# VAUGHT'S CONJECTURE FOR MONOMORPHIC THEORIES 

Miloš Kurilić

Department of Mathematics, University of Novi Sad, Serbia
November 20, 2018

## THE VAUGHT CONJECTURE

Notation

## Notation

We consider

- A relational language

$$
L=\left\langle R_{i}: i \in I\right\rangle, \text { where } \operatorname{ar}\left(R_{i}\right)=n_{i}, i \in \mathbb{N}
$$

## Notation

We consider

- A relational language

$$
L=\left\langle R_{i}: i \in I\right\rangle, \text { where } \operatorname{ar}\left(R_{i}\right)=n_{i}, i \in \mathbb{N}
$$

- $L$-structures: $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}(Y), R_{i}^{\mathbb{Y}} \subset Y^{n_{i}}$


## Notation

We consider

- A relational language

$$
L=\left\langle R_{i}: i \in I\right\rangle, \text { where } \operatorname{ar}\left(R_{i}\right)=n_{i}, i \in \mathbb{N}
$$

- $L$-structures: $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}(Y), R_{i}^{\mathbb{Y}} \subset Y^{n_{i}}$
- $L$-sentences: $\varphi \in \operatorname{Sent}_{L}$ and theories $\mathcal{T} \subset \operatorname{Sent}_{L}$


## Notation

We consider

- A relational language

$$
L=\left\langle R_{i}: i \in I\right\rangle, \text { where } \operatorname{ar}\left(R_{i}\right)=n_{i}, i \in \mathbb{N}
$$

- $L$-structures: $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}(Y), R_{i}^{\mathbb{Y}} \subset Y^{n_{i}}$
- $L$-sentences: $\varphi \in \operatorname{Sent}_{L}$ and theories $\mathcal{T} \subset \operatorname{Sent}_{L}$
- The binary language $L_{b}=\langle R\rangle, \operatorname{ar}(R)=2$


## Properties of theories and models

## Properties of theories and models

Models $\mathbb{Y}_{1}, \mathbb{Y}_{2} \in \operatorname{Mod}_{L}$ are elementarily equivalent, $\mathbb{Y}_{1} \equiv \mathbb{Y}_{2}$, iff they have the same first order properties, i.e.,

$$
\forall \varphi \in \operatorname{Sent}_{L}\left(\mathbb{Y}_{1} \models \varphi \quad \text { iff } \quad \mathbb{Y}_{2} \models \varphi\right)
$$

## Properties of theories and models

Models $\mathbb{Y}_{1}, \mathbb{Y}_{2} \in \operatorname{Mod}_{L}$ are elementarily equivalent, $\mathbb{Y}_{1} \equiv \mathbb{Y}_{2}$, iff they have the same first order properties, i.e.,

$$
\forall \varphi \in \operatorname{Sent}_{L}\left(\mathbb{Y}_{1} \models \varphi \quad \text { iff } \quad \mathbb{Y}_{2} \models \varphi\right)
$$

A consistent theory $\mathcal{T}$ is

- $\kappa$-categorical (for a cardinal $\kappa$ ) iff

$$
\forall \mathbb{Y}_{1}, \mathbb{Y}_{2} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\kappa) \mathbb{Y}_{1} \cong \mathbb{Y}_{2}
$$

## Properties of theories and models

Models $\mathbb{Y}_{1}, \mathbb{Y}_{2} \in \operatorname{Mod}_{L}$ are elementarily equivalent, $\mathbb{Y}_{1} \equiv \mathbb{Y}_{2}$, iff they have the same first order properties, i.e.,

$$
\forall \varphi \in \operatorname{Sent}_{L}\left(\mathbb{Y}_{1} \models \varphi \quad \text { iff } \quad \mathbb{Y}_{2} \models \varphi\right)
$$

A consistent theory $\mathcal{T}$ is

- $\kappa$-categorical (for a cardinal $\kappa$ ) iff

$$
\forall \mathbb{Y}_{1}, \mathbb{Y}_{2} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\kappa) \mathbb{Y}_{1} \cong \mathbb{Y}_{2}
$$

- complete iff

$$
\forall \mathbb{Y}_{1}, \mathbb{Y}_{2} \in \operatorname{Mod}_{L}^{\mathcal{T}} \quad \mathbb{Y}_{1} \equiv \mathbb{Y}_{2}
$$

## Properties of theories and models

Models $\mathbb{Y}_{1}, \mathbb{Y}_{2} \in \operatorname{Mod}_{L}$ are elementarily equivalent, $\mathbb{Y}_{1} \equiv \mathbb{Y}_{2}$, iff they have the same first order properties, i.e.,

$$
\forall \varphi \in \operatorname{Sent}_{L}\left(\mathbb{Y}_{1} \models \varphi \quad \text { iff } \quad \mathbb{Y}_{2} \models \varphi\right)
$$

A consistent theory $\mathcal{T}$ is

- $\kappa$-categorical (for a cardinal $\kappa$ ) iff

$$
\forall \mathbb{Y}_{1}, \mathbb{Y}_{2} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\kappa) \mathbb{Y}_{1} \cong \mathbb{Y}_{2}
$$

- complete iff

$$
\forall \mathbb{Y}_{1}, \mathbb{Y}_{2} \in \operatorname{Mod}_{L}^{\mathcal{T}} \mathbb{Y}_{1} \equiv \mathbb{Y}_{2}
$$

