On equality of two classes of homomorphism-homogeneous relational structures

David Hartman

in coop. with Andrés Aranda
The Computer Science Institute of Charles University, Prague The Institute of Computer Science, Czech Academy of Science, Prague

> Event: Banff workshop 18w5180-Unifying Themes in Ramsey Theory
> Place: \quad Banff, Canada

Banff 2018

Motivate

Definition (Ultrahomogeneity)

\mathcal{A} is ultrahomogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures
$A, B \subset \mathcal{A}$ can be extended into automorphism

Motivate

Definition (Ultrahomogeneity)

\mathcal{A} is ultrahomogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures
$A, B \subset \mathcal{A}$ can be extended into automorphism

How far structures from homogeneity

- Relational complexity r (Cherlin, Martin, Saracino 1996) i.e. expand language with relations of arity $\leq r$ s.t. autmomorphism group remains and this lift is homogeneous
- For graphs (H., Hubička, Nešetřil, 2015) used result of (Hubička, Nešetřil, 2014) to homogenize graphs with forbidden homomorphism.

Motivate

Definition (Ultrahomogeneity)

\mathcal{A} is ultrahomogeneous if every isomorphism
$f: A \rightarrow B$ between finite substructures
$A, B \subset \mathcal{A}$ can be extended into automorphism

How far structures from homogeneity

- Relational complexity r (Cherlin, Martin, Saracino 1996) i.e. expand language with relations of arity $\leq r$ s.t. autmomorphism group remains and this lift is homogeneous
- For graphs (H., Hubička, Nešetřil, 2015) used result of (Hubička, Nešetřil, 2014) to homogenize graphs with forbidden homomorphism.
- Relax definition of homogeneity Use homomorphism instead of isomorphism It also have Fraïssé type results

(Ultra) Homogeneity of structures

Considered structures a

- relational structure $\mathcal{A}=\left(A, \mathcal{R}_{A}\right)$ where $\mathcal{R}_{A}=\left(R_{A}^{i} ; i \in I\right)$
- Usually interpreted as colored graphs (consider just binary relations - see later)

Classifications usually differs depending on

- Finite or infinite domains

(Ultra) Homogeneity of structures

Considered structures a

- relational structure $\mathcal{A}=\left(A, \mathcal{R}_{A}\right)$ where $\mathcal{R}_{A}=\left(R_{A}^{i} ; i \in I\right)$
- Usually interpreted as colored graphs (consider just binary relations - see later)

Classifications usually differs depending on

- Finite or infinite domains

Classification for finite graphs (Gardiner 1976)

- Combinatorial argument utilizing finiteness of structures

Ultrahomogeneity of countable graphs

Rado graph \mathcal{R}

- Countably infinite random graph

Ultrahomogeneity of countable graphs

Rado graph \mathcal{R}

- Countably infinite random graph
- Useful property
(*) $\forall X, Y$ finite $\exists z$ s.t. $z \sim x \forall x \in X$ and $z \nsim y \forall y \in Y$

Ultrahomogeneity of countable graphs

Rado graph \mathcal{R}

- Countably infinite random graph
- Useful property
(*) $\forall X, Y$ finite $\exists z$ s.t. $z \sim x \forall x \in X$ and $z \nsim y \forall y \in Y$
- Useful properties
- Uniqueness: All countably graphs having it are isomorphic to \mathcal{R}
- Universality: All finite graphs can be embedded into \mathcal{R}
- Homogeneity: Graph with this property is homogeneous

Ultrahomogeneity of countable graphs

Rado graph \mathcal{R}

- Countably infinite random graph
- Useful property
(*) $\forall X, Y$ finite $\exists z$ s.t. $z \sim x \forall x \in X$ and $z \nsim y \forall y \in Y$
- Useful properties
- Uniqueness: All countably graphs having it are isomorphic to \mathcal{R}
- Universality: All finite graphs can be embedded into \mathcal{R}
- Homogeneity: Graph with this property is homogeneous
- Idea of proof(s)
- Start with A, B finite and isomorphism $f: A \rightarrow B$
- Iteratively construct one vertex extension of f using (*)
- Automorphism is the union of partial maps

Ultrahomogeneity of countable graphs

Rado graph \mathcal{R}

- Countably infinite random graph
- Useful property
(*) $\forall X, Y$ finite $\exists z$ s.t. $z \sim x \forall x \in X$ and $z \nsim y \forall y \in Y$
- Useful properties
- Uniqueness: All countably graphs having it are isomorphic to \mathcal{R}
- Universality: All finite graphs can be embedded into \mathcal{R}
- Homogeneity: Graph with this property is homogeneous
- Idea of proof(s)
- Start with A, B finite and isomorphism $f: A \rightarrow B$
- Iteratively construct one vertex extension of f using (*)
- Automorphism is the union of partial maps

Important notes

- It is, of course, a Fraïssé limit for class of all graphs
- Showing this gives us all properties above
- Part of complete classification (Lachlan, Woodrow 1980)

Homomorphism-homogeneity

Variants of homogeneity (Cameron, Nešetřil 2006)

- homomorphism-homogeneity (HH)
- local homomorphism \rightarrow homomorphism
- monomorphism-homogeneity (MH)
- local monomorphism \rightarrow homomorphism

Homomorphism-homogeneity

Variants of homogeneity (Cameron, Nešetřil 2006)

- homomorphism-homogeneity (HH)
- local homomorphism \rightarrow homomorphism
- monomorphism-homogeneity (MH)
- local monomorphism \rightarrow homomorphism

Infinite HH graphs

- For inifinite graphs having Rado as spanning subgraph are HH

Homomorphism-homogeneity

Variants of homogeneity (Cameron, Nešetřil 2006)

- homomorphism-homogeneity (HH)
- local homomorphism \rightarrow homomorphism
- monomorphism-homogeneity (MH)
- local monomorphism \rightarrow homomorphism

Infinite HH graphs

- For inifinite graphs having Rado as spanning subgraph are HH
- Original homogeneity can be abbreviated as II as well as others (MM, IH, ...); hierarchy \rightarrow

Homomorphism-homogeneity

Variants of homogeneity (Cameron, Nešetřil 2006)

- homomorphism-homogeneity (HH)
- local homomorphism \rightarrow homomorphism
- monomorphism-homogeneity (MH)
- local monomorphism \rightarrow homomorphism

Infinite HH graphs

- For inifinite graphs having Rado as spanning subgraph are HH
- Original homogeneity can be abbreviated as II as well as others (MM, IH, ...); hierarchy \rightarrow

Problems

- Classification beyond finite graphs
- Finite HH Graphs (Cameron, Nešetřil 2006)
- $\mathrm{HH} \subseteq \mathrm{MH}, \mathrm{HH}=\mathrm{MH}$?
- For countable graphs YES! (Rusinov, Schweitzer 2010)
- For general structures NO!

