On equality of two classes of homomorphism-homogeneous relational structures

David Hartman

in coop. with Andrés Aranda

The Computer Science Institute of Charles University, Prague The Institute of Computer Science, Czech Academy of Science, Prague

Event: Banff workshop 18w5180 - Unifying Themes in Ramsey Theory Place: Banff. Canada

Banff 2018

Motivate

Definition (Ultrahomogeneity)

 \mathcal{A} is ultrahomogeneous if every isomorphism $f: \mathcal{A} \to \mathcal{B}$ between finite substructures $\mathcal{A}, \mathcal{B} \subset \mathcal{A}$ can be extended into automorphism

Motivate

Definition (Ultrahomogeneity)

 \mathcal{A} is ultrahomogeneous if every isomorphism $f: \mathcal{A} \rightarrow \mathcal{B}$ between finite substructures $\mathcal{A}, \mathcal{B} \subset \mathcal{A}$ can be extended into automorphism

How far structures from homogeneity

- ► Relational complexity r (Cherlin, Martin, Saracino 1996) i.e. expand language with relations of arity ≤ r s.t. autmomorphism group remains and this lift is homogeneous
- For graphs (H., Hubička, Nešetřil, 2015) used result of (Hubička, Nešetřil, 2014) to homogenize graphs with forbidden homomorphism.

Motivate

Definition (Ultrahomogeneity)

 \mathcal{A} is ultrahomogeneous if every isomorphism $f: \mathcal{A} \rightarrow \mathcal{B}$ between finite substructures $\mathcal{A}, \mathcal{B} \subset \mathcal{A}$ can be extended into automorphism

How far structures from homogeneity

- ▶ Relational complexity r (Cherlin, Martin, Saracino 1996) i.e. expand language with relations of arity ≤ r s.t. autmomorphism group remains and this lift is homogeneous
- For graphs (H., Hubička, Nešetřil, 2015) used result of (Hubička, Nešetřil, 2014) to homogenize graphs with forbidden homomorphism.
- Relax definition of homogeneity Use homomorphism instead of isomorphism It also have Fraïssé type results

(Ultra) Homogeneity of structures

Considered structures a

- ▶ relational structure $A = (A, \mathcal{R}_A)$ where $\mathcal{R}_A = (R_A^i; i \in I)$
- Usually interpreted as colored graphs (consider just binary relations - see later)

Classifications usually differs depending on

Finite or infinite domains

(Ultra) Homogeneity of structures

Considered structures a

- ▶ relational structure $A = (A, \mathcal{R}_A)$ where $\mathcal{R}_A = (R_A^i; i \in I)$
- Usually interpreted as colored graphs (consider just binary relations - see later)

Classifications usually differs depending on

Finite or infinite domains

Classification for finite graphs (Gardiner 1976)

Combinatorial argument utilizing finiteness of structures

Rado graph ${\mathcal R}$

Countably infinite random graph

Rado graph ${\mathcal R}$

- Countably infinite random graph
- Useful property

```
(*) \forall X, Y finite \exists z \text{ s.t. } z \sim x \ \forall x \in X \text{ and } z \nsim y \ \forall y \in Y
```

Rado graph \mathcal{R}

- Countably infinite random graph
- Useful property
 - (*) $\forall X, Y$ finite $\exists z \text{ s.t. } z \sim x \ \forall x \in X \text{ and } z \nsim y \ \forall y \in Y$
- Useful properties
 - \blacktriangleright Uniqueness: All countably graphs having it are isomorphic to ${\cal R}$
 - \blacktriangleright Universality: All finite graphs can be embedded into ${\cal R}$
 - Homogeneity: Graph with this property is homogeneous

Rado graph \mathcal{R}

- Countably infinite random graph
- Useful property
 - (*) $\forall X, Y$ finite $\exists z \text{ s.t. } z \sim x \ \forall x \in X \text{ and } z \nsim y \ \forall y \in Y$
- Useful properties
 - Uniqueness: All countably graphs having it are isomorphic to ${\mathcal R}$
 - \blacktriangleright Universality: All finite graphs can be embedded into ${\cal R}$
 - Homogeneity: Graph with this property is homogeneous
- Idea of proof(s)
 - Start with A, B finite and isomorphism $f : A \rightarrow B$
 - Iteratively construct one vertex extension of f using (*)
 - Automorphism is the union of partial maps

Rado graph ${\mathcal R}$

- Countably infinite random graph
- Useful property
 - (*) $\forall X, Y$ finite $\exists z \text{ s.t. } z \sim x \ \forall x \in X \text{ and } z \nsim y \ \forall y \in Y$
- Useful properties
 - \blacktriangleright Uniqueness: All countably graphs having it are isomorphic to ${\cal R}$
 - \blacktriangleright Universality: All finite graphs can be embedded into ${\cal R}$
 - Homogeneity: Graph with this property is homogeneous
- Idea of proof(s)
 - Start with A, B finite and isomorphism $f : A \rightarrow B$
 - Iteratively construct one vertex extension of f using (*)
 - Automorphism is the union of partial maps

Important notes

- It is, of course, a Fraïssé limit for class of all graphs
 - Showing this gives us all properties above
- Part of complete classification (Lachlan, Woodrow 1980)

Variants of homogeneity (Cameron, Nešetřil 2006)

- homomorphism-homogeneity (HH)
 - Iocal homomorphism \rightarrow homomorphism
- monomorphism-homogeneity (MH)
 - $\blacktriangleright \ \text{local monomorphism} \rightarrow \text{homomorphism}$