$\operatorname{Th}(\mathbb{Y}):=\left\{\varphi \in \operatorname{Sent}_{L}: \mathbb{Y} \models \varphi\right\}$ is the complete theory of $\mathbb{Y}$

## The Vaught conjecture

## The Vaught conjecture

In the sequel we assume that $\mathcal{T}$ is a countable complete theory with infinite models

## The Vaught conjecture

In the sequel we assume that $\mathcal{T}$ is a countable complete theory with infinite models

- $I(\mathcal{T}, \omega)$ denotes the number of non-isomorphic models of $\mathcal{T}$ of size $\omega$, i.e.,

$$
I(\mathcal{T}, \omega):=\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|
$$

## The Vaught conjecture

In the sequel we assume that $\mathcal{T}$ is a countable complete theory with infinite models

- $I(\mathcal{T}, \omega)$ denotes the number of non-isomorphic models of $\mathcal{T}$ of size $\omega$, i.e.,

$$
I(\mathcal{T}, \omega):=\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|
$$

- Example: $I(\operatorname{Th}(\mathbb{Q}), \omega)=1$


## The Vaught conjecture

In the sequel we assume that $\mathcal{T}$ is a countable complete theory with infinite models

- $I(\mathcal{T}, \omega)$ denotes the number of non-isomorphic models of $\mathcal{T}$ of size $\omega$, i.e.,

$$
I(\mathcal{T}, \omega):=\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|
$$

- Example: $I(\operatorname{Th}(\mathbb{Q}), \omega)=1$
- Example: $I(\operatorname{Th}(\langle\omega,<\rangle), \omega)=\mathfrak{c}$ the countable models are isomorphic to

$$
\omega+\mathbb{Z} \cdot \mathbb{L}, \text { where } \mathbb{L} \text { is any countable l.o. or } \emptyset
$$

## The Vaught conjecture

In the sequel we assume that $\mathcal{T}$ is a countable complete theory with infinite models

- $I(\mathcal{T}, \omega)$ denotes the number of non-isomorphic models of $\mathcal{T}$ of size $\omega$, i.e.,

$$
I(\mathcal{T}, \omega):=\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|
$$

- Example: $I(\operatorname{Th}(\mathbb{Q}), \omega)=1$
- Example: $I(\operatorname{Th}(\langle\omega,<\rangle), \omega)=\mathfrak{c}$ the countable models are isomorphic to

$$
\omega+\mathbb{Z} \cdot \mathbb{L}, \text { where } \mathbb{L} \text { is any countable l.o. or } \emptyset
$$

- Vaught: $I(\mathcal{T}, \omega)$ can be any cardinal from $(\mathbb{N} \backslash\{2\}) \cup\{\omega, \mathfrak{c}\}$


## The Vaught conjecture

In the sequel we assume that $\mathcal{T}$ is a countable complete theory with infinite models

- $I(\mathcal{T}, \omega)$ denotes the number of non-isomorphic models of $\mathcal{T}$ of size $\omega$, i.e.,

$$
I(\mathcal{T}, \omega):=\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|
$$

- Example: $I(\operatorname{Th}(\mathbb{Q}), \omega)=1$
- Example: $I(\operatorname{Th}(\langle\omega,<\rangle), \omega)=\mathfrak{c}$ the countable models are isomorphic to

$$
\omega+\mathbb{Z} \cdot \mathbb{L}, \text { where } \mathbb{L} \text { is any countable l.o. or } \emptyset
$$

- Vaught: $I(\mathcal{T}, \omega)$ can be any cardinal from $(\mathbb{N} \backslash\{2\}) \cup\{\omega, \mathfrak{c}\}$ Vaught's conjecture (1961): $\omega<I(\mathcal{T}, \omega)<\mathfrak{c}$ is impossible


## The Vaught conjecture

In the sequel we assume that $\mathcal{T}$ is a countable complete theory with infinite models

- $I(\mathcal{T}, \omega)$ denotes the number of non-isomorphic models of $\mathcal{T}$ of size $\omega$, i.e.,

$$
I(\mathcal{T}, \omega):=\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|
$$

- Example: $I(\operatorname{Th}(\mathbb{Q}), \omega)=1$
- Example: $I(\operatorname{Th}(\langle\omega,<\rangle), \omega)=\mathfrak{c}$ the countable models are isomorphic to

$$
\omega+\mathbb{Z} \cdot \mathbb{L}, \text { where } \mathbb{L} \text { is any countable l.o. or } \emptyset
$$

- Vaught: $I(\mathcal{T}, \omega)$ can be any cardinal from $(\mathbb{N} \backslash\{2\}) \cup\{\omega, \mathfrak{c}\}$ Vaught's conjecture (1961): $\omega<I(\mathcal{T}, \omega)<\mathfrak{c}$ is impossible - Trivially, $\mathrm{CH} \Rightarrow \mathrm{VC}$. So, the question is: Is it true that $\mathrm{ZFC} \vdash \mathrm{VC}$ ?