$\mathrm{HH}=\mathbf{M H}$ using pumping argument

 Simple extension: Bicolored graphs- graphs without loops having red/blue edges
- Are classes HH and MH equal?

$\mathrm{HH}=\mathbf{M H}$ using pumping argument

 Simple extension: Bicolored graphs- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

$\mathrm{HH}=\mathbf{M H}$ using pumping argument

 Simple extension: Bicolored graphs- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

Basic idea: $G_{F} \notin$ finite HH graph

- Local homomorphism

$\mathrm{HH}=\mathbf{M H}$ using pumping argument

 Simple extension: Bicolored graphs- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

Basic idea: $G_{F} \notin$ finite HH graph

- Local homomorphism - can only be extended into a new vertex

$\mathrm{HH}=\mathbf{M H}$ using pumping argument

 Simple extension: Bicolored graphs- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

Basic idea: $G_{F} \notin$ finite HH graph

- Local homomorphism - can only be extended into a new vertex
- Extend original local homomorphism by fixing new vertex

$\mathrm{HH}=\mathbf{M H}$ using pumping argument

 Simple extension: Bicolored graphs- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

Basic idea: $G_{F} \notin$ finite HH graph

- Local homomorphism - can only be extended into a new vertex
- Extend original local homomorphism by fixing new vertex
- Again only extension is possible into new vertex

$\mathrm{HH}=\mathbf{M H}$ using pumping argument

 Simple extension: Bicolored graphs- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

Basic idea: $G_{F} \notin$ finite HH graph

- Local homomorphism - can only be extended into a new vertex
- Extend original local homomorphism by fixing new vertex
- Again only extension is possible into new vertex
- This process can be repeated...

$\mathrm{HH}=\mathbf{M H}$ using pumping argument

 Simple extension: Bicolored graphs- graphs without loops having red/blue edges
- Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete bicolored graphs or graphs each one composed of homogeneous graph in one color and its complement in the other.

Basic idea: $G_{F} \notin$ finite HH graph

- Local homomorphism - can only be extended into a new vertex
- Extend original local homomorphism by fixing new vertex
- Again only extension is possible into new vertex
- This process can be repeated...

P, Q-colored graphs

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
- coloration of vertices $\chi: V \rightarrow P$
- coloration of edges $\xi: V^{2} \rightarrow Q$

P, Q-colored graphs

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
- coloration of vertices $\chi: V \rightarrow P$
- coloration of edges $\xi: V^{2} \rightarrow Q$
- any homomorphism is required to follow

$$
\chi(v) \leq_{P} \chi(f(v)) \quad \text { and } \quad \xi(x, y) \leq_{Q} \xi(f(x), f(y))
$$

- Notation
- Corresponding classes $\mathbf{H H}_{P, Q}$ and $\mathbf{H H}_{Q}$

P, Q-colored graphs

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
- coloration of vertices $\chi: V \rightarrow P$
- coloration of edges $\xi: V^{2} \rightarrow Q$
- any homomorphism is required to follow

$$
\chi(v) \leq_{P} \chi(f(v)) \quad \text { and } \quad \xi(x, y) \leq_{Q} \xi(f(x), f(y))
$$

- Notation
- Corresponding classes $\mathbf{H H}_{P, Q}$ and $\mathbf{H H}_{Q}$

Theorems (H., Hubička, Mašulović, 2014)
For finite Q-colored graphs $\mathbf{H H}_{C_{n}}=\mathbf{M H}_{C_{n}}\left(Q\right.$ is a chain $\left.C_{n}\right)$ and $\mathbf{H H}_{D_{n}}=\mathbf{M H}_{D_{n}}\left(Q\right.$ is a diamond $\left.D_{n}\right)$

Basic idea Use extended pumping argument and structure finiteness

P, Q-colored graphs

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
- coloration of vertices $\chi: V \rightarrow P$
- coloration of edges $\xi: V^{2} \rightarrow Q$
- any homomorphism is required to follow

$$
\chi(v) \leq_{P} \chi(f(v)) \quad \text { and } \quad \xi(x, y) \leq_{Q} \xi(f(x), f(y))
$$

- Notation
- Corresponding classes $\mathbf{H H}_{P, Q}$ and $\mathbf{H H}_{Q}$

Theorems (H., Hubička, Mašulović, 2014)
For finite Q-colored graphs $\mathbf{H H}_{C_{n}}=\mathbf{M H}_{C_{n}}\left(Q\right.$ is a chain $\left.C_{n}\right)$ and $\mathbf{H H}_{D_{n}}=\mathbf{M H}_{D_{n}}\left(Q\right.$ is a diamond $\left.D_{n}\right)$

Basic idea Use extended pumping argument and structure finiteness
For general P, Q classes are distinct

P, Q-colored graphs

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
- coloration of vertices $\chi: V \rightarrow P$
- coloration of edges $\xi: V^{2} \rightarrow Q$
- any homomorphism is required to follow

$$
\chi(v) \leq_{P} \chi(f(v)) \quad \text { and } \quad \xi(x, y) \leq_{Q} \xi(f(x), f(y))
$$

- Notation
- Corresponding classes $\mathbf{H H}_{P, Q}$ and $\mathbf{H H}_{Q}$

Theorems (H., Hubička, Mašulović, 2014)
For finite Q-colored graphs $\mathbf{H H}_{C_{n}}=\mathbf{M H}_{C_{n}}\left(Q\right.$ is a chain $\left.C_{n}\right)$ and $\mathbf{H H}_{D_{n}}=\mathbf{M H}_{D_{n}}\left(Q\right.$ is a diamond $\left.D_{n}\right)$
Basic idea Use extended pumping argument and structure finiteness
For general P, Q classes are distinct

- Determine borderline property for equality.

P, Q-colored graphs

Define P, Q-colored graph on vertex set V

- With two finite posets having minimal element 0 uses as
- coloration of vertices $\chi: V \rightarrow P$
- coloration of edges $\xi: V^{2} \rightarrow Q$
- any homomorphism is required to follow

$$
\chi(v) \leq_{P} \chi(f(v)) \quad \text { and } \quad \xi(x, y) \leq_{Q} \xi(f(x), f(y))
$$

- Notation
- Corresponding classes $\mathbf{H H}_{P, Q}$ and $\mathbf{H H}_{Q}$

Theorems (H., Hubička, Mašulović, 2014)
For finite Q-colored graphs $\mathbf{H H}_{C_{n}}=\mathbf{M H}_{C_{n}}\left(Q\right.$ is a chain $\left.C_{n}\right)$ and $\mathbf{H H}_{D_{n}}=\mathbf{M H}_{D_{n}}\left(Q\right.$ is a diamond $\left.D_{n}\right)$
Basic idea Use extended pumping argument and structure finiteness
For general P, Q classes are distinct

- Determine borderline property for equality.
- Is it vertex coloring?