Variants of homogeneity (Cameron, Nešetřil 2006)

- homomorphism-homogeneity (HH)
 - local homomorphism \rightarrow homomorphism
- monomorphism-homogeneity (MH)
 - $\blacktriangleright \ \text{local monomorphism} \rightarrow \text{homomorphism}$

Infinite **HH** graphs

► For inifinite graphs having Rado as spanning subgraph are **HH**

Variants of homogeneity (Cameron, Nešetřil 2006)

- homomorphism-homogeneity (HH)
 - local homomorphism \rightarrow homomorphism
- monomorphism-homogeneity (MH)
 - $\blacktriangleright \ \text{local monomorphism} \rightarrow \text{homomorphism}$

Infinite **HH** graphs

- ► For inifinite graphs having Rado as spanning subgraph are **HH**
- ► Original homogeneity can be abbreviated as II $_{\text{IH}}$ as well as others (MM, IH, ...); hierarchy \rightarrow $_{\text{IM}}$ $_{\text{MH}}$

мм

Variants of homogeneity (Cameron, Nešetřil 2006)

- homomorphism-homogeneity (HH)
 - local homomorphism \rightarrow homomorphism
- monomorphism-homogeneity (MH)
 - $\blacktriangleright \ \text{local monomorphism} \rightarrow \text{homomorphism}$

Infinite **HH** graphs

- ► For inifinite graphs having Rado as spanning subgraph are **HH**
- ► Original homogeneity can be abbreviated as II $_{\rm IH}$ as well as others (MM, IH, ...); hierarchy \rightarrow $_{\rm IM}$ $_{\rm MH}$

Problems

- Classification beyond finite graphs
 - Finite HH Graphs (Cameron, Nešetřil 2006)
- $HH \subseteq MH$, HH = MH ?
 - ► For countable graphs YES! (Rusinov, Schweitzer 2010)
 - For general structures NO!

Simple extension: Bicolored graphs

- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Simple extension: Bicolored graphs

- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

Simple extension: Bicolored graphs

- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

Basic idea: $G_F \notin \text{finite HH graph}$

Local homomorphism

Simple extension: Bicolored graphs

- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

Basic idea: $G_F \notin$ finite HH graph

Local homomorphism - can only be extended into a new vertex

Simple extension: Bicolored graphs

- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

- Local homomorphism can only be extended into a new vertex
- Extend original local homomorphism by fixing new vertex

Simple extension: Bicolored graphs

- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

- Local homomorphism can only be extended into a new vertex
- Extend original local homomorphism by fixing new vertex
- Again only extension is possible into new vertex

Simple extension: Bicolored graphs

- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

- Local homomorphism can only be extended into a new vertex
- Extend original local homomorphism by fixing new vertex
- Again only extension is possible into new vertex
- This process can be repeated ...

Simple extension: Bicolored graphs

- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

- Local homomorphism can only be extended into a new vertex
- Extend original local homomorphism by fixing new vertex
- Again only extension is possible into new vertex
- This process can be repeated ...

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
 - coloration of vertices $\chi: V \to P$
 - ▶ coloration of edges $\xi: V^2 \to Q$

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
 - coloration of vertices $\chi: V \to P$
 - coloration of edges $\xi: V^2 o Q$
- any homomorphism is required to follow

 $\chi(v) \leq_P \chi(f(v))$ and $\xi(x,y) \leq_Q \xi(f(x),f(y))$

Notation

Corresponding classes HH_{P,Q} and HH_Q

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
 - coloration of vertices $\chi: V \to P$
 - coloration of edges $\xi: V^2
 ightarrow Q$
- any homomorphism is required to follow

 $\chi(v) \leq_P \chi(f(v))$ and $\xi(x,y) \leq_Q \xi(f(x),f(y))$

Notation

Corresponding classes HH_{P,Q} and HH_Q

Theorems (H., Hubička, Mašulović, 2014)

For finite Q-colored graphs $\mathbf{HH}_{C_n} = \mathbf{MH}_{C_n}$ (Q is a chain C_n) and $\mathbf{HH}_{D_n} = \mathbf{MH}_{D_n}$ (Q is a diamond D_n)

Basic idea Use extended pumping argument and structure finiteness

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
 - coloration of vertices $\chi: V \to P$
 - coloration of edges $\xi: V^2 o Q$
- any homomorphism is required to follow

 $\chi(v) \leq_P \chi(f(v))$ and $\xi(x,y) \leq_Q \xi(f(x),f(y))$

Notation

Corresponding classes HH_{P,Q} and HH_Q

Theorems (H., Hubička, Mašulović, 2014)

For finite Q-colored graphs $\mathbf{HH}_{C_n} = \mathbf{MH}_{C_n}$ (Q is a chain C_n) and $\mathbf{HH}_{D_n} = \mathbf{MH}_{D_n}$ (Q is a diamond D_n)

Basic idea Use extended pumping argument and structure finiteness

For general P, Q classes are distinct

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
 - coloration of vertices $\chi: V \to P$
 - coloration of edges $\xi: V^2 o Q$
- any homomorphism is required to follow

 $\chi(v) \leq_P \chi(f(v)) \text{ and } \xi(x,y) \leq_Q \xi(f(x),f(y))$

Notation

Corresponding classes HH_{P,Q} and HH_Q

Theorems (H., Hubička, Mašulović, 2014)

For finite Q-colored graphs $\mathbf{HH}_{C_n} = \mathbf{MH}_{C_n}$ (Q is a chain C_n) and $\mathbf{HH}_{D_n} = \mathbf{MH}_{D_n}$ (Q is a diamond D_n)

Basic idea Use extended pumping argument and structure finiteness

For general P, Q classes are distinct

Determine borderline property for equality.