## The Vaught conjecture

In the sequel we assume that $\mathcal{T}$ is a countable complete theory with infinite models

- $I(\mathcal{T}, \omega)$ denotes the number of non-isomorphic models of $\mathcal{T}$ of size $\omega$, i.e.,

$$
I(\mathcal{T}, \omega):=\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|
$$

- Example: $I(\operatorname{Th}(\mathbb{Q}), \omega)=1$
- Example: $I(\operatorname{Th}(\langle\omega,<\rangle), \omega)=\mathfrak{c}$ the countable models are isomorphic to
$\omega+\mathbb{Z} \cdot \mathbb{L}$, where $\mathbb{L}$ is any countable 1.o. or $\emptyset$
- Vaught: $I(\mathcal{T}, \omega)$ can be any cardinal from $(\mathbb{N} \backslash\{2\}) \cup\{\omega, \mathfrak{c}\}$

Vaught's conjecture (1961): $\omega<I(\mathcal{T}, \omega)<\mathfrak{c}$ is impossible

- Trivially, $\mathrm{CH} \Rightarrow \mathrm{VC}$. So, the question is: Is it true that $\mathrm{ZFC} \vdash \mathrm{VC}$ ?
- Morley (1970): $I(\mathcal{T}, \omega)>\omega_{1} \Rightarrow I(\mathcal{T}, \omega)=\mathfrak{c}$


## Confirmation

## Confirmation

VC was confirmed for the following basic (theories of) classes of structures

- 1974 (Rubin) for linear orders with unary relations

$$
\left\langle X,<,\left\langle U_{i}: i \in I\right\rangle\right\rangle
$$

## Confirmation

VC was confirmed for the following basic (theories of) classes of structures

- 1974 (Rubin) for linear orders with unary relations

$$
\left\langle X,<,\left\langle U_{i}: i \in I\right\rangle\right\rangle
$$

- 1978 (Shelah) for linearly ordered structures with Skolem functions


## Confirmation

VC was confirmed for the following basic (theories of) classes of structures

- 1974 (Rubin) for linear orders with unary relations

$$
\left\langle X,<,\left\langle U_{i}: i \in I\right\rangle\right\rangle
$$

- 1978 (Shelah) for linearly ordered structures with Skolem functions
- 1984 (Shelah, Harrington, Makkai) for $\omega$-stable theories


## Confirmation

VC was confirmed for the following basic (theories of) classes of structures

- 1974 (Rubin) for linear orders with unary relations

$$
\left\langle X,<,\left\langle U_{i}: i \in I\right\rangle\right\rangle
$$

- 1978 (Shelah) for linearly ordered structures with Skolem functions
- 1984 (Shelah, Harrington, Makkai) for $\omega$-stable theories
- 1988 (Mayer) for o-minimal theories

$$
\langle X,<, \ldots\rangle
$$

## Confirmation

VC was confirmed for the following basic (theories of) classes of structures

- 1974 (Rubin) for linear orders with unary relations

$$
\left\langle X,<,\left\langle U_{i}: i \in I\right\rangle\right\rangle
$$

- 1978 (Shelah) for linearly ordered structures with Skolem functions
- 1984 (Shelah, Harrington, Makkai) for $\omega$-stable theories
- 1988 (Mayer) for o-minimal theories

$$
\langle X,<, \ldots\rangle
$$

- Several generalizations


## MONOMORPHIC STRUCTURES

## Equivalent definitions

## Equivalent definitions

## An $L$-structure $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle$ is called

- n-monomorphic iff all its substructures of size $n$ are isomorphic


## Equivalent definitions

An $L$-structure $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle$ is called

- n-monomorphic iff all its substructures of size $n$ are isomorphic
- monomorphic iff $\mathbb{Y}$ is $n$-monomorphic, for all $n \in \mathbb{N}$


## Equivalent definitions

An $L$-structure $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle$ is called

- n-monomorphic iff all its substructures of size $n$ are isomorphic
- monomorphic iff $\mathbb{Y}$ is $n$-monomorphic, for all $n \in \mathbb{N}$
- chainable if there is a linear order $<$ on $Y$ such that $\operatorname{Pa}(\langle Y,<\rangle) \subset \mathrm{Pa}(\mathbb{Y})$


## Equivalent definitions

An $L$-structure $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle$ is called

- $n$-monomorphic iff all its substructures of size $n$ are isomorphic
- monomorphic iff $\mathbb{Y}$ is $n$-monomorphic, for all $n \in \mathbb{N}$
- chainable if there is a linear order $<$ on $Y$ such that $\mathrm{Pa}(\langle Y,<\rangle) \subset \mathrm{Pa}(\mathbb{Y})$
- simply definable in a linear order iff there is a linear order $<$ on $Y$ such that for each $i \in I$ there is a quantifier free $L_{b}$-formula $\varphi_{i}\left(v_{0}, \ldots, v_{n_{i}-1}\right)$ defining the relation $R_{i}^{\Downarrow}$ in the structure $\langle Y,<\rangle$; that is,

$$
\forall \bar{y} \in Y^{n_{i}} \quad\left(\bar{y} \in R_{i}^{\mathbb{Y}} \quad \text { iff } \quad\langle Y,<\rangle \models \varphi_{i}[\bar{y}]\right)
$$

## Equivalent definitions

An $L$-structure $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle$ is called

- n-monomorphic iff all its substructures of size $n$ are isomorphic
- monomorphic iff $\mathbb{Y}$ is $n$-monomorphic, for all $n \in \mathbb{N}$
- chainable if there is a linear order $<$ on $Y$ such that $\mathrm{Pa}(\langle Y,<\rangle) \subset \mathrm{Pa}(\mathbb{Y})$
- simply definable in a linear order iff there is a linear order $<$ on $Y$ such that for each $i \in I$ there is a quantifier free $L_{b}$-formula $\varphi_{i}\left(v_{0}, \ldots, v_{n_{i}-1}\right)$ defining the relation $R_{i}^{Y}$ in the structure $\langle Y,<\rangle$; that is,

$$
\forall \bar{y} \in Y^{n_{i}} \quad\left(\bar{y} \in R_{i}^{\mathbb{Y}} \quad \text { iff } \quad\langle Y,<\rangle \models \varphi_{i}[\bar{y}]\right)
$$

