An abstract formalism for strategical Ramsey theory

Noé de Rancourt

Université Paris VII. IMJ-PRG

Workshop "Unifying Themes in Ramsey Theory" BIRS, November 23, 2018

Infinite-dimensional Ramsey theory is about coloring infinite sequences of objects, and finding monochromatic subspaces.

Infinite-dimensional Ramsey theory is about coloring infinite sequences of objects, and finding monochromatic subspaces.

Theorem (Silver)

Let \mathcal{X} be an analytic set of infinite subsets of \mathbb{N} . Then there exists $M \subset \mathbb{N}$ infinite such that:

- either for every infinite $A \subseteq M$, we have $A \in \mathcal{X}$;
- or for every infinite $A \subseteq M$, we have $A \notin \mathcal{X}$.

Infinite-dimensional Ramsey theory is about coloring infinite sequences of objects, and finding monochromatic subspaces.

Theorem (Silver)

Let \mathcal{X} be an analytic set of infinite subsets of \mathbb{N} . Then there exists $M \subset \mathbb{N}$ infinite such that:

- either for every infinite $A \subseteq M$, we have $A \in \mathcal{X}$;
- or for every infinite $A \subseteq M$, we have $A \notin \mathcal{X}$.

Here, the set M is generally viewed as a element of a forcing poset, whereas the set A is viewed as an increasing sequence of integers.

Fix k an at most countable field. Let $E = k^{(\mathbb{N})}$ be the countably infinite-dimensional vector space over k, with canonical basis $(e_i)_{i \in \mathbb{N}}$. Recall that a block-sequence of E is a sequence $(x_n)_{n \in \mathbb{N}}$ of nonzero successive vectors of E, i.e. such that $\operatorname{supp}(x_0) < \operatorname{supp}(x_1) < \dots$ (where $\operatorname{supp}(\sum_{i \in \mathbb{N}} a_i e_i) = \{i \in \mathbb{N} \mid a_i \neq 0\}$).

Fix k an at most countable field. Let $E=k^{(\mathbb{N})}$ be the countably infinite-dimensional vector space over k, with canonical basis $(e_i)_{i\in\mathbb{N}}$. Recall that a block-sequence of E is a sequence $(x_n)_{n\in\mathbb{N}}$ of nonzero successive vectors of E, i.e. such that $\operatorname{supp}(x_0)<\operatorname{supp}(x_1)<\ldots$ (where $\operatorname{supp}(\sum_{i\in\mathbb{N}}a_ie_i)=\{i\in\mathbb{N}\mid a_i\neq 0\}$).

Theorem (Milliken)

Suppose $k = \mathbb{F}_2$. Let \mathcal{X} be an analytic set of block-sequences of E. Then there exists an infinite-dimensional subspace F of E such that:

- either every block-sequence of F belongs to X;
- or every block-sequence of F belongs to \mathcal{X}^c .

A pigeonhole principle is a one-dimensional Ramsey result, i.e. a Ramsey result where you color objects.

The pigeonhole principle associated to Silver's theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.

The pigeonhole principle associated to Silver's theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.

The pigeonhole principle associated to Milliken's theorem is:

Theorem (Hindman)

Suppose $k = \mathbb{F}_2$. For every $A \subseteq E \setminus \{0\}$, there exists an infinite-dimensional subspace F of E such that either $F \setminus \{0\} \subseteq A$, or $F \setminus \{0\} \subseteq A^c$.

The pigeonhole principle associated to Silver's theorem is the following: for every coloring of the integers with two colors, there exists an infinite monochromatic subset.

The pigeonhole principle associated to Milliken's theorem is:

Theorem (Hindman)

Suppose $k = \mathbb{F}_2$. For every $A \subseteq E \setminus \{0\}$, there exists an infinite-dimensional subspace F of E such that either $F \setminus \{0\} \subseteq A$, or $F \setminus \{0\} \subseteq A^c$.

Can we still get something interesting without pigeonhole principle?