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
 - coloration of vertices $\chi: V \to P$
 - coloration of edges $\xi: V^2 o Q$
- any homomorphism is required to follow

 $\chi(v) \leq_P \chi(f(v)) \text{ and } \xi(x,y) \leq_Q \xi(f(x),f(y))$

Notation

Corresponding classes HH_{P,Q} and HH_Q

Theorems (H., Hubička, Mašulović, 2014)

For finite Q-colored graphs $\mathbf{HH}_{C_n} = \mathbf{MH}_{C_n}$ (Q is a chain C_n) and $\mathbf{HH}_{D_n} = \mathbf{MH}_{D_n}$ (Q is a diamond D_n)

Basic idea Use extended pumping argument and structure finiteness

For general P, Q classes are distinct

- Determine borderline property for equality.
- Is it vertex coloring?

Important property

(\triangleright): Any finite set of vertices has a common neighbour.

Important property

(\triangleright): Any finite set of vertices has a common neighbour.

Proposition (Cameron, Nešetřil, 2006))

A countable graph contains \mathcal{R} as a spanning subgraph if and only if it has the (\triangleright) property. Moreover any such graph is **HH** and **MH**.

Important property

(\triangleright): Any finite set of vertices has a common neighbour.

Proposition (Cameron, Nešetřil, 2006))

A countable graph contains \mathcal{R} as a spanning subgraph if and only if it has the (\triangleright) property. Moreover any such graph is **HH** and **MH**.

Approach

- ► Homogeneous graph helps constructing **HH** graphs
- ▶ Find homogeneous *P*, *Q*-colored graphs as a starting point

Important property

(\triangleright): Any finite set of vertices has a common neighbour.

Proposition (Cameron, Nešetřil, 2006))

A countable graph contains \mathcal{R} as a spanning subgraph if and only if it has the (\triangleright) property. Moreover any such graph is **HH** and **MH**.

Approach

- Homogeneous graph helps constructing HH graphs
- ▶ Find homogeneous *P*, *Q*-colored graphs as a starting point

Structure \mathcal{R}_n

- ▶ Let C_n be a class of finite graphs with edges colored by F_n (F_n is antichain extended by minimal element 0)
- \mathcal{R}_n is universal for \mathcal{C}_n and homogeneous

Properties of \mathcal{R}_n

Let G be F_n -colored graph

 (\Diamond_n) Let $G_1, G_2, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \setminus G_{n+1}$ s.t. each vertex of $G_i \sim_i x$ for $1 \le i \le n$ and for each $y \in G_{n+1}$ a pair xy is non-edge.

Properties of \mathcal{R}_n

Let G be F_n -colored graph

 (\Diamond_n) Let $G_1, G_2, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \setminus G_{n+1}$ s.t. each vertex of $G_i \sim_i x$ for $1 \le i \le n$ and for each $y \in G_{n+1}$ a pair xy is non-edge.

 $\mathsf{Graph}\ \mathcal{R}_n$

• unique countable graph satisfying (\Diamond_n) , up to isomorphism

Properties of \mathcal{R}_n

Let G be F_n -colored graph

 (\Diamond_n) Let $G_1, G_2, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \setminus G_{n+1}$ s.t. each vertex of $G_i \sim_i x$ for $1 \le i \le n$ and for each $y \in G_{n+1}$ a pair xy is non-edge.

Graph \mathcal{R}_n

- unique countable graph satisfying (\Diamond_n) , up to isomorphism
- ▶ not **HH**:

for any non-edge uv there exists a s.t.

Properties of \mathcal{R}_n

Let G be F_n -colored graph

 (\Diamond_n) Let $G_1, G_2, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \setminus G_{n+1}$ s.t. each vertex of $G_i \sim_i x$ for $1 \le i \le n$ and for each $y \in G_{n+1}$ a pair xy is non-edge.

 $\mathsf{Graph}\ \mathcal{R}_n$

- unique countable graph satisfying (\Diamond_n) , up to isomorphism
- ▶ not **HH**:

for any non-edge *uv* there exists *a* s.t. following homomorphism cannot be extended

Properties of \mathcal{R}_n

Let G be F_n -colored graph

 (\Diamond_n) Let $G_1, G_2, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \setminus G_{n+1}$ s.t. each vertex of $G_i \sim_i x$ for $1 \le i \le n$ and for each $y \in G_{n+1}$ a pair xy is non-edge.

 $\mathsf{Graph}\ \mathcal{R}_n$

- unique countable graph satisfying (\Diamond_n) , up to isomorphism
- ► not HH:

for any non-edge *uv* there exists *a* s.t. following homomorphism cannot be extended

► is MH:

Using extension property (\Diamond_n) to find one vertex extension

Properties of \mathcal{R}_n

Let G be F_n -colored graph

 (\Diamond_n) Let $G_1, G_2, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \setminus G_{n+1}$ s.t. each vertex of $G_i \sim_i x$ for $1 \le i \le n$ and for each $y \in G_{n+1}$ a pair xy is non-edge.

 $\mathsf{Graph}\ \mathcal{R}_n$

- unique countable graph satisfying (\Diamond_n) , up to isomorphism
- not HH: for any non-edge uv there exists a s.t. following homomorphism cannot be extended

► is **MH**:

Using extension property (\Diamond_n) to find one vertex extension

Lesson learned: Vertex coloring is not needed!