Towards equality in infinite case

Important property
(\triangleright) : Any finite set of vertices has a common neighbour.

Towards equality in infinite case

Important property
(\triangleright) : Any finite set of vertices has a common neighbour.
Proposition (Cameron, Nešetřil, 2006))
A countable graph contains \mathcal{R} as a spanning subgraph if and only if it has the (\triangleright) property. Moreover any such graph is $\mathbf{H H}$ and $\mathbf{M H}$.

Towards equality in infinite case

Important property
(\triangleright) : Any finite set of vertices has a common neighbour.
Proposition (Cameron, Nešetřil, 2006))
A countable graph contains \mathcal{R} as a spanning subgraph if and only if it has the (\triangleright) property. Moreover any such graph is $\mathbf{H H}$ and $\mathbf{M H}$.

Approach

- Homogeneous graph helps constructing HH graphs
- Find homogeneous P, Q-colored graphs as a starting point

Towards equality in infinite case

Important property
(\triangleright) : Any finite set of vertices has a common neighbour.
Proposition (Cameron, Nešetřil, 2006))
A countable graph contains \mathcal{R} as a spanning subgraph if and only if it has the (\triangleright) property. Moreover any such graph is $\mathbf{H H}$ and $\mathbf{M H}$.

Approach

- Homogeneous graph helps constructing HH graphs
- Find homogeneous P, Q-colored graphs as a starting point

Structure \mathcal{R}_{n}

- Let \mathcal{C}_{n} be a class of finite graphs with edges colored by F_{n} (F_{n} is antichain extended by minimal element 0)
- \mathcal{R}_{n} is universal for \mathcal{C}_{n} and homogeneous

Properties of \mathcal{R}_{n}

Let G be F_{n}-colored graph
$\left.(\rangle_{n}\right)$ Let $G_{1}, G_{2}, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \backslash G_{n+1}$ s.t. each vertex of $G_{i} \sim_{i} x$ for $1 \leq i \leq n$ and for each $y \in G_{n+1}$ a pair $x y$ is non-edge.

Properties of \mathcal{R}_{n}

Let G be F_{n}-colored graph
$\left.(\rangle_{n}\right)$ Let $G_{1}, G_{2}, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \backslash G_{n+1}$ s.t. each vertex of $G_{i} \sim_{i} x$ for $1 \leq i \leq n$ and for each $y \in G_{n+1}$ a pair $x y$ is non-edge.

Graph \mathcal{R}_{n}

- unique countable graph satisfying $\left.(\rangle_{n}\right)$, up to isomorphism

Properties of \mathcal{R}_{n}

Let G be F_{n}-colored graph
$\left(\nabla_{n}\right)$ Let $G_{1}, G_{2}, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \backslash G_{n+1}$ s.t. each vertex of $G_{i} \sim_{i} x$ for $1 \leq i \leq n$ and for each $y \in G_{n+1}$ a pair $x y$ is non-edge.

Graph \mathcal{R}_{n}

- unique countable graph satisfying $\left.(\rangle_{n}\right)$, up to isomorphism
- not HH:
for any non-edge $u v$ there exists a s.t.

Properties of \mathcal{R}_{n}

Let G be F_{n}-colored graph
$\left.(\rangle_{n}\right)$ Let $G_{1}, G_{2}, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \backslash G_{n+1}$ s.t. each vertex of $G_{i} \sim_{i} x$ for $1 \leq i \leq n$ and for each $y \in G_{n+1}$ a pair $x y$ is non-edge.

Graph \mathcal{R}_{n}

- unique countable graph satisfying $\left(\diamond_{n}\right)$, up to isomorphism
- not HH:
for any non-edge $u v$ there exists a s.t. following homomorphism cannot be extended

Properties of \mathcal{R}_{n}

Let G be F_{n}-colored graph
$\left.(\rangle_{n}\right)$ Let $G_{1}, G_{2}, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \backslash G_{n+1}$ s.t. each vertex of $G_{i} \sim_{i} x$ for $1 \leq i \leq n$ and for each $y \in G_{n+1}$ a pair $x y$ is non-edge.

Graph \mathcal{R}_{n}

- unique countable graph satisfying $\left.(\rangle_{n}\right)$, up to isomorphism
- not HH:
for any non-edge $u v$ there exists a s.t. following homomorphism cannot be extended
- is MH:

Using extension property $\left.(\rangle_{n}\right)$ to find one vertex extension

Properties of \mathcal{R}_{n}

Let G be F_{n}-colored graph
$\left.(\rangle_{n}\right)$ Let $G_{1}, G_{2}, \ldots, G_{n+1}$ be finite disjoint subsets of G then there exists $x \in G \backslash G_{n+1}$ s.t. each vertex of $G_{i} \sim_{i} x$ for $1 \leq i \leq n$ and for each $y \in G_{n+1}$ a pair $x y$ is non-edge.

Graph \mathcal{R}_{n}

- unique countable graph satisfying $\left.(\rangle_{n}\right)$, up to isomorphism
- not HH:
for any non-edge $u v$ there exists a s.t. following homomorphism cannot be extended
- is MH:

Using extension property $\left.(\rangle_{n}\right)$ to find one vertex extension

Lesson learned: Vertex coloring is not needed!

Extend the example

Show that $\mathbf{M H}_{P, Q}=\mathbf{H}_{P, Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v, A}$ colors of edges between v and $u \in A$

Extend the example

Show that $\mathbf{M H}_{P, Q}=\mathbf{H}_{P, Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v, A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)
For any $m \geq 1$ there exists partition of \mathcal{R}_{n} into $C_{1}, C_{2}, \ldots, C_{m}$ s.t.

1. Each C_{i} is isomorphic to \mathcal{R}_{n} and

Extend the example

Show that $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v, A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)
For any $m \geq 1$ there exists partition of \mathcal{R}_{n} into $C_{1}, C_{2}, \ldots, C_{m}$ s.t.

1. Each C_{i} is isomorphic to \mathcal{R}_{n} and
2. for any finite $A \subset \mathcal{R}_{n}, \psi: A \rightarrow F_{n}$, and $k \leq m \exists x \in C_{k}$ s.t $\varphi_{v, A}=\psi$

Extend the example

Show that $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v, A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)
For any $m \geq 1$ there exists partition of \mathcal{R}_{n} into $C_{1}, C_{2}, \ldots, C_{m}$ s.t.