Then we say that the linear order $<$ chains $\mathbb{Y}$.
Theorem (Fraïssé, for finite $L$; Pouzet, for arbitrary $L$ )
The f.c.e. for an infinite relational structure $\mathbb{Y}$

## Equivalent definitions

An $L$-structure $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle$ is called

- n-monomorphic iff all its substructures of size $n$ are isomorphic
- monomorphic iff $\mathbb{Y}$ is $n$-monomorphic, for all $n \in \mathbb{N}$
- chainable if there is a linear order $<$ on $Y$ such that $\mathrm{Pa}(\langle Y,<\rangle) \subset \mathrm{Pa}(\mathbb{Y})$
- simply definable in a linear order iff there is a linear order $<$ on $Y$ such that for each $i \in I$ there is a quantifier free $L_{b}$-formula $\varphi_{i}\left(v_{0}, \ldots, v_{n_{i}-1}\right)$ defining the relation $R_{i}^{\Downarrow}$ in the structure $\langle Y,<\rangle$; that is,

$$
\forall \bar{y} \in Y^{n_{i}} \quad\left(\bar{y} \in R_{i}^{\mathbb{Y}} \quad \text { iff } \quad\langle Y,<\rangle \models \varphi_{i}[\bar{y}]\right)
$$

Then we say that the linear order $<$ chains $\mathbb{Y}$.
Theorem (Fraïssé, for finite $L$; Pouzet, for arbitrary $L$ )
The f.c.e. for an infinite relational structure $\mathbb{Y}$

- $\mathbb{Y}$ is monomorphic


## Equivalent definitions

An $L$-structure $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle$ is called

- $n$-monomorphic iff all its substructures of size $n$ are isomorphic
- monomorphic iff $\mathbb{Y}$ is $n$-monomorphic, for all $n \in \mathbb{N}$
- chainable if there is a linear order $<$ on $Y$ such that $\mathrm{Pa}(\langle Y,<\rangle) \subset \mathrm{Pa}(\mathbb{Y})$
- simply definable in a linear order iff there is a linear order $<$ on $Y$ such that for each $i \in I$ there is a quantifier free $L_{b}$-formula $\varphi_{i}\left(v_{0}, \ldots, v_{n_{i}-1}\right)$ defining the relation $R_{i}^{\Downarrow}$ in the structure $\langle Y,<\rangle$; that is,

$$
\forall \bar{y} \in Y^{n_{i}} \quad\left(\bar{y} \in R_{i}^{\mathbb{Y}} \quad \text { iff } \quad\langle Y,<\rangle \models \varphi_{i}[\bar{y}]\right)
$$

Then we say that the linear order $<$ chains $\mathbb{Y}$.
Theorem (Fraïssé, for finite $L$; Pouzet, for arbitrary $L$ )
The f.c.e. for an infinite relational structure $\mathbb{Y}$

- $\mathbb{Y}$ is monomorphic
- $\mathbb{Y}$ is chainable


## Equivalent definitions

An $L$-structure $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle$ is called

- $n$-monomorphic iff all its substructures of size $n$ are isomorphic
- monomorphic iff $\mathbb{Y}$ is $n$-monomorphic, for all $n \in \mathbb{N}$
- chainable if there is a linear order $<$ on $Y$ such that $\mathrm{Pa}(\langle Y,<\rangle) \subset \mathrm{Pa}(\mathbb{Y})$
- simply definable in a linear order iff there is a linear order $<$ on $Y$ such that for each $i \in I$ there is a quantifier free $L_{b}$-formula $\varphi_{i}\left(v_{0}, \ldots, v_{n_{i}-1}\right)$ defining the relation $R_{i}^{\Downarrow}$ in the structure $\langle Y,<\rangle$; that is,

$$
\forall \bar{y} \in Y^{n_{i}} \quad\left(\bar{y} \in R_{i}^{\mathbb{Y}} \quad \text { iff } \quad\langle Y,<\rangle \models \varphi_{i}[\bar{y}]\right)
$$

Then we say that the linear order $<$ chains $\mathbb{Y}$.
Theorem (Fraïssé, for finite $L$; Pouzet, for arbitrary $L$ )
The f.c.e. for an infinite relational structure $\mathbb{Y}$

- $\mathbb{Y}$ is monomorphic
- $\mathbb{Y}$ is chainable
- $\mathbb{Y}$ is simply definable in a linear order.