Show that $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v,A}$ colors of edges between v and $u \in A$

Show that $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ implies

- *Q* is *directed set* (upper bound for any pair)
- $\varphi_{v,A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)

For any $m \geq 1$ there exists partition of \mathcal{R}_n into C_1, C_2, \ldots, C_m s.t.

1. Each C_i is isomorphic to \mathcal{R}_n and

Show that $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v,A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)

For any $m \ge 1$ there exists partition of \mathcal{R}_n into C_1, C_2, \ldots, C_m s.t.

- 1. Each C_i is isomorphic to \mathcal{R}_n and
- 2. for any finite $A \subset \mathcal{R}_n$, $\psi : A \to F_n$, and $k \leq m \exists x \in C_k$ s.t $\varphi_{v,A} = \psi$

Show that $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v,A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)

For any $m \ge 1$ there exists partition of \mathcal{R}_n into C_1, C_2, \ldots, C_m s.t.

- 1. Each C_i is isomorphic to \mathcal{R}_n and
- 2. for any finite $A \subset \mathcal{R}_n$, $\psi : A \to F_n$, and $k \leq m \exists x \in C_k$ s.t $\varphi_{v,A} = \psi$

Idea: Start with countable infinite set X

• partitioned into infinite sets C_1, C_2, \ldots, C_m

Show that $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v,A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)

For any $m \ge 1$ there exists partition of \mathcal{R}_n into C_1, C_2, \ldots, C_m s.t.

- 1. Each C_i is isomorphic to \mathcal{R}_n and
- 2. for any finite $A \subset \mathcal{R}_n$, $\psi : A \to F_n$, and $k \leq m \exists x \in C_k$ s.t $\varphi_{v,A} = \psi$

Idea: Start with countable infinite set X

- partitioned into infinite sets C_1, C_2, \ldots, C_m
- Idea is to impose structure given by conditions

Show that $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v,A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)

For any $m \ge 1$ there exists partition of \mathcal{R}_n into C_1, C_2, \ldots, C_m s.t.

- 1. Each C_i is isomorphic to \mathcal{R}_n and
- 2. for any finite $A \subset \mathcal{R}_n$, $\psi : A \to F_n$, and $k \leq m \exists x \in C_k$ s.t $\varphi_{v,A} = \psi$

Idea: Start with countable infinite set X

- partitioned into infinite sets C_1, C_2, \ldots, C_m
- Idea is to impose structure given by conditions
- Enumerate
 - all finite subsets of X as $\{Y_i : i \in \omega\}$
 - ▶ all functions t_j^i : $Y_i \to F_n$ there are $j \in \{2, \dots, (n+1)^{|Y_i|}\}$

Lemma (Aranda, H., 2018+)

For any $m \geq 1$ there exists partition of \mathcal{R}_n into C_1, C_2, \ldots, C_m s.t.

- 1. Each C_i is isomorphic to \mathcal{R}_n and
- 2. for any finite $A \subset \mathcal{R}_n$, $\psi : A \to F_n$, and $k \leq m \exists x \in C_k$ s.t $\varphi_{v,A} = \psi$

We have enumerated subsets $\{Y_i : i \in \omega\}$ and colorings $t_j^i : Y_i \to F_n$

Lemma (Aranda, H., 2018+)

For any $m \ge 1$ there exists partition of \mathcal{R}_n into C_1, C_2, \ldots, C_m s.t.

1. Each C_i is isomorphic to \mathcal{R}_n and

2. for any finite
$$A \subset \mathcal{R}_n$$
, $\psi : A \to F_n$,
and $k \leq m \exists x \in C_k$ s.t $\varphi_{v,A} = \psi$

We have enumerated subsets $\{Y_i : i \in \omega\}$ and colorings $t_j^i : Y_i \to F_n$ **Step 0:** Iterate Y_s

- in each class C_r choose vertex $v_{1,r}^0$
- insert edges s.t. $\varphi_{v_{1,r}^0, Y_0} = t_1^0$
- continue for $j \in \{2, \ldots, (n+1)^{|Y_i|}\}$

Lemma (Aranda, H., 2018+)

For any $m \geq 1$ there exists partition of \mathcal{R}_n into C_1, C_2, \ldots, C_m s.t.

1. Each C_i is isomorphic to \mathcal{R}_n and

2. for any finite
$$A \subset \mathcal{R}_n$$
, $\psi : A \to F_n$,
and $k \leq m \exists x \in C_k$ s.t $\varphi_{v,A} = \psi$

We have enumerated subsets $\{Y_i : i \in \omega\}$ and colorings $t_j^i : Y_i \to F_n$ **Step 0:** Iterate Y_s

- in each class C_r choose vertex $v_{1,r}^0$
- insert edges s.t. $\varphi_{v_{1,r}^0, Y_0} = t_1^0$
- continue for $j \in \{2, \ldots, (n+1)^{|Y_i|}\}$

Step s + 1 We have done constructions up to s

- corresponding to functions over Y_s
- Continue the same way with Y_{s+1} and t^{s+1}_i

Lemma (Aranda, H., 2018+)

For any $m \geq 1$ there exists partition of \mathcal{R}_n into C_1, C_2, \ldots, C_m s.t.