1. Each C_{i} is isomorphic to \mathcal{R}_{n} and
2. for any finite $A \subset \mathcal{R}_{n}, \psi: A \rightarrow F_{n}$, and $k \leq m \exists x \in C_{k}$ s.t $\varphi_{v, A}=\psi$

Idea: Start with countable infinite set X

- partitioned into infinite sets $C_{1}, C_{2}, \ldots, C_{m}$

Extend the example

Show that $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v, A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)
For any $m \geq 1$ there exists partition of \mathcal{R}_{n} into $C_{1}, C_{2}, \ldots, C_{m}$ s.t.

1. Each C_{i} is isomorphic to \mathcal{R}_{n} and
2. for any finite $A \subset \mathcal{R}_{n}, \psi: A \rightarrow F_{n}$, and $k \leq m \exists x \in C_{k}$ s.t $\varphi_{v, A}=\psi$

Idea: Start with countable infinite set X

- partitioned into infinite sets $C_{1}, C_{2}, \ldots, C_{m}$
- Idea is to impose structure given by conditions

Extend the example

Show that $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ implies

- Q is directed set (upper bound for any pair)
- $\varphi_{v, A}$ colors of edges between v and $u \in A$

Lemma (Aranda, H., 2018+)
For any $m \geq 1$ there exists partition of \mathcal{R}_{n} into $C_{1}, C_{2}, \ldots, C_{m}$ s.t.

1. Each C_{i} is isomorphic to \mathcal{R}_{n} and
2. for any finite $A \subset \mathcal{R}_{n}, \psi: A \rightarrow F_{n}$, and $k \leq m \exists x \in C_{k}$ s.t $\varphi_{v, A}=\psi$

Idea: Start with countable infinite set X

- partitioned into infinite sets $C_{1}, C_{2}, \ldots, C_{m}$
- Idea is to impose structure given by conditions
- Enumerate
- all finite subsets of X as $\left\{Y_{i}: i \in \omega\right\}$
- all functions $t_{j}^{i}: Y_{i} \rightarrow F_{n}$ - there are $j \in\left\{2, \ldots,(n+1)^{\left|Y_{i}\right|}\right\}$

Extend the example dtto

Lemma (Aranda, H., 2018+)
For any $m \geq 1$ there exists partition of \mathcal{R}_{n} into $C_{1}, C_{2}, \ldots, C_{m}$ s.t.

1. Each C_{i} is isomorphic to \mathcal{R}_{n} and
2. for any finite $A \subset \mathcal{R}_{n}, \psi: A \rightarrow F_{n}$, and $k \leq m \exists x \in C_{k}$ s.t $\varphi_{v, A}=\psi$

We have enumerated subsets $\left\{Y_{i}: i \in \omega\right\}$ and colorings $t_{j}^{i}: Y_{i} \rightarrow F_{n}$

Extend the example dtto

Lemma (Aranda, H., 2018+)
For any $m \geq 1$ there exists partition of \mathcal{R}_{n} into $C_{1}, C_{2}, \ldots, C_{m}$ s.t.

1. Each C_{i} is isomorphic to \mathcal{R}_{n} and
2. for any finite $A \subset \mathcal{R}_{n}, \psi: A \rightarrow F_{n}$, and $k \leq m \exists x \in C_{k}$ s.t $\varphi_{v, A}=\psi$

We have enumerated subsets $\left\{Y_{i}: i \in \omega\right\}$ and colorings $t_{j}^{i}: Y_{i} \rightarrow F_{n}$ Step 0: Iterate Y_{s}

- in each class C_{r} choose vertex $v_{1, r}^{0}$
- insert edges s.t. $\varphi_{v_{1}^{0}, r}, \gamma_{0}=t_{1}^{0}$
- continue for $j \in\left\{2, \ldots,(n+1)^{\left|Y_{i}\right|}\right\}$

Extend the example dtto

Lemma (Aranda, H., 2018+)
For any $m \geq 1$ there exists partition of \mathcal{R}_{n} into $C_{1}, C_{2}, \ldots, C_{m}$ s.t.

1. Each C_{i} is isomorphic to \mathcal{R}_{n} and
2. for any finite $A \subset \mathcal{R}_{n}, \psi: A \rightarrow F_{n}$, and $k \leq m \exists x \in C_{k}$ s.t $\varphi_{v, A}=\psi$

We have enumerated subsets $\left\{Y_{i}: i \in \omega\right\}$ and colorings $t_{j}^{i}: Y_{i} \rightarrow F_{n}$ Step 0: Iterate Y_{s}

- in each class C_{r} choose vertex $v_{1, r}^{0}$
- insert edges s.t. $\varphi_{\vee_{1}, r}, Y_{0}=t_{1}^{0}$
- continue for $j \in\left\{2, \ldots,(n+1)^{\left|Y_{i}\right|}\right\}$

Step $s+1$ We have done constructions up to s

- corresponding to functions over Y_{s}
- Continue the same way with Y_{s+1} and t_{j}^{s+1}

Extend the example dtto

Lemma (Aranda, H., 2018+)

For any $m \geq 1$ there exists partition of \mathcal{R}_{n} into $C_{1}, C_{2}, \ldots, C_{m}$ s.t.

1. Each C_{i} is isomorphic to \mathcal{R}_{n} and
2. for any finite $A \subset \mathcal{R}_{n}, \psi: A \rightarrow F_{n}$, and $k \leq m \exists x \in C_{k}$ s.t $\varphi_{v, A}=\psi$

We have enumerated subsets $\left\{Y_{i}: i \in \omega\right\}$ and colorings $t_{j}^{i}: Y_{i} \rightarrow F_{n}$ Step 0: Iterate Y_{s}

- in each class C_{r} choose vertex $v_{1, r}^{0}$
- insert edges s.t. $\varphi_{\vee_{1}, r}, Y_{0}=t_{1}^{0}$
- continue for $j \in\left\{2, \ldots,(n+1)^{\left|Y_{i}\right|}\right\}$

Step $s+1$ We have done constructions up to s

- corresponding to functions over Y_{s}
- Continue the same way with Y_{s+1} and t_{j}^{s+1}

Note that

- Each point of construction uses only finitely many elements - it's possible
- Condition 2. satisfied by construction and 1. follows

$\mathbf{M H}_{P, Q}$-colored graph being $\mathbf{M H}$ but not $\mathbf{H H}$

Lemma (Aranda, H., 2018)
Let P and Q be finite partially ordered sets. If $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$, then Q is a directed set.