## Standard examples of chainable relations

## Standard examples of chainable relations

In each linear order $\mathbb{X}=\langle X,<\rangle$ we can define

- the betweeness relation, $D_{\varphi_{b}} \subset X^{3}$, defined by the $L_{b}$-formula

$$
\varphi_{b}:=\left(v_{0}<v_{1}<v_{2}\right) \vee\left(v_{2}<v_{1}<v_{0}\right),
$$

saying: $v_{1}$ is between $v_{0}$ and $v_{2}$,

## Standard examples of chainable relations

In each linear order $\mathbb{X}=\langle X,<\rangle$ we can define

- the betweeness relation, $D_{\varphi_{b}} \subset X^{3}$, defined by the $L_{b}$-formula

$$
\varphi_{b}:=\left(v_{0}<v_{1}<v_{2}\right) \vee\left(v_{2}<v_{1}<v_{0}\right),
$$

saying: $v_{1}$ is between $v_{0}$ and $v_{2}$,

- the cyclic relation, $D_{\varphi_{c}} \subset X^{3}$, defined by the formula

$$
\varphi_{c}:=\left(v_{0}<v_{1}<v_{2}\right) \vee\left(v_{1}<v_{2}<v_{0}\right) \vee\left(v_{2}<v_{0}<v_{1}\right) ;
$$

## Standard examples of chainable relations

In each linear order $\mathbb{X}=\langle X,<\rangle$ we can define

- the betweeness relation, $D_{\varphi_{b}} \subset X^{3}$, defined by the $L_{b}$-formula

$$
\varphi_{b}:=\left(v_{0}<v_{1}<v_{2}\right) \vee\left(v_{2}<v_{1}<v_{0}\right),
$$

saying: $v_{1}$ is between $v_{0}$ and $v_{2}$,

- the cyclic relation, $D_{\varphi_{c}} \subset X^{3}$, defined by the formula

$$
\varphi_{c}:=\left(v_{0}<v_{1}<v_{2}\right) \vee\left(v_{1}<v_{2}<v_{0}\right) \vee\left(v_{2}<v_{0}<v_{1}\right) ;
$$

- the separation relation, $D_{\varphi_{s}} \subset X^{4}$, defined by the formula

$$
\begin{aligned}
\varphi_{s}:= & \left(v_{0}<v_{1}<v_{2}<v_{3}\right) \vee\left(v_{0}<v_{3}<v_{2}<v_{1}\right) \vee \\
& \left(v_{1}<v_{0}<v_{3}<v_{2}\right) \vee\left(v_{1}<v_{2}<v_{3}<v_{0}\right) \vee \\
& \left(v_{2}<v_{1}<v_{0}<v_{3}\right) \vee\left(v_{2}<v_{3}<v_{0}<v_{1}\right) \vee \\
& \left(v_{3}<v_{0}<v_{1}<v_{2}\right) \vee\left(v_{3}<v_{2}<v_{1}<v_{0}\right) .
\end{aligned}
$$

saying: $v_{0}, v_{1}, v_{2}$ and $v_{3}$ are different and the pair $\left\{v_{0}, v_{2}\right\}$ separates the pair $\left\{v_{1}, v_{3}\right\}$.

## Constant structures

## Constant structures

## Fact

The following conditions are equivalent for a $\mathbb{Y} \in \operatorname{Mod}_{L}$

- $\operatorname{Aut}(\mathbb{Y})=\operatorname{Sym}(Y)$


## Constant structures

## Fact

The following conditions are equivalent for a $\mathbb{Y} \in \operatorname{Mod}_{L}$

- $\operatorname{Aut}(\mathbb{Y})=\operatorname{Sym}(Y)$
- $\mathbb{Y}$ is definable in $Y$ by $L_{\emptyset}$ formulas


## Constant structures

## Fact

The following conditions are equivalent for a $\mathbb{Y} \in \operatorname{Mod}_{L}$

- $\operatorname{Aut}(\mathbb{Y})=\operatorname{Sym}(Y)$
- $\mathbb{Y}$ is definable in $Y$ by $L_{\emptyset}$ formulas
- Each 1.o. on $Y$ chains $\mathbb{Y}$


## Constant structures

## Fact

The following conditions are equivalent for a $\mathbb{Y} \in \operatorname{Mod}_{L}$

- $\operatorname{Aut}(\mathbb{Y})=\operatorname{Sym}(Y)$
- $\mathbb{Y}$ is definable in $Y$ by $L_{\emptyset}$ formulas
- Each 1.o. on $Y$ chains $\mathbb{Y}$

Such structures are called constant by Fraïssé.

## MONOMORPHIC THEORIES

## Establishing monomorphic theories

## Establishing monomorphic theories

Proposition
If $L$ is a relational language (of any size) and $\mathcal{T}$ a complete $L$-theory with infinite models, then the following conditions are equivalent:
(a) All models of $\mathcal{T}$ are monomorphic ( $\mathcal{T}$ is a monomorphic theory),

## Establishing monomorphic theories

Proposition
If $L$ is a relational language (of any size) and $\mathcal{T}$ a complete $L$-theory with infinite models, then the following conditions are equivalent:
(a) All models of $\mathcal{T}$ are monomorphic ( $\mathcal{T}$ is a monomorphic theory),
(b) $\mathcal{T}$ has a monomorphic model,

## Establishing monomorphic theories

Proposition
If $L$ is a relational language (of any size) and $\mathcal{T}$ a complete $L$-theory with infinite models, then the following conditions are equivalent:
(a) All models of $\mathcal{T}$ are monomorphic ( $\mathcal{T}$ is a monomorphic theory),
(b) $\mathcal{T}$ has a monomorphic model,
(c) $\mathcal{T}$ has a countable monomorphic model.

## Establishing monomorphic theories

Proposition
If $L$ is a relational language (of any size) and $\mathcal{T}$ a complete $L$-theory with infinite models, then the following conditions are equivalent:
(a) All models of $\mathcal{T}$ are monomorphic ( $\mathcal{T}$ is a monomorphic theory),
(b) $\mathcal{T}$ has a monomorphic model,
(c) $\mathcal{T}$ has a countable monomorphic model.