1. Each C_i is isomorphic to \mathcal{R}_n and

2. for any finite
$$A \subset \mathcal{R}_n$$
, $\psi : A \to F_n$,
and $k \leq m \exists x \in C_k$ s.t $\varphi_{v,A} = \psi$

We have enumerated subsets $\{Y_i : i \in \omega\}$ and colorings $t_j^i : Y_i \to F_n$ **Step 0:** Iterate Y_s

- in each class C_r choose vertex $v_{1,r}^0$
- insert edges s.t. $\varphi_{v_{1,r}^0, Y_0} = t_1^0$
- continue for $j \in \{2, \ldots, (n+1)^{|Y_i|}\}$

Step s + 1 We have done constructions up to s

- corresponding to functions over Y_s
- Continue the same way with Y_{s+1} and t^{s+1}_i

Note that

- Each point of construction uses only finitely many elements it's possible
- Condition 2. satisfied by construction and 1. follows

Lemma (Aranda, H., 2018)

Let P and Q be finite partially ordered sets. If $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$, then Q is a directed set.

Lemma (Aranda, H., 2018)

Let P and Q be finite partially ordered sets. If $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$, then Q is a directed set.

- Q has maximal elements R_1, \ldots, R_n
- ▶ |*P*| = *m*
- Let M_0 be Fraïssé limit of graphs colored by F_n

Lemma (Aranda, H., 2018)

Let P and Q be finite partially ordered sets. If $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$, then Q is a directed set.

- Q has maximal elements R_1, \ldots, R_n
- ▶ |*P*| = *m*
- Let M₀ be Fraïssé limit of graphs colored by F_n
- ▶ Partition *M*⁰ as in previous lemma
 - Elements of *P* are e_1, \ldots, e_m and assign $e_i \rightarrow C_i$

Lemma (Aranda, H., 2018)

Let P and Q be finite partially ordered sets. If $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$, then Q is a directed set.

- Q has maximal elements R_1, \ldots, R_n
- ▶ |*P*| = *m*
- Let M₀ be Fraïssé limit of graphs colored by F_n
- ▶ Partition *M*⁰ as in previous lemma
 - Elements of *P* are e_1, \ldots, e_m and assign $e_i \rightarrow C_i$
 - Add edges of non-maximal colors s.t.
 - \blacktriangleright \geq 1 non-edge between vertices of equal color remains
 - This contradicts HH

Lemma (Aranda, H., 2018)

Let P and Q be finite partially ordered sets. If $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$, then Q is a directed set.

- Q has maximal elements R_1, \ldots, R_n
- ▶ |*P*| = *m*
- Let M₀ be Fraïssé limit of graphs colored by F_n
- ▶ Partition *M*⁰ as in previous lemma
 - Elements of *P* are e_1, \ldots, e_m and assign $e_i \rightarrow C_i$
 - Add edges of non-maximal colors s.t.
 - \blacktriangleright \geq 1 non-edge between vertices of equal color remains
 - ► This contradicts **HH**
 - extension property (\Diamond_n) imply **MH**

Lemma (Aranda, H., 2018)

Let P and Q be finite partially ordered sets. If $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$, then Q is a directed set.

Basic idea: Prove contrapositive: Q is not directed set

- Q has maximal elements R_1, \ldots, R_n
- ▶ |*P*| = *m*
- Let M₀ be Fraïssé limit of graphs colored by F_n
- ▶ Partition *M*⁰ as in previous lemma
 - Elements of *P* are e_1, \ldots, e_m and assign $e_i \rightarrow C_i$
 - Add edges of non-maximal colors s.t.
 - \blacktriangleright \geq 1 non-edge between vertices of equal color remains
 - ► This contradicts **HH**
 - extension property (\Diamond_n) imply **MH**

What about sufficient condition for equality of classes?

Construction of example structure M

1. Start with infinite clique K_{ω} in color $\mathbbm{1}$

- 1. Start with infinite clique K_{ω} in color $\mathbbm{1}$
- 2. Subdivide it into 3 infinite cliques M_x ; $x \in \{a, b, c\}$

- 1. Start with infinite clique K_{ω} in color 1
- 2. Subdivide it into 3 infinite cliques M_x ; $x \in \{a, b, c\}$
- 3. Add $T = \{a, b, c\}$ and connect it to "adjacent" M_x (using 1)

- 1. Start with infinite clique K_{ω} in color 1
- 2. Subdivide it into 3 infinite cliques M_x ; $x \in \{a, b, c\}$
- 3. Add $T = \{a, b, c\}$ and connect it to "adjacent" M_x (using 1)
- 4. Subdivide each clique M_x into two infinite cliques M_x^0 and M_x^1

- 1. Start with infinite clique K_{ω} in color 1
- 2. Subdivide it into 3 infinite cliques M_x ; $x \in \{a, b, c\}$
- 3. Add $T = \{a, b, c\}$ and connect it to "adjacent" M_x (using 1)
- 4. Subdivide each clique M_x into two infinite cliques M_x^0 and M_x^1
- 5. M_x^0 connect counter-clockwise to T

- 1. Start with infinite clique K_{ω} in color 1
- 2. Subdivide it into 3 infinite cliques M_x ; $x \in \{a, b, c\}$
- 3. Add $T = \{a, b, c\}$ and connect it to "adjacent" M_x (using $\mathbb{1}$)
- 4. Subdivide each clique M_x into two infinite cliques M_x^0 and M_x^1
- 5. M_x^0 connect counter-clockwise to T
- 6. M_x^0 connect clockwise to T

- 1. Start with infinite clique K_{ω} in color 1
- 2. Subdivide it into 3 infinite cliques M_x ; $x \in \{a, b, c\}$
- 3. Add $T = \{a, b, c\}$ and connect it to "adjacent" M_x (using $\mathbb{1}$)
- 4. Subdivide each clique M_x into two infinite cliques M_x^0 and M_x^1
- 5. M_x^0 connect counter-clockwise to T
- 6. M_{x}^{0} connect clockwise to T
- 7. M_x^1 connect clockwise to T