$\mathrm{MH}_{P, Q}$-colored graph being $\mathbf{M H}$ but not $\mathbf{H H}$

Lemma (Aranda, H., 2018)
Let P and Q be finite partially ordered sets. If $\mathbf{M H}_{P, Q}=\mathbf{H}_{P, Q}$, then Q is a directed set.

Basic idea: Prove contrapositive: Q is not directed set

- Q has maximal elements R_{1}, \ldots, R_{n}
- $|P|=m$
- Let M_{0} be Fraïssé limit of graphs colored by F_{n}

$\mathbf{M H}_{P, Q}$-colored graph being $\mathbf{M H}$ but not $\mathbf{H H}$

Lemma (Aranda, H., 2018)
Let P and Q be finite partially ordered sets. If $\mathbf{M H}_{P, Q}=\mathbf{H}_{P, Q}$, then Q is a directed set.

Basic idea: Prove contrapositive: Q is not directed set

- Q has maximal elements R_{1}, \ldots, R_{n}
- $|P|=m$
- Let M_{0} be Fraïssé limit of graphs colored by F_{n}
- Partition M_{0} as in previous lemma
- Elements of P are e_{1}, \ldots, e_{m} and assign $e_{i} \rightarrow C_{i}$

$\mathrm{MH}_{P, Q}$-colored graph being $\mathbf{M H}$ but not $\mathbf{H H}$

Lemma (Aranda, H., 2018)
Let P and Q be finite partially ordered sets. If $\mathbf{M H}_{P, Q}=\mathbf{H}_{P, Q}$, then Q is a directed set.

Basic idea: Prove contrapositive: Q is not directed set

- Q has maximal elements R_{1}, \ldots, R_{n}
- $|P|=m$
- Let M_{0} be Fraïssé limit of graphs colored by F_{n}
- Partition M_{0} as in previous lemma
- Elements of P are e_{1}, \ldots, e_{m} and assign $e_{i} \rightarrow C_{i}$
- Add edges of non-maximal colors s.t.
$-\geq 1$ non-edge between vertices of equal color remains
- This contradicts HH

$\mathrm{MH}_{P, Q}$-colored graph being $\mathbf{M H}$ but not $\mathbf{H H}$

Lemma (Aranda, H., 2018)
Let P and Q be finite partially ordered sets. If $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$, then Q is a directed set.

Basic idea: Prove contrapositive: Q is not directed set

- Q has maximal elements R_{1}, \ldots, R_{n}
- $|P|=m$
- Let M_{0} be Fraïssé limit of graphs colored by F_{n}
- Partition M_{0} as in previous lemma
- Elements of P are e_{1}, \ldots, e_{m} and assign $e_{i} \rightarrow C_{i}$
- Add edges of non-maximal colors s.t.
$-\geq 1$ non-edge between vertices of equal color remains
- This contradicts HH
- extension property $\left(\diamond_{n}\right)$ imply $\mathbf{M H}$

$\mathbf{M H}_{P, Q}$-colored graph being $\mathbf{M H}$ but not $\mathbf{H H}$

Lemma (Aranda, H., 2018)
Let P and Q be finite partially ordered sets. If $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$, then Q is a directed set.

Basic idea: Prove contrapositive: Q is not directed set

- Q has maximal elements R_{1}, \ldots, R_{n}
- $|P|=m$
- Let M_{0} be Fraïssé limit of graphs colored by F_{n}
- Partition M_{0} as in previous lemma
- Elements of P are e_{1}, \ldots, e_{m} and assign $e_{i} \rightarrow C_{i}$
- Add edges of non-maximal colors s.t.
$-\geq 1$ non-edge between vertices of equal color remains
- This contradicts HH
- extension property $\left(\diamond_{n}\right)$ imply $\mathbf{M H}$

What about sufficient condition for equality of classes?

Coloring using diamond

Construction of example structure M

1. Start with infinite clique K_{ω} in color $\mathbb{1}$

Coloring using diamond

Construction of example structure M

1. Start with infinite clique K_{ω} in color $\mathbb{1}$
2. Subdivide it into 3 infinite cliques $M_{x} ; x \in\{a, b, c\}$

Coloring using diamond

Construction of example structure M

1. Start with infinite clique K_{ω} in color $\mathbb{1}$
2. Subdivide it into 3 infinite cliques $M_{x} ; x \in\{a, b, c\}$
3. Add $T=\{a, b, c\}$ and connect it to "adjacent" M_{\times}(using $\mathbb{1}$)

Coloring using diamond

Construction of example structure M

1. Start with infinite clique K_{ω} in color $\mathbb{1}$
2. Subdivide it into 3 infinite cliques $M_{x} ; x \in\{a, b, c\}$
3. Add $T=\{a, b, c\}$ and connect it to "adjacent" M_{x} (using $\mathbb{1}$)
4. Subdivide each clique M_{x} into two infinite cliques M_{x}^{0} and M_{x}^{1}

Coloring using diamond

Construction of example structure M

1. Start with infinite clique K_{ω} in color $\mathbb{1}$
2. Subdivide it into 3 infinite cliques $M_{x} ; x \in\{a, b, c\}$
3. Add $T=\{a, b, c\}$ and connect it to "adjacent" M_{x} (using $\mathbb{1}$)
4. Subdivide each clique M_{x} into two infinite cliques M_{x}^{0} and M_{x}^{1}
5. M_{x}^{0} connect counter-clockwise to T

Coloring using diamond

Construction of example structure M

1. Start with infinite clique K_{ω} in color $\mathbb{1}$
2. Subdivide it into 3 infinite cliques $M_{x} ; x \in\{a, b, c\}$
3. Add $T=\{a, b, c\}$ and connect it to "adjacent" M_{x} (using $\mathbb{1}$)
4. Subdivide each clique M_{x} into two infinite cliques M_{x}^{0} and M_{x}^{1}
5. M_{x}^{0} connect counter-clockwise to T
6. M_{x}^{0} connect clockwise to T

Coloring using diamond

Construction of example structure M

1. Start with infinite clique K_{ω} in color $\mathbb{1}$
2. Subdivide it into 3 infinite cliques $M_{x} ; x \in\{a, b, c\}$
3. Add $T=\{a, b, c\}$ and connect it to "adjacent" M_{x} (using $\mathbb{1}$)
4. Subdivide each clique M_{x} into two infinite cliques M_{x}^{0} and M_{x}^{1}
5. M_{x}^{0} connect counter-clockwise to T
6. M_{x}^{0} connect clockwise to T
7. M_{x}^{1} connect clockwise to T

Coloring using diamond

Construction of example structure M

1. Start with infinite clique K_{ω} in color $\mathbb{1}$
2. Subdivide it into 3 infinite cliques $M_{x} ; x \in\{a, b, c\}$
3. Add $T=\{a, b, c\}$ and connect it to "adjacent" M_{x} (using $\mathbb{1}$)
4. Subdivide each clique M_{x} into two infinite cliques M_{x}^{0} and M_{x}^{1}
5. M_{x}^{0} connect counter-clockwise to T
6. M_{x}^{0} connect clockwise to T
7. M_{x}^{1} connect clockwise to T
8. M_{x}^{1} connect counter-clockwise to T

Homomorphism-homogeneity of M
Proposition
M is $\mathbf{M H}$ and not $\mathbf{H H}$.