## Establishing monomorphic theories

Proposition
If $L$ is a relational language (of any size) and $\mathcal{T}$ a complete $L$-theory with infinite models, then the following conditions are equivalent:
(a) All models of $\mathcal{T}$ are monomorphic ( $\mathcal{T}$ is a monomorphic theory),
(b) $\mathcal{T}$ has a monomorphic model,
(c) $\mathcal{T}$ has a countable monomorphic model.

Proof. (c) $\Rightarrow(\mathrm{b})$ is trivial.

## Establishing monomorphic theories

## Proposition

If $L$ is a relational language (of any size) and $\mathcal{T}$ a complete $L$-theory with infinite models, then the following conditions are equivalent:
(a) All models of $\mathcal{T}$ are monomorphic ( $\mathcal{T}$ is a monomorphic theory),
(b) $\mathcal{T}$ has a monomorphic model,
(c) $\mathcal{T}$ has a countable monomorphic model.

Proof. (c) $\Rightarrow(\mathrm{b})$ is trivial.
(b) $\Rightarrow$ (a) If $\mathbb{Y} \models \mathcal{T}$ is a monomorphic structure, there is a $\Pi_{1}$ theory $\mathcal{T}_{\text {Age }(\mathbb{Y})} \subset \operatorname{Th}(\mathbb{Y})=\mathcal{T}$
such that each model $\mathbb{Z}$ of $\mathcal{T}_{\text {Age }(\mathbb{Y})}$ (and, in particular of $\mathcal{T}$ ) is monomorphic and $\operatorname{Age}(\mathbb{Z})=\operatorname{Age}(\mathbb{Y})$.

Proposition: $(\mathrm{a}) \Rightarrow(\mathrm{c})$

## Proposition: $(\mathrm{a}) \Rightarrow$ (c)

Claim
If $\mathcal{T}$ is a complete monomorphic $L$-theory with infinite models and $|I|>\omega$, then $\mathcal{T}$ has a countable model and there are

- a countable language $L_{J} \subset L$ and
- a complete monomorphic $L_{J}$-theory $\mathcal{T}_{J}$ such that

$$
\begin{equation*}
\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|=\left|\operatorname{Mod}_{L_{J}}^{\tau_{J}}(\omega)\right| \cong \mid . \tag{1}
\end{equation*}
$$

Proof. Let $\mathbb{Y}=\left\langle Y,\left\langle R_{i}^{\mathbb{Y}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}^{\mathcal{T}}$ and let $\langle Y,\langle \rangle$ chain $\mathbb{Y}$.
$\left|\operatorname{Form}_{L_{b}}\right|=\omega$ so there is a partition $I=\bigcup_{j \in J} I_{j}$, where $|J| \leq \omega$, such that, picking $i_{j} \in I_{j}$, we have $R_{i}^{\mathbb{Y}}=R_{i_{j}}^{\mathbb{Y}}$, for all $i \in I_{j}$. So

$$
\mathcal{T}_{\eta}:=\bigcup_{j \in J}\left\{\forall \bar{v}\left(R_{i}(\bar{v}) \Leftrightarrow R_{i j}(\bar{v})\right): i \in I_{j}\right\} \subset \operatorname{Th}_{L}(\mathbb{Y})=\mathcal{T}
$$

Let $L_{J}:=\left\langle R_{i_{j}}: j \in J\right\rangle$. To each $\varphi \in \operatorname{Form}_{L}$, replacing $R_{i}$ by $R_{i_{j}}$, we adjoin $\varphi_{J} \in \operatorname{Form}_{L_{J}}$ and by induction prove that

$$
\begin{equation*}
\forall \mathbb{Z} \in \operatorname{Mod}_{L}^{\mathcal{T}_{\eta}} \quad \forall \varphi(\bar{v}) \in \operatorname{Form}_{L} \forall \bar{z} \in Z \quad\left(\mathbb{Z} \models \varphi[\bar{z}] \Leftrightarrow \mathbb{Z} \mid L_{J} \models \varphi_{J}[\overline{\bar{z}}]\right) \tag{2}
\end{equation*}
$$

## VAUGHT'S CONJECTURE

## FOR MONOMORPHIC THEORIES

## The main result

## The main result

## Theorem

If $\mathcal{T}$ is a complete monomorphic theory having infinite models, then

$$
I(\mathcal{T}, \omega) \in\{1, \mathfrak{c}\}
$$

In addition, $I(\mathcal{T}, \omega)=1$ iff some countable model of $\mathcal{T}$ is simply definable by an $\omega$-categorical linear order on its domain.

# PROOF OF VAUGHT'S CONJECTURE 

Part I: Preliminaries

## Reduction to countable $L$

## Reduction to countable $L$

Let $\mathcal{T}$ be a complete monomorphic $L$-theory having infinite models.

## Reduction to countable $L$

Let $\mathcal{T}$ be a complete monomorphic $L$-theory having infinite models. By Claim 1, w.l.o.g. we suppose $|L| \leq \omega$; thus $\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) \neq \emptyset$.