- 1. Start with infinite clique K_{ω} in color 1
- 2. Subdivide it into 3 infinite cliques M_x ; $x \in \{a, b, c\}$
- 3. Add $T = \{a, b, c\}$ and connect it to "adjacent" M_x (using $\mathbb{1}$)
- 4. Subdivide each clique M_x into two infinite cliques M_x^0 and M_x^1
- 5. M_x^0 connect counter-clockwise to T
- 6. M_{x}^{0} connect clockwise to T
- 7. M_x^1 connect clockwise to T
- 8. M_x^1 connect counter-clockwise to T

Proposition

M is **MH** and not **HH**.

Proposition

M is **MH** and not **HH**.

M is not HH note that the homomorphism

$$a \mapsto a, b \mapsto a, c \mapsto c$$

not extendable to $d \in M_c^0$

(would have to be common neighbor of a and c)

Proposition

M is **MH** and not **HH**.

 M is not HH note that the homomorphism

 $a \mapsto a, b \mapsto a, c \mapsto c$

not extendable to $d \in M_c^0$ (would have to be common neighbor of a and c)

M is MH

Look at image of monomorphism $f: H \to H'$

Any finite A with at most 1 vertex from {a, b, c}
 A have infinitely many cones

Proposition

M is **MH** and not **HH**.

M is not HH note that the homomorphism

 $a \mapsto a, b \mapsto a, c \mapsto c$

not extendable to $d \in M_c^0$

(would have to be common neighbor of a and c)

M is MH

Look at image of monomorphism $f: H \to H'$

- Any finite A with at most 1 vertex from {a, b, c}
 A have infinitely many cones
- 2. For $f \upharpoonright \{a, b, c\}$ bijection Sets M_x are mapped to $M_{f(x)}$

Proposition

M is **MH** and not **HH**.

M is not HH note that the homomorphism

 $a \mapsto a, b \mapsto a, c \mapsto c$

not extendable to $d \in M_c^0$ (would have to be common neighbor of a and c)

M is MH

Look at image of monomorphism $f: H \to H'$

- Any finite A with at most 1 vertex from {a, b, c}
 A have infinitely many cones
- 2. For $f \upharpoonright \{a, b, c\}$ bijection Sets M_x are mapped to $M_{f(x)}$

Assume image of f to have exactly 2 elements

- ▶ from {a, b, c} say b, c
- study effect of f on {a, b, c} (case analysis)

Theorem (Aranda, H., 2018+)

Let *P* and *Q* be finite partially ordered sets. $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ iff *Q* is a linear order.

Theorem (Aranda, H., 2018+)

Let *P* and *Q* be finite partially ordered sets. $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ iff *Q* is a linear order.

Forward idea: Q is a linear order:

► Take arbitrary **MH**_{P,Q}-colored graph G

Theorem (Aranda, H., 2018+)

Let *P* and *Q* be finite partially ordered sets. $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ iff *Q* is a linear order.

Forward idea: Q is a linear order:

- ► Take arbitrary **MH**_{P,Q}-colored graph G
- Let $f: H \to H'$ be homomorphism to H'

Theorem (Aranda, H., 2018+)

Let *P* and *Q* be finite partially ordered sets. $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ iff *Q* is a linear order.

Forward idea: Q is a linear order:

- ► Take arbitrary **MH**_{P,Q}-colored graph G
- Let $f: H \to H'$ be homomorphism to H'
- Let *H_i* be enumeration of preimages

Sufficient condition

Theorem (Aranda, H., 2018+)

Let *P* and *Q* be finite partially ordered sets. $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ iff *Q* is a linear order.

Forward idea: Q is a linear order:

- ► Take arbitrary **MH**_{P,Q}-colored graph G
- Let $f: H \to H'$ be homomorphism to H'
- Let H_i be enumeration of preimages
- Let $u \in G \setminus H$ and Let S be all transversals and
 - Choose s^0 such that $\forall s \in S$ s.t. $\varphi_{u,s} \preceq \varphi_{u,s^{\bar{u}}}$
 - ▶ Note that *Q* is linear order

Sufficient condition

Theorem (Aranda, H., 2018+)

Let *P* and *Q* be finite partially ordered sets. $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ iff *Q* is a linear order.

Forward idea: Q is a linear order:

- ► Take arbitrary **MH**_{P,Q}-colored graph G
- Let $f: H \to H'$ be homomorphism to H'
- Let H_i be enumeration of preimages
- Let $u \in G \setminus H$ and Let S be all transversals and
 - Choose s^0 such that $\forall s \in S$ s.t. $\varphi_{u,s} \preceq \varphi_{u,s^0}$
 - Note that Q is linear order
- Each function of the form $f \upharpoonright s$ with $s \in S$ is a monomorphism
 - Can be extended as G is $\mathbf{MH}_{P,Q}$

Sufficient condition

Theorem (Aranda, H., 2018+)

Let *P* and *Q* be finite partially ordered sets. $\mathbf{MH}_{P,Q} = \mathbf{HH}_{P,Q}$ iff *Q* is a linear order.