Homomorphism-homogeneity of M

Proposition

M is $\mathbf{M H}$ and not $\mathbf{H H}$.

- M is not $\mathbf{H H}$ note that the homomorphism

$$
a \mapsto a, b \mapsto a, c \mapsto c
$$

not extendable to $d \in M_{c}^{0}$
(would have to be common neighbor of a and c)

Homomorphism-homogeneity of M

Proposition

M is $\mathbf{M H}$ and not $\mathbf{H H}$.

- M is not $\mathbf{H H}$ note that the homomorphism

$$
a \mapsto a, b \mapsto a, c \mapsto c
$$

not extendable to $d \in M_{c}^{0}$
(would have to be common neighbor of a and c)

- M is MH

Look at image of monomorphism $f: H \rightarrow H^{\prime}$

1. Any finite A with at most 1 vertex from $\{a, b, c\}$ A have infinitely many cones

Homomorphism-homogeneity of M

Proposition

M is $\mathbf{M H}$ and not $\mathbf{H H}$.

- M is not $\mathbf{H H}$ note that the homomorphism

$$
a \mapsto a, b \mapsto a, c \mapsto c
$$

not extendable to $d \in M_{c}^{0}$
(would have to be common neighbor of a and c)

- M is MH

Look at image of monomorphism $f: H \rightarrow H^{\prime}$

1. Any finite A with at most 1 vertex from $\{a, b, c\}$
A have infinitely many cones
2. For $f \upharpoonright\{a, b, c\}$ bijection

Sets M_{x} are mapped to $M_{f(x)}$

Homomorphism-homogeneity of M

Proposition

M is $\mathbf{M H}$ and not $\mathbf{H H}$.

- M is not HH
note that the homomorphism

$$
a \mapsto a, b \mapsto a, c \mapsto c
$$

not extendable to $d \in M_{c}^{0}$
(would have to be common neighbor of a and c)

- M is $\mathbf{M H}$

Look at image of monomorphism $f: H \rightarrow H^{\prime}$

1. Any finite A with at most 1 vertex from $\{a, b, c\}$
A have infinitely many cones
2. For $f \upharpoonright\{a, b, c\}$ bijection Sets M_{x} are mapped to $M_{f(x)}$

Assume image of f to have exactly 2 elements

- from $\{a, b, c\}$ - say b, c
- study effect of f on $\{a, b, c\}$ (case analysis)

Sufficient condition

Theorem (Aranda, H., 2018+)
Let P and Q be finite partially ordered sets. $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ iff Q is a linear order.

Sufficient condition

Theorem (Aranda, H., 2018+)
Let P and Q be finite partially ordered sets. $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ iff Q is a linear order.

Forward idea: Q is a linear order:

- Take arbitrary $\mathbf{M H}_{P, Q}$-colored graph G

Sufficient condition

Theorem (Aranda, H., 2018+)
Let P and Q be finite partially ordered sets. $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ iff Q is a linear order.

Forward idea: Q is a linear order:

- Take arbitrary $\mathbf{M H}_{P, Q}$-colored graph G
- Let $f: H \rightarrow H^{\prime}$ be homomorphism to H^{\prime}

Sufficient condition

Theorem (Aranda, H., 2018+)
Let P and Q be finite partially ordered sets. $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ iff Q is a linear order.

Forward idea: Q is a linear order:

- Take arbitrary $\mathbf{M H}_{P, Q}$-colored graph G
- Let $f: H \rightarrow H^{\prime}$ be homomorphism to H^{\prime}
- Let H_{i} be enumeration of preimages

Sufficient condition

Theorem (Aranda, H., 2018+)
Let P and Q be finite partially ordered sets. $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ iff Q is a linear order.

Forward idea: Q is a linear order:

- Take arbitrary $\mathbf{M H}_{P, Q}$-colored graph G
- Let $f: H \rightarrow H^{\prime}$ be homomorphism to H^{\prime}
- Let H_{i} be enumeration of preimages
- Let $u \in G \backslash H$ and Let S be all transversals and

- Choose s^{0} such that $\forall s \in S$ s.t. $\varphi_{u, s} \preceq \varphi_{u, s^{0}}$
- Note that Q is linear order

Sufficient condition

Theorem (Aranda, H., 2018+)
Let P and Q be finite partially ordered sets. $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ iff Q is a linear order.

Forward idea: Q is a linear order:

- Take arbitrary $\mathbf{M H}_{P, Q}$-colored graph G
- Let $f: H \rightarrow H^{\prime}$ be homomorphism to H^{\prime}
- Let H_{i} be enumeration of preimages
- Let $u \in G \backslash H$ and Let S be all transversals and

- Choose s^{0} such that $\forall s \in S$ s.t. $\varphi_{u, s} \preceq \varphi_{u, s^{0}}$
- Note that Q is linear order
- Each function of the form $f \upharpoonright s$ with $s \in S$ is a monomorphism
- Can be extended as G is $\mathrm{MH}_{P, Q}$

Sufficient condition

Theorem (Aranda, H., 2018+)
Let P and Q be finite partially ordered sets. $\mathbf{M H}_{P, Q}=\mathbf{H H}_{P, Q}$ iff Q is a linear order.