## Reduction to countable $L$

Let $\mathcal{T}$ be a complete monomorphic $L$-theory having infinite models. By Claim 1, w.l.o.g. we suppose $|L| \leq \omega$; thus $\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) \neq \emptyset$. We prove that

$$
\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right| \in\{1, \mathfrak{c}\}
$$

## Reduction to countable $L$

Let $\mathcal{T}$ be a complete monomorphic $L$-theory having infinite models. By Claim 1, w.l.o.g. we suppose $|L| \leq \omega$; thus $\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) \neq \emptyset$. We prove that

$$
\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right| \in\{1, \mathfrak{c}\}
$$

For $\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ let

$$
\mathcal{L}_{\mathbb{Y}}:=\left\{\langle\omega, \triangleleft\rangle: \triangleleft \in L O_{\omega} \text { and }\langle\omega, \triangleleft\rangle \text { chains } \mathbb{Y}\right\}
$$

The mapping $\Phi: \operatorname{Mod}_{L_{b}}(\omega) \rightarrow \operatorname{Mod}_{L}(\omega)$

The mapping $\Phi: \operatorname{Mod}_{L_{b}}(\omega) \rightarrow \operatorname{Mod}_{L}(\omega)$
Let $\mathbb{Y}_{0}=\left\langle\omega,\left\langle R_{i}^{\mathbb{Y}_{0}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$.

## The mapping $\Phi: \operatorname{Mod}_{L_{b}}(\omega) \rightarrow \operatorname{Mod}_{L}(\omega)$

Let $\mathbb{Y}_{0}=\left\langle\omega,\left\langle R_{i}^{\mathbb{Y}_{0}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$.
Then there is a linear order $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}} \subset \operatorname{Mod}_{L_{b}}(\omega)$

## The mapping $\Phi: \operatorname{Mod}_{L_{b}}(\omega) \rightarrow \operatorname{Mod}_{L}(\omega)$

Let $\mathbb{Y}_{0}=\left\langle\omega,\left\langle R_{i}^{\mathbb{Y}_{0}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$.
Then there is a linear order $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}} \subset \operatorname{Mod}_{L_{b}}(\omega)$ and there are quantifier free $L_{b}$-formulas $\varphi_{i}\left(v_{0}, \ldots, v_{n_{i}-1}\right), i \in I$, such that

$$
\begin{equation*}
\forall \bar{x} \in \omega^{n_{i}} \quad\left(\bar{x} \in R_{i}^{\mathbb{Y}_{0}} \Leftrightarrow \mathbb{X}_{0} \models \varphi_{i}[\bar{x}]\right) . \tag{4}
\end{equation*}
$$

## The mapping $\Phi: \operatorname{Mod}_{L_{b}}(\omega) \rightarrow \operatorname{Mod}_{L}(\omega)$

Let $\mathbb{Y}_{0}=\left\langle\omega,\left\langle R_{i}^{\mathbb{Y}_{0}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$.
Then there is a linear order $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}} \subset \operatorname{Mod}_{L_{b}}(\omega)$ and there are quantifier free $L_{b}$-formulas $\varphi_{i}\left(v_{0}, \ldots, v_{n_{i}-1}\right), i \in I$, such that

$$
\begin{equation*}
\forall \bar{x} \in \omega^{n_{i}} \quad\left(\bar{x} \in R_{i}^{\mathbb{Y}_{0}} \Leftrightarrow \mathbb{X}_{0} \models \varphi_{i}[\bar{x}]\right) . \tag{4}
\end{equation*}
$$

Let $\mathcal{T}_{\mathbb{X}_{0}}:=\operatorname{Th}_{L_{b}}\left(\mathbb{X}_{0}\right)$.
For $\mathbb{X} \in \operatorname{Mod}_{L_{b}}(\omega)$ let $\mathbb{Y}_{\mathbb{X}}:=\left\langle\omega,\left\langle R_{i}^{\mathbb{Y}_{\mathbb{X}}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}(\omega)$, where, for each $i \in I$,

$$
\begin{equation*}
\forall \bar{x} \in \omega^{n_{i}}\left(\bar{x} \in R_{i}^{\mathbb{Y} \mathbb{X}} \Leftrightarrow \mathbb{X} \models \varphi_{i}[\bar{x}]\right) . \tag{5}
\end{equation*}
$$

## The mapping $\Phi: \operatorname{Mod}_{L_{b}}(\omega) \rightarrow \operatorname{Mod}_{L}(\omega)$

Let $\mathbb{Y}_{0}=\left\langle\omega,\left\langle R_{i}^{\mathbb{Y}_{0}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$.
Then there is a linear order $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}} \subset \operatorname{Mod}_{L_{b}}(\omega)$ and there are quantifier free $L_{b}$-formulas $\varphi_{i}\left(v_{0}, \ldots, v_{n_{i}-1}\right), i \in I$, such that

$$
\begin{equation*}
\forall \bar{x} \in \omega^{n_{i}}\left(\bar{x} \in R_{i}^{\mathbb{Y}_{0}} \Leftrightarrow \mathbb{X}_{0} \models \varphi_{i}[\bar{x}]\right) . \tag{4}
\end{equation*}
$$

Let $\mathcal{T}_{\mathbb{X}_{0}}:=\operatorname{Th}_{L_{b}}\left(\mathbb{X}_{0}\right)$.
For $\mathbb{X} \in \operatorname{Mod}_{L_{b}}(\omega)$ let $\mathbb{Y}_{\mathbb{X}}:=\left\langle\omega,\left\langle R_{i}^{\mathbb{Y}_{\mathbb{X}}}: i \in I\right\rangle\right\rangle \in \operatorname{Mod}_{L}(\omega)$, where, for each $i \in I$,

$$
\begin{equation*}
\forall \bar{x} \in \omega^{n_{i}}\left(\bar{x} \in R_{i}^{\mathbb{Y}_{\mathbb{X}}} \Leftrightarrow \mathbb{X} \models \varphi_{i}[\bar{x}]\right) . \tag{5}
\end{equation*}
$$