Forward idea: Q is a linear order:

- ► Take arbitrary **MH**_{P,Q}-colored graph G
- Let $f: H \to H'$ be homomorphism to H'
- Let H_i be enumeration of preimages
- Let $u \in G \setminus H$ and Let S be all transversals and
 - Choose s^0 such that $\forall s \in S$ s.t. $\varphi_{u,s} \preceq \varphi_{u,s^0}$
 - Note that Q is linear order
- Each function of the form $f \upharpoonright s$ with $s \in S$ is a monomorphism
 - Can be extended as G is $\mathbf{MH}_{P,Q}$
 - use another realization of s^0 so $f \cup \{(u, (f \upharpoonright s^0)(u_0)\}\}$

Backward idea: If Q is not linear then $\exists M \text{ s.t. } M \text{ is } \mathbf{MH}_{P,Q}$ but not $\mathbf{HH}_{P,Q}$. We know that Q is finite directed set

• Let top element be 1 and let P_1, \ldots, P_n be top elements $Q \setminus 1$

Backward idea: If Q is not linear then $\exists M \text{ s.t. } M \text{ is } \mathbf{MH}_{P,Q}$ but not $\mathbf{HH}_{P,Q}$. We know that Q is finite directed set

• Let top element be 1 and let P_1, \ldots, P_n be top elements $Q \setminus 1$

Construct M which is connected in $\mathbb{1}$ as well as P_i

Start with M₁ Rado graph in maximal color

Backward idea: If Q is not linear then $\exists M \text{ s.t. } M$ is $\mathbf{MH}_{P,Q}$ but not $\mathbf{HH}_{P,Q}$. We know that Q is finite directed set

• Let top element be $\mathbb{1}$ and let P_1, \ldots, P_n be top elements $Q \setminus \mathbb{1}$

Construct M which is connected in $\mathbb{1}$ as well as P_i

- Start with M₁ Rado graph in maximal color
- Partition M₁ into n! sets and fill all non-edges with colors from Q s.t. all are used (meeting condition from lemma)

M

Backward idea: If Q is not linear then $\exists M \text{ s.t. } M$ is $\mathbf{MH}_{P,Q}$ but not $\mathbf{HH}_{P,Q}$. We know that Q is finite directed set

• Let top element be $\mathbb{1}$ and let P_1, \ldots, P_n be top elements $Q \setminus \mathbb{1}$

- Start with M₁ Rado graph in maximal color
- ▶ Partition M_1 into n! sets and fill all non-edges with colors from Q s.t. all are used (meeting condition from lemma)
- Create n + 1 such M_i

Backward idea: If Q is not linear then $\exists M \text{ s.t. } M$ is $\mathbf{MH}_{P,Q}$ but not $\mathbf{HH}_{P,Q}$. We know that Q is finite directed set

• Let top element be $\mathbb{1}$ and let P_1, \ldots, P_n be top elements $Q \setminus \mathbb{1}$

- Start with M₁ Rado graph in maximal color
- ▶ Partition *M*¹ into *n*! sets and fill all non-edges with colors from *Q* s.t. all are used (meeting condition from lemma)
- Create n + 1 such M_i
- Add new vertices $x_1, x_2, \ldots, x_{n+1}$

Backward idea: If Q is not linear then $\exists M \text{ s.t. } M$ is $\mathbf{MH}_{P,Q}$ but not $\mathbf{HH}_{P,Q}$. We know that Q is finite directed set

• Let top element be $\mathbb{1}$ and let P_1, \ldots, P_n be top elements $Q \setminus \mathbb{1}$

- Start with M₁ Rado graph in maximal color
- Partition M₁ into n! sets and fill all non-edges with colors from Q s.t. all are used (meeting condition from lemma)
- Create n + 1 such M_i
- Add new vertices $x_1, x_2, \ldots, x_{n+1}$
- Connect $M_i \sim_1 M_j, j \neq i$ and $x_i \sim_1 v, v \in M_i$

Backward idea: If Q is not linear then $\exists M \text{ s.t. } M$ is $\mathbf{MH}_{P,Q}$ but not $\mathbf{HH}_{P,Q}$. We know that Q is finite directed set

• Let top element be $\mathbb{1}$ and let P_1, \ldots, P_n be top elements $Q \setminus \mathbb{1}$

- Start with M₁ Rado graph in maximal color
- Partition M₁ into n! sets and fill all non-edges with colors from Q s.t. all are used (meeting condition from lemma)
- Create n + 1 such M_i
- Add new vertices $x_1, x_2, \ldots, x_{n+1}$
- Connect $M_i \sim_1 M_j, j \neq i$ and $x_i \sim_1 v, v \in M_i$
- Connect x_i to parititions of M_j s.t. x_i is connected in any combination of colors to all M_j, j ≠ i

Connect x_j and M_i

Coloring edges between x_j and M_i

• Indices of parts of M_i corresponds to $\sigma \in S_n$, i.e.

$$M = \bigcup_{\sigma \in S_n} M_i^{\sigma}$$

Connect x_j and M_i

Coloring edges between x_j and M_i

• Indices of parts of M_i corresponds to $\sigma \in S_n$, i.e.

$$M = \bigcup_{\sigma \in S_n} M_i^c$$

For edges between x_i and M_i define color choosing function

$$c_i: \{x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n\} \rightarrow \{1,2,\ldots,n\}$$

Connect x_i and M_i

Coloring edges between x_i and M_i

• Indices of parts of M_i corresponds to $\sigma \in S_n$, i.e.

$$M = \bigcup_{\sigma \in S_n} M_i^c$$

For edges between x_j and M_i define color choosing function

$$c_i: \{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n\} \to \{1, 2, \ldots, n\}$$