Let P be a set (the set of subspaces) and \leq and \leq * be two quasi-orderings on P, satisfying:

- for every $p, q \in P$, if $p \leqslant q$, then $p \leqslant^* q$;
- ② for every $p, q \in P$, if $p \leq^* q$, then there exists $r \in P$ such that $r \leq p$, $r \leq q$ and $p \leq^* r$;
- **③** for every ≤-decreasing sequence $(p_i)_{i \in \mathbb{N}}$ of elements of P, there exists $p^* \in P$ such that for all $i \in \mathbb{N}$, we have $p^* \leq^* p_i$;

Write $p \leq q$ for $p \leq q$ and $q \leq^* p$.

Let P be a set (the set of subspaces) and \leq and \leq * be two quasi-orderings on P, satisfying:

- for every $p, q \in P$, if $p \leqslant q$, then $p \leqslant^* q$;
- ② for every $p, q \in P$, if $p \leq^* q$, then there exists $r \in P$ such that $r \leq p$, $r \leq q$ and $p \leq^* r$;
- **②** for every \leq -decreasing sequence $(p_i)_{i \in \mathbb{N}}$ of elements of P, there exists $p^* \in P$ such that for all $i \in \mathbb{N}$, we have $p^* \leq^* p_i$;

Write $p \leq q$ for $p \leq q$ and $q \leq^* p$.

Let X be an at most countable set (the set of points) and $\triangleleft \subseteq X \times P$ a binary relation, satisfying:

- for every $p \in P$, there exists $x \in X$ such that $x \triangleleft p$.
- for every $x \in X$ and every $p, q \in P$, if $x \triangleleft p$ and $p \leqslant q$, then $x \triangleleft q$.

Let P be a set (the set of subspaces) and \leq and \leq * be two quasi-orderings on P, satisfying:

- for every $p, q \in P$, if $p \leqslant q$, then $p \leqslant^* q$;
- ② for every $p, q \in P$, if $p \leq^* q$, then there exists $r \in P$ such that $r \leq p$, $r \leq q$ and $p \leq^* r$;
- **②** for every \leq -decreasing sequence $(p_i)_{i \in \mathbb{N}}$ of elements of P, there exists $p^* \in P$ such that for all $i \in \mathbb{N}$, we have $p^* \leq^* p_i$;

Write $p \leq q$ for $p \leq q$ and $q \leq^* p$.

Let X be an at most countable set (the set of points) and $\triangleleft \subseteq X \times P$ a binary relation, satisfying:

- for every $p \in P$, there exists $x \in X$ such that $x \triangleleft p$.
- **⑤** for every $x \in X$ and every $p, q \in P$, if $x \triangleleft p$ and $p \leqslant q$, then $x \triangleleft q$.

The quintuple $\mathcal{G} = (P, X, \leq, \leq^*, \lhd)$ is called a Gowers space.

Two examples

- The Silver space:
 - $X = \mathbb{N}$:
 - P is the set of infinite subsets of \mathbb{N} ;
 - ≤ is the inclusion;
 - ≤* is the inclusion-by-finite;
 - ullet \lhd the membership relation.

Two examples

- The Silver space:
 - $X = \mathbb{N}$:
 - P is the set of infinite subsets of N;
 - ≤ is the inclusion;
 - ≤* is the inclusion-by-finite;
 - ¬ the membership relation.
- 2 The Rosendal space over an at most countable field k:
 - X = E is a countably-infinite-dimensional vector space over k;
 - *P* is the set of infinite-dimensional subspaces of *E*;
 - ≤ is the inclusion;
 - \leq * is the inclusion up to finite dimension ($F \leq$ * G iff $F \cap G$ has finite codimension in F);
 - ¬ is the membership relation.

The pigeonhole principle

Definition

The space \mathcal{G} is said to satisfy the pigeonhole principle if for every $A \subseteq X$ and every $p \in P$, there exists $q \leqslant p$ such that either for all $x \lhd q$, we have $x \in A$, or for all $x \lhd q$, we have $x \in A^c$.

Asymptotic games

Definition

Let $p \in P$. The asymptotic game below p, denoted by F_p , is the following two-players game:

The outcome of the game is the sequence $(x_i)_{i\in\mathbb{N}}\in X^{\mathbb{N}}$.

Asymptotic games

Definition

Let $p \in P$. The asymptotic game below p, denoted by F_p , is the following two-players game:

The outcome of the game is the sequence $(x_i)_{i\in\mathbb{N}}\in X^{\mathbb{N}}$.

Saying that I has a strategy to reach $\mathcal{X} \subseteq X^{\mathbb{N}}$ in F_p means that "almost every" sequence below p belongs to \mathcal{X} .

Asymptotic games

Definition

Let $p \in P$. The asymptotic game below p, denoted by F_p , is the following two-players game:

The outcome of the game is the sequence $(x_i)_{i\in\mathbb{N}}\in X^{\mathbb{N}}$.

Saying that I has a strategy to reach $\mathcal{X} \subseteq X^{\mathbb{N}}$ in F_p means that "almost every" sequence below p belongs to \mathcal{X} .

In the Silver space, we have the following:

Proposition

If $\mathcal{X} \subseteq \mathbb{N}^{\mathbb{N}}$ is such that I has a strategy to reach \mathcal{X} in F_M , then there exists $N \subseteq M$ infinite such that every increasing sequence of elements of N belongs to \mathcal{X} .

The abstract Silver's theorem

So this is an equivalent formulation of Silver's theorem:

Theorem

For every analytic $\mathcal{X} \subseteq \mathbb{N}^{\mathbb{N}}$, there exists $M \subseteq \mathbb{N}$ infinite such that:

- either I has a strategy in F_M to reach \mathcal{X}^c ;
- or I has a strategy in F_M to reach \mathcal{X} .

The abstract Silver's theorem

So this is an equivalent formulation of Silver's theorem:

Theorem

For every analytic $\mathcal{X} \subseteq \mathbb{N}^{\mathbb{N}}$, there exists $M \subseteq \mathbb{N}$ infinite such that:

- either I has a strategy in F_M to reach \mathcal{X}^c ;
- or I has a strategy in F_M to reach \mathcal{X} .

In general, we have:

Theorem (Abstract Silver's)

Suppose that the space \mathcal{G} satisfies the pigeonhole principle. Let $p \in P$ and $\mathcal{X} \subseteq X^{\mathbb{N}}$ be analytic. Then there exists $q \leqslant p$ such that:

- either I has a strategy in F_a to reach \mathcal{X}^c ;
- or I has a strategy in F_a to reach \mathcal{X} .

Definition

Let $p \in P$. Gowers' game below p, denoted by G_p , is the following two-players game:

The outcome of the game is the sequence $(x_i)_{i\in\mathbb{N}}\in X^{\mathbb{N}}$.

Definition

Let $p \in P$. Gowers' game below p, denoted by G_p , is the following two-players game:

The outcome of the game is the sequence $(x_i)_{i\in\mathbb{N}}\in X^{\mathbb{N}}$.

We have the following implication : if I has a strategy to reach \mathcal{X} in F_p , then II has a strategy to reach \mathcal{X} in G_p .

Definition

Let $p \in P$. Gowers' game below p, denoted by G_p , is the following two-players game:

The outcome of the game is the sequence $(x_i)_{i\in\mathbb{N}}\in X^{\mathbb{N}}$.

We have the following implication : if I has a strategy to reach \mathcal{X} in F_p , then II has a strategy to reach \mathcal{X} in G_p . Under the pigeonhole principle, the converse is true up to taking a subspace.

Definition

Let $p \in P$. Gowers' game below p, denoted by G_p , is the following two-players game:

The outcome of the game is the sequence $(x_i)_{i\in\mathbb{N}}\in X^{\mathbb{N}}$.

We have the following implication : if I has a strategy to reach \mathcal{X} in F_p , then II has a strategy to reach \mathcal{X} in G_p . Under the pigeonhole principle, the converse is true up to taking a subspace.

Theorem (Abstract Rosendal's)

Let $p \in P$ and $\mathcal{X} \subseteq X^{\mathbb{N}}$ be analytic. Then there exists $q \leqslant p$ such that:

- either I has a strategy in F_q to reach \mathcal{X}^c ;
- or II has a strategy in G_q to reach \mathcal{X} .

Gowers spaces are great for doing local Ramsey theory. If X is an (algebraic) structure with a natural notion of subspaces, then you can define a Gowers space by taking for P more or less any subfamily of the family of subspaces provided we can diagonalize among this subfamily.