Let

$$
\Phi: \operatorname{Mod}_{L_{b}}(\omega) \rightarrow \operatorname{Mod}_{L}(\omega)
$$

be the mapping defined by

$$
\Phi(\mathbb{X})=\mathbb{Y}_{\mathbb{X}}, \text { for each } \mathbb{X} \in \operatorname{Mod}_{L_{b}}(\omega)
$$

## $\Phi$ preserves $\cong$ and $\equiv$

## $\Phi$ preserves $\cong$ and $\equiv$

## Claim

For all $\mathbb{X}_{1}, \mathbb{X}_{2} \in \operatorname{Mod}_{L_{b}}(\omega)$ we have (a) $\operatorname{Iso}\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right) \subset \operatorname{Iso}\left(\mathbb{Y}_{\mathbb{X}_{1}}, \mathbb{Y}_{\mathbb{X}_{2}}\right)$

## $\Phi$ preserves $\cong$ and $\equiv$

## Claim

For all $\mathbb{X}_{1}, \mathbb{X}_{2} \in \operatorname{Mod}_{L_{b}}(\omega)$ we have
(a) $\operatorname{Iso}\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right) \subset \operatorname{Iso}\left(\mathbb{Y}_{\mathbb{X}_{1}}, \mathbb{Y}_{\mathbb{X}_{2}}\right)$
(b) $\mathbb{X}_{1} \equiv \mathbb{X}_{2} \Rightarrow \mathbb{Y}_{\mathbb{X}_{1}} \equiv \mathbb{Y}_{\mathbb{X}_{2}}$

## $\Phi$ preserves $\cong$ and $\equiv$

## Claim

For all $\mathbb{X}_{1}, \mathbb{X}_{2} \in \operatorname{Mod}_{L_{b}}(\omega)$ we have
(a) $\operatorname{Iso}\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right) \subset \operatorname{Iso}\left(\mathbb{Y}_{\mathbb{X}_{1}}, \mathbb{Y}_{\mathbb{X}_{2}}\right)$
(b) $\mathbb{X}_{1} \equiv \mathbb{X}_{2} \Rightarrow \mathbb{Y}_{\mathbb{X}_{1}} \equiv \mathbb{Y}_{\mathbb{X}_{2}}$
(c) $\Phi\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right] \subset \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$

## $\Phi$ preserves $\cong$ and $\equiv$

## Claim

For all $\mathbb{X}_{1}, \mathbb{X}_{2} \in \operatorname{Mod}_{L_{b}}(\omega)$ we have
(a) $\operatorname{Iso}\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right) \subset \operatorname{Iso}\left(\mathbb{Y}_{\mathbb{X}_{1}}, \mathbb{Y}_{\mathbb{X}_{2}}\right)$
(b) $\mathbb{X}_{1} \equiv \mathbb{X}_{2} \Rightarrow \mathbb{Y}_{\mathbb{X}_{1}} \equiv \mathbb{Y}_{\mathbb{X}_{2}}$
(c) $\Phi\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right] \subset \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$

Proof. (a) If $f \in \operatorname{Iso}\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right)$, then since $f$ preserves all formulas in both directions, for each $i \in I$ and $\bar{x} \in \omega^{n_{i}}$ we have: $\bar{x} \in R_{i}^{\mathbb{X}_{\mathbb{X}_{1}}}$ iff $\mathbb{X}_{1} \models \varphi_{i}[\bar{x}]$ iff $\mathbb{X}_{2} \models \varphi_{i}[f \bar{x}]$ iff $f \bar{x} \in R_{i}^{\mathbb{X}_{\mathbb{X}_{2}}} . \operatorname{Thus} f \in \operatorname{Iso}\left(\mathbb{Y}_{\mathbb{X}_{1}}, \mathbb{Y}_{\mathbb{X}_{2}}\right)$.
(b) For $\varphi(\bar{v}) \in \operatorname{Form}_{L}$ let $\varphi_{b}(\bar{v}) \in \operatorname{Form}_{L_{b}}$ be obtained from $\varphi$ by replacing of $R_{i}$ by $\varphi_{i}$. An easy induction shows that

$$
\begin{equation*}
\forall \mathbb{X} \in \operatorname{Mod}_{L_{b}}(\omega) \forall \varphi(\bar{v}) \in \operatorname{Form}_{L} \forall \bar{x} \in \omega^{n}\left(\mathbb{Y}_{\mathbb{X}} \models \varphi[\bar{x}] \Leftrightarrow \mathbb{X} \models \varphi_{b}[\bar{x}]\right) \tag{6}
\end{equation*}
$$

which implies: $\mathbb{Y}_{\mathbb{X}} \models \varphi$ iff $\mathbb{X} \vDash \varphi_{b}$, for all $\varphi \in \operatorname{Sent}_{L}$
(c) If $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$, then $\mathbb{X} \equiv \mathbb{X}_{0}$ and, by $(\mathrm{b}), \Phi(\mathbb{X})=\mathbb{Y}_{\mathbb{X}} \equiv \mathbb{Y}_{\mathbb{X}_{0}}=\mathbb{Y}_{0_{\equiv}}=\mathcal{T}_{\text {豆 }} \quad$ ด

The mapping $\Psi: \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{X_{0}}}(\omega) / \cong \longrightarrow \