 M_i

• Color M_i^{σ} and x_j by $P_{\sigma(c_i(x_j))}$

Connect x_i and M_i

Coloring edges between x_i and M_i

• Indices of parts of M_i corresponds to $\sigma \in S_n$, i.e.

$$M = \bigcup_{\sigma \in S_n} M_i^c$$

► For edges between x_i and M_i define color choosing function $c_i : \{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n\} \rightarrow \{1, 2, \dots, n\}$

• Color M_i^{σ} and x_j by $P_{\sigma(c_i(x_i))}$

This construction generalize

 M_i

Extended example - properties

Backward idea - homomorphism-homogeneity of M: M is not $HH_{P,Q}$

- x_i and x_j are in distance 3 in $\mathbb{1}$
- Take distinct $j, k, \ell \in \{1, \dots, n+1\}$
- ► Local homomorphism $x_k \mapsto x_k, x_\ell \mapsto x_k, x_j \mapsto x_j$ cannot be extended
 - P_{i_1} and P_{i_2} has only $\mathbbm{1}$ above

Extended example - properties

Backward idea - homomorphism-homogeneity of M: M is not $HH_{P,Q}$

M is $\mathbf{MH}_{P,Q}$ Let $f: H \to K$ be surjective monomorphism

- If $|K \cap \{x_1, \ldots, x_{n+1}\}| \le 1$ we have infinitely many cones
- Assume K contains at least two vertices from $\{x_1, \ldots, x_{n+1}\}$
 - ▶ Note that *x_ix_j* is only non-edge in *M*, i.e.
 - ▶ its preimage is contained in {x₁,..., x_{n+1}}

Final claim finishing the proof

Claim

Given any $F \subset M \setminus \{x_1, \ldots, x_{n+1}\}$, $S \subseteq \{x_1, \ldots, x_{n+1}\}$ and injective $t : S \to \{\mathbb{1}, P_1, \ldots, P_n\}$, there $\exists v \in M$ that is connected to all of F by edges of type $\mathbb{1}$ and satisfies t over S, i.e., $\varphi_{v,S} = t$.

Final claim finishing the proof

Claim

Given any $F \subset M \setminus \{x_1, \ldots, x_{n+1}\}$, $S \subseteq \{x_1, \ldots, x_{n+1}\}$ and injective $t : S \to \{\mathbb{1}, P_1, \ldots, P_n\}$, there $\exists v \in M$ that is connected to all of F by edges of type $\mathbb{1}$ and satisfies t over S, i.e., $\varphi_{v,S} = t$.

For $v_i \in M_i$ and any F

▶ $v_i \sim_1 u$ for $u \in M_j \cup F$ for $j \neq i$ by construction of M

▶ $v_i \sim_1 u$ for $u \in M_i \cup F$ by Rado-ness of M_i

For injective t

• using 1 for x_i choose v from M_i connected correctly (correct σ)

others similarly

Claim Given any $F \subset M \setminus \{x_1, \dots, x_{n+1}\}$, $S \subseteq \{x_1, \dots, x_{n+1}\}$ and injective $t : S \rightarrow \{1, P_1, \dots, P_n\}$, there $\exists v \in M$ that is connected to all of F by edges of type 1 and satisfies t over S, i.e., $\varphi_{v,S} = t$.

Claim Given any $F \subset M \setminus \{x_1, \dots, x_{n+1}\}$, $S \subseteq \{x_1, \dots, x_{n+1}\}$ and injective $t : S \rightarrow \{1, P_1, \dots, P_n\}$, there $\exists v \in M$ that is connected to all of F by edges of type 1 and satisfies t over S, i.e., $\varphi_{v,S} = t$.

We use this claim to proof that M is $\mathbf{MH}_{P,Q}$

Extending $f: H \to K$

Suffice to show one vertex extension, i.e.
 For ν being connected as φ_{ν,H} to w

Claim Given any $F \subset M \setminus \{x_1, \dots, x_{n+1}\}$, $S \subseteq \{x_1, \dots, x_{n+1}\}$ and injective $t : S \rightarrow \{1, P_1, \dots, P_n\}$, there $\exists v \in M$ that is connected to all of F by edges of type 1 and satisfies t over S, i.e., $\varphi_{v,S} = t$.

We use this claim to proof that M is $\mathbf{MH}_{P,Q}$

Extending $f: H \to K$

- Suffice to show one vertex extension, i.e.
 For v being connected as φ_{v,H} to w
- S = K ∩ {x₁,..., x_{n+1}}, F = K \ S (note that preimages of x_i are from {x₁,..., x_{n+1}})
- function t given by $t(x_i) = \xi(v, f^{-1}(x_i))$

Claim Given any $F \subset M \setminus \{x_1, \dots, x_{n+1}\}$, $S \subseteq \{x_1, \dots, x_{n+1}\}$ and injective $t : S \rightarrow \{1, P_1, \dots, P_n\}$, there $\exists v \in M$ that is connected to all of F by edges of type 1 and satisfies t over S, i.e., $\varphi_{v,S} = t$.

We use this claim to proof that M is $\mathbf{MH}_{P,Q}$

Extending $f: H \to K$

- Suffice to show one vertex extension, i.e.
 For v being connected as φ_{v,H} to w
- S = K ∩ {x₁,..., x_{n+1}}, F = K \ S (note that preimages of x_i are from {x₁,..., x_{n+1}})
- function t given by $t(x_i) = \xi(v, f^{-1}(x_i))$

Claim provides a vertex w satisfying t over S and connected by 1 to F

Thus extending f

Thank you