipartitions)
 For every $d \mid m$ and every r and $\varepsilon>0$ there is n divided by m such that every r-coloring of $\mathcal{E} \mathcal{Q}_{d}(n)$ has an ε-monochromatic set of the form $\langle\mathcal{P}\rangle_{d}^{\mathrm{eq}}$ for some $\mathcal{R} \in \mathcal{E} \mathcal{Q}_{m}(n)$

- Note that there are very few partitions that are equipartitions. However, asymptotically, almost all partitions are ε-equipartitions
- Note that there are very few partitions that are equipartitions. However, asymptotically, almost all partitions are ε-equipartitions

- Note that there are very few partitions that are equipartitions. However, asymptotically, almost all partitions are ε-equipartitions
- Since the sequence of $\left(\mathcal{E}_{d}(n), d_{\mathrm{H}}, \mu_{C}\right)_{n}$ is Lévy, we conclude that $\left(\operatorname{Equi}_{\varepsilon}(n, d), d_{\mathrm{H}}, \mu_{C}\right)_{n}$ is also Lévy.
- Note that there are very few partitions that are equipartitions. However, asymptotically, almost all partitions are ε-equipartitions
- Since the sequence of $\left(\mathcal{E}_{d}(n), d_{\mathrm{H}}, \mu_{C}\right)_{n}$ is Lévy, we conclude that $\left(\operatorname{Equi}_{\varepsilon}(n, d), d_{\mathrm{H}}, \mu_{C}\right)_{n}$ is also Lévy.
- Arguing as we did in the Hilbert case, one proves the approximate result for ε-equipartitions.
- Note that there are very few partitions that are equipartitions. However, asymptotically, almost all partitions are ε-equipartitions
- Since the sequence of $\left(\mathcal{E}_{d}(n), d_{\mathrm{H}}, \mu_{C}\right)_{n}$ is Lévy, we conclude that $\left(\operatorname{Equi}_{\varepsilon}(n, d), d_{\mathrm{H}}, \mu_{C}\right)_{n}$ is also Lévy.
- Arguing as we did in the Hilbert case, one proves the approximate result for ε-equipartitions.
- It is easily seen that when $d \mid n$, an ε-equipartition is $\varepsilon / 2$-close to a equipartition. This and the (ARP) of ε-equipartitions gives the (ARP) of equipartitions.

Thank you!