Forward idea: Q is a linear order:

- Take arbitrary $\mathbf{M H}_{P, Q}$-colored graph G
- Let $f: H \rightarrow H^{\prime}$ be homomorphism to H^{\prime}
- Let H_{i} be enumeration of preimages
- Let $u \in G \backslash H$ and Let S be all transversals and

- Choose s^{0} such that $\forall s \in S$ s.t. $\varphi_{u, s} \preceq \varphi_{u, s^{0}}$
- Note that Q is linear order
- Each function of the form $f \upharpoonright s$ with $s \in S$ is a monomorphism
- Can be extended as G is $\mathrm{MH}_{P, Q}$
- use another realization of s^{0} so $f \cup\left\{\left(u,\left(f \upharpoonright s^{0}\right)\left(u_{0}\right)\right\}\right.$

Extended example

Backward idea: If Q is not linear then $\exists M$ s.t. M is $M_{P, Q}$ but not $H_{P, Q}$ We know that Q is finite directed set

- Let top element be $\mathbb{1}$ and let P_{1}, \ldots, P_{n} be top elements $Q \backslash \mathbb{1}$

Extended example

Backward idea: If Q is not linear then $\exists M$ s.t. M is $M_{P, Q}$ but not $H_{P, Q}$ We know that Q is finite directed set

- Let top element be $\mathbb{1}$ and let P_{1}, \ldots, P_{n} be top elements $Q \backslash \mathbb{1}$

Construct M which is connected in $\mathbb{1}$ as well as P_{i}

- Start with M_{1} Rado graph in maximal color

Extended example

Backward idea: If Q is not linear then $\exists M$ s.t. M is $M_{P, Q}$ but not $H_{P, Q}$ We know that Q is finite directed set

- Let top element be $\mathbb{1}$ and let P_{1}, \ldots, P_{n} be top elements $Q \backslash \mathbb{1}$

Construct M which is connected in $\mathbb{1}$ as well as P_{i}

- Start with M_{1} Rado graph in maximal color
- Partition M_{1} into n ! sets and fill all non-edges with colors from Q s.t. all are used (meeting condition from lemma)

Extended example

Backward idea: If Q is not linear then $\exists M$ s.t. M is $M_{P, Q}$ but not $H_{P, Q}$ We know that Q is finite directed set

- Let top element be $\mathbb{1}$ and let P_{1}, \ldots, P_{n} be top elements $Q \backslash \mathbb{1}$

Construct M which is connected in $\mathbb{1}$ as well as P_{i}

- Start with M_{1} Rado graph in maximal color
- Partition M_{1} into n ! sets and fill all non-edges with colors from Q s.t. all are used (meeting condition from lemma)
- Create $n+1$ such M_{i}

$$
\begin{array}{lllll}
M_{1} & M_{2} & M_{3} & M_{n} & M_{n+1}
\end{array}
$$

Extended example

Backward idea: If Q is not linear then $\exists M$ s.t. M is $M_{P, Q}$ but not $H_{P, Q}$ We know that Q is finite directed set

- Let top element be $\mathbb{1}$ and let P_{1}, \ldots, P_{n} be top elements $Q \backslash \mathbb{1}$

Construct M which is connected in $\mathbb{1}$ as well as P_{i}

- Start with M_{1} Rado graph in maximal color
- Partition M_{1} into n ! sets and fill all non-edges with colors from Q s.t. all are used (meeting condition from lemma)
- Create $n+1$ such M_{i}
- Add new vertices $x_{1}, x_{2}, \ldots, x_{n+1}$

$$
\begin{array}{lllll}
M_{1} & M_{2} & M_{3} & M_{n} & M_{n+1}
\end{array}
$$

Extended example

Backward idea: If Q is not linear then $\exists M$ s.t. M is $M_{P, Q}$ but not $H_{P, Q}$ We know that Q is finite directed set

- Let top element be $\mathbb{1}$ and let P_{1}, \ldots, P_{n} be top elements $Q \backslash \mathbb{1}$

Construct M which is connected in $\mathbb{1}$ as well as P_{i}

- Start with M_{1} Rado graph in maximal color
- Partition M_{1} into n ! sets and fill all non-edges with colors from Q s.t. all are used (meeting condition from lemma)
- Create $n+1$ such M_{i}
- Add new vertices $x_{1}, x_{2}, \ldots, x_{n+1}$
- Connect $M_{i} \sim_{\mathbb{1}} M_{j}, j \neq i$ and $x_{i} \sim_{\mathbb{1}} v, v \in M_{i}$

Extended example

Backward idea: If Q is not linear then $\exists M$ s.t. M is $M_{P, Q}$ but not $H_{P, Q}$ We know that Q is finite directed set

- Let top element be $\mathbb{1}$ and let P_{1}, \ldots, P_{n} be top elements $Q \backslash \mathbb{1}$

Construct M which is connected in $\mathbb{1}$ as well as P_{i}

- Start with M_{1} Rado graph in maximal color
- Partition M_{1} into n ! sets and fill all non-edges with colors from Q s.t. all are used (meeting condition from lemma)
- Create $n+1$ such M_{i}
- Add new vertices $x_{1}, x_{2}, \ldots, x_{n+1}$
- Connect $M_{i} \sim_{\mathbb{1}} M_{j}, j \neq i$ and $x_{i} \sim_{\mathbb{1}} v, v \in M_{i}$
- Connect x_{i} to parititions of M_{j} s.t. x_{i} is connected in any combination of colors to all $M_{j}, j \neq i$

Connect x_{j} and M_{i}

Coloring edges between x_{j} and M_{i}

- Indices of parts of M_{i} corresponds to $\sigma \in S_{n}$, i.e.

$$
M=\bigcup_{\sigma \in S_{n}} M_{i}^{\sigma}
$$

Connect x_{j} and M_{i}

Coloring edges between x_{j} and M_{i}

- Indices of parts of M_{i} corresponds to $\sigma \in S_{n}$, i.e.

$$
M=\bigcup_{\sigma \in S_{n}} M_{i}^{\sigma}
$$

- For edges between x_{j} and M_{i} define color choosing function

$$
c_{i}:\left\{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right\} \rightarrow\{1,2, \ldots, n\}
$$

Connect x_{j} and M_{i}

Coloring edges between x_{j} and M_{i}

- Indices of parts of M_{i} corresponds to $\sigma \in S_{n}$, i.e.

$$
M=\bigcup_{\sigma \in S_{n}} M_{i}^{\sigma}
$$

- For edges between x_{j} and M_{i} define color choosing function

$$
c_{i}:\left\{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right\} \rightarrow\{1,2, \ldots, n\}
$$

- Color M_{i}^{σ} and x_{j} by $P_{\sigma\left(c_{i}\left(x_{j}\right)\right)}$

Connect x_{j} and M_{i}

Coloring edges between x_{j} and M_{i}

- Indices of parts of M_{i} corresponds to $\sigma \in S_{n}$, i.e.

$$
M=\bigcup_{\sigma \in S_{n}} M_{i}^{\sigma}
$$

- For edges between x_{j} and M_{i} define color choosing function

$$
c_{i}:\left\{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right\} \rightarrow\{1,2, \ldots, n\}
$$

- Color M_{i}^{σ} and x_{j} by $P_{\sigma\left(c_{i}\left(x_{j}\right)\right)}$

This construction generalize

Extended example - properties

Backward idea - homomorphism-homogeneity of M :
M is not $\mathbf{H H}_{P, Q}$

- x_{i} and x_{j} are in distance 3 in $\mathbb{1}$
- Take distinct $j, k, \ell \in\{1, \ldots, n+1\}$
- Local homomorphism

$$
x_{k} \mapsto x_{k}, x_{\ell} \mapsto x_{k}, x_{j} \mapsto x_{j}
$$

cannot be extended

- $P_{i_{1}}$ and $P_{i_{2}}$ has only $\mathbb{1}$ above

Extended example - properties

Backward idea - homomorphism-homogeneity of M :
M is not $\mathbf{H H}_{P, Q}$

- x_{i} and x_{j} are in distance 3 in $\mathbb{1}$
- Take distinct $j, k, \ell \in\{1, \ldots, n+1\}$
- Local homomorphism $x_{k} \mapsto x_{k}, x_{\ell} \mapsto x_{k}, x_{j} \mapsto x_{j}$ cannot be extended
- $P_{i_{1}}$ and $P_{i_{2}}$ has only $\mathbb{1}$ above

M is $\mathbf{M H}_{P, Q}$ Let $f: H \rightarrow K$ be surjective monomorphism
- If $\left|K \cap\left\{x_{1}, \ldots, x_{n+1}\right\}\right| \leq 1$ we have infinitely many cones
- Assume K contains at least two vertices from $\left\{x_{1}, \ldots, x_{n+1}\right\}$
- Note that $x_{i} x_{j}$ is only non-edge in M, i.e.
- its preimage is contained in $\left\{x_{1}, \ldots, x_{n+1}\right\}$

Final claim finishing the proof

Claim
Given any $F \subset M \backslash\left\{x_{1}, \ldots, x_{n+1}\right\}, S \subseteq\left\{x_{1}, \ldots, x_{n+1}\right\}$ and injective $t: S \rightarrow\left\{\mathbb{1}, P_{1}, \ldots, P_{n}\right\}$, there $\exists v \in M$ that is connected to all of F by edges of type $\mathbb{1}$ and satisfies t over S, i.e., $\varphi_{v, S}=t$.

Final claim finishing the proof

Claim
Given any $F \subset M \backslash\left\{x_{1}, \ldots, x_{n+1}\right\}, S \subseteq\left\{x_{1}, \ldots, x_{n+1}\right\}$ and injective $t: S \rightarrow\left\{\mathbb{1}, P_{1}, \ldots, P_{n}\right\}$, there $\exists v \in M$ that is connected to all of F by edges of type $\mathbb{1}$ and satisfies t over S, i.e., $\varphi_{v, S}=t$.

For $v_{i} \in M_{i}$ and any F

- $v_{i} \sim_{\mathbb{1}} u$ for $u \in M_{j} \cup F$ for $j \neq i$ by construction of M
- $v_{i} \sim_{\mathbb{1}} u$ for $u \in M_{i} \cup F$ by Rado-ness of M_{i}

For injective t

- using $\mathbb{1}$ for x_{i} choose v from M_{i} connected correctly (correct σ)
- others similarly

Using the claim

Claim
Given any $F \subset M \backslash\left\{x_{1}, \ldots, x_{n+1}\right\}$,
$S \subseteq\left\{x_{1}, \ldots, x_{n+1}\right\}$ and injective $t: S \rightarrow\left\{1, P_{1}, \ldots, P_{n}\right\}$, there $\exists v \in M$ that is connected to all of F by edges of type $\mathbb{1}$ and satisfies t over S, i.e., $\varphi_{v, S}=t$.

Using the claim

Claim
Given any $F \subset M \backslash\left\{x_{1}, \ldots, x_{n+1}\right\}$,
$S \subseteq\left\{x_{1}, \ldots, x_{n+1}\right\}$ and injective
$t: S \rightarrow\left\{\mathbb{1}, P_{1}, \ldots, P_{n}\right\}$, there $\exists v \in M$ that is connected to all of F by edges of type $\mathbb{1}$ and satisfies t over S, i.e., $\varphi_{v, S}=t$.

We use this claim to proof that M is $\mathbf{M H}_{P, Q}$
Extending $f: H \rightarrow K$

- Suffice to show one vertex extension, i.e. For v being connected as $\varphi_{v, H}$ to w

Using the claim

Claim
Given any $F \subset M \backslash\left\{x_{1}, \ldots, x_{n+1}\right\}$,
$S \subseteq\left\{x_{1}, \ldots, x_{n+1}\right\}$ and injective
$t: S \rightarrow\left\{\mathbb{1}, P_{1}, \ldots, P_{n}\right\}$, there $\exists v \in M$ that is connected to all of F by edges of type $\mathbb{1}$ and satisfies t over S, i.e., $\varphi_{v, S}=t$.

We use this claim to proof that M is $\mathbf{M H}_{P, Q}$
Extending $f: H \rightarrow K$

- Suffice to show one vertex extension, i.e. For v being connected as $\varphi_{v, H}$ to w
- $S=K \cap\left\{x_{1}, \ldots, x_{n+1}\right\}, F=K \backslash S$ (note that preimages of x_{i} are from $\left\{x_{1}, \ldots, x_{n+1}\right\}$)
- funtion t given by $t\left(x_{i}\right)=\xi\left(v, f^{-1}\left(x_{i}\right)\right)$

Using the claim

Claim
Given any $F \subset M \backslash\left\{x_{1}, \ldots, x_{n+1}\right\}$,
$S \subseteq\left\{x_{1}, \ldots, x_{n+1}\right\}$ and injective
$t: S \rightarrow\left\{1, P_{1}, \ldots, P_{n}\right\}$, there $\exists v \in M$ that is connected to all of F by edges of type $\mathbb{1}$ and satisfies t over S, i.e., $\varphi_{v, S}=t$.

We use this claim to proof that M is $\mathbf{M H}_{P, Q}$
Extending $f: H \rightarrow K$

- Suffice to show one vertex extension, i.e. For v being connected as $\varphi_{v, H}$ to w
- $S=K \cap\left\{x_{1}, \ldots, x_{n+1}\right\}, F=K \backslash S$ (note that preimages of x_{i} are from $\left\{x_{1}, \ldots, x_{n+1}\right\}$)
- funtion t given by $t\left(x_{i}\right)=\xi\left(v, f^{-1}\left(x_{i}\right)\right)$

Claim provides a vertex w satisfying t over S and connected by $\mathbb{1}$ to F

- Thus extending f

Thank you