Gowers spaces are great for doing local Ramsey theory. If X is an (algebraic) structure with a natural notion of subspaces, then you can define a Gowers space by taking for P more or less any subfamily of the family of subspaces provided we can diagonalize among this subfamily.

Definition

Let ${\mathcal F}$ be a nonempty family of infinite subsets of ${\mathbb N}.$ We say that:

- \mathcal{F} is a p-family if it is \mathbf{E}_0 -invariant and if for every decreasing sequence $(A_n)_{n\in\mathbb{N}}$ of elements of \mathcal{F} , there exists $A^*\in\mathcal{F}$ such that for every $n\in\mathbb{N}$, $A^*\subseteq^*A_n$;
- \mathcal{F} is selective if it is a p-family and if moreover, the set A^* can be choosen in such a way that for every $n \in A^*$, $A^*/n \subseteq A_n$ (where $A^*/n = \{k \in A^* \mid k > n\}$).

Fix \mathcal{F} a p-family of subsets of \mathbb{N} . Then $(\mathcal{F}, \mathbb{N}, \subseteq, \subseteq^*, \in)$ is a Gowers space.

Fix $\mathcal F$ a p-family of subsets of $\mathbb N$. Then $(\mathcal F,\mathbb N,\subseteq,\subseteq^*,\in)$ is a Gowers space.

Corollary

Let $\mathcal{X} \subseteq \mathbb{N}^{\mathbb{N}}$ be analytic. Then there exists $M \in \mathcal{F}$ such that:

- either I has a strategy in F_M to reach \mathcal{X}^c ;
- or II has a strategy in G_M to reach \mathcal{X} .

Moreover, if \mathcal{F} is selective, then the first possible conclusion can be replaced by " $[M]^{\infty} \subseteq \mathcal{X}^{c}$ ".

Beware, here in G_M , player I can only play elements of \mathcal{F} !

Fix \mathcal{F} a p-family of subsets of \mathbb{N} . Then $(\mathcal{F}, \mathbb{N}, \subseteq, \subseteq^*, \in)$ is a Gowers space.

Corollary

Let $\mathcal{X} \subseteq \mathbb{N}^{\mathbb{N}}$ be analytic. Then there exists $M \in \mathcal{F}$ such that:

- either I has a strategy in F_M to reach \mathcal{X}^c ;
- or II has a strategy in G_M to reach \mathcal{X} .

Moreover, if \mathcal{F} is selective, then the first possible conclusion can be replaced by " $[M]^{\infty} \subseteq \mathcal{X}^{c}$ ".

Beware, here in G_M , player I can only play elements of \mathcal{F} !

Corollary (Mathias)

Let \mathcal{H} be a selective coideal on \mathbb{N} , and $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ be analytic. Then there exists $M \in \mathcal{H}$ such that either $[M]^{\infty} \subseteq \mathcal{X}^c$, or $[M]^{\infty} \subseteq \mathcal{X}$.

What follows is part of a common work with W. Cuellar-Carrera and V. Ferenczi.

What follows is part of a common work with W. Cuellar-Carrera and V. Ferenczi.

On \mathbb{N} , F_{σ} ideals are *p*-ideals. The same phenomenon appears in Banach spaces.

What follows is part of a common work with W. Cuellar-Carrera and V. Ferenczi.

On \mathbb{N} , F_{σ} ideals are *p*-ideals. The same phenomenon appears in Banach spaces.

Fix X a Banach space. We denote by $\operatorname{Sub}(X)$ the set of infinite-dimensional subspaces of X. We endow $\operatorname{Sub}(X)$ with the slice topology, i.e. the topology such that (Y_{λ}) converges to Y iff for every equivalent norm $\|\cdot\|$ and for every $x \in X$, the norm of x in the quotient $(X, \|\cdot\|)/Y_{\lambda}$ coverges to the norm of x in the quotient $(X, \|\cdot\|)/Y$.

What follows is part of a common work with W. Cuellar-Carrera and V. Ferenczi.

On \mathbb{N} , F_{σ} ideals are *p*-ideals. The same phenomenon appears in Banach spaces.

Fix X a Banach space. We denote by $\operatorname{Sub}(X)$ the set of infinite-dimensional subspaces of X. We endow $\operatorname{Sub}(X)$ with the slice topology, i.e. the topology such that (Y_{λ}) converges to Y iff for every equivalent norm $\|\cdot\|$ and for every $x \in X$, the norm of x in the quotient $(X, \|\cdot\|)/Y_{\lambda}$ coverges to the norm of x in the quotient $(X, \|\cdot\|)/Y$.

Theorem

Let $P \subseteq \operatorname{Sub}(X)$ be a slice- G_{δ} subset, invariant under isomorphism. Then $(P, S_X, \subseteq, \subseteq^*, \in)$ is an (uncountable) Gowers space.

Definition

A finite-dimensional decomposition (FDD) of a Banach space Y is a sequence $(F_i)_{i\in\mathbb{N}}$ of finite-dimensional subspaces of Y such that every $x\in Y$ can be written in a unique way as a sum $x=\sum_{i=0}^{\infty}x_i$, where for every i, $x_i\in F_i$.

A block-sequence of the FDD (F_i) is a sequence $(x_n)_{n \in N}$ of normalized successive vectors for this FDD (i.e. there exists $A_0 < A_1 < A_2 < \dots$ sets of integers such that for every n, $x_n \in \bigoplus_{i \in A_n} F_i$).

Definition

A finite-dimensional decomposition (FDD) of a Banach space Y is a sequence $(F_i)_{i\in\mathbb{N}}$ of finite-dimensional subspaces of Y such that every $x\in Y$ can be written in a unique way as a sum $x=\sum_{i=0}^{\infty}x_i$, where for every $i, x_i\in F_i$.

A block-sequence of the FDD (F_i) is a sequence $(x_n)_{n \in N}$ of normalized successive vectors for this FDD (i.e. there exists $A_0 < A_1 < A_2 < \dots$ sets of integers such that for every $n, x_n \in \bigoplus_{i \in A_n} F_i$).

Definition

Given $\mathcal{X} \subseteq (S_X)^{\mathbb{N}}$ and $\Delta = (\Delta_n)_{n \in \mathbb{N}}$ a sequence of positive real numbers, we let $(\mathcal{X})_{\Delta} = \{(y_n) \in (S_X)^{\mathbb{N}} \mid \exists (x_n) \in \mathcal{X} \ \forall n \ \|x_n - y_n\| \leqslant \Delta_n\}.$

Corollary

Let $P \subseteq \operatorname{Sub}(X)$ be a slice- G_{δ} subset, invariant under isomorphism. Let $\mathcal{X} \subseteq (S_X)^{\mathbb{N}}$ be analytic, and let Δ be a sequence of positive real numbers. Then there exists $Y \in P$ such that:

- either Y has a FDD (F_n) such that every subsequence of (F_n) generates an element of P, and such that every block-sequence of (F_n) is in \mathcal{X}^c ;
- or II has a winning strategy in G_Y to reach $(\mathcal{X})_\Delta$ (where in G_Y , player I is only allowed to play elements of P).

The condition of being slice- G_{δ} is typically satisfied for families of Banach spaces that can be defined by conditions on finite-dimensional subspaces.

The condition of being slice- G_{δ} is typically satisfied for families of Banach spaces that can be defined by conditions on finite-dimensional subspaces.

Lemma

A Banach space X is non-Hilbertian iff for every $n \in \mathbb{N}$, there exists a finite-dimensional subspace $F \subseteq X$ that is not n-isomorphic to a Euclidean space.

The condition of being slice- G_{δ} is typically satisfied for families of Banach spaces that can be defined by conditions on finite-dimensional subspaces.

Lemma

A Banach space X is non-Hilbertian iff for every $n \in \mathbb{N}$, there exists a finite-dimensional subspace $F \subseteq X$ that is not n-isomorphic to a Euclidean space. In particular, the family of non-Hilbertian spaces is slice- G_{δ} .

The condition of being slice- G_{δ} is typically satisfied for families of Banach spaces that can be defined by conditions on finite-dimensional subspaces.

Lemma

A Banach space X is non-Hilbertian iff for every $n \in \mathbb{N}$, there exists a finite-dimensional subspace $F \subseteq X$ that is not n-isomorphic to a Euclidean space. In particular, the family of non-Hilbertian spaces is slice- G_{δ} .

Question

Does there exist similar examples in other areas of mathematics?

Thank you for your attention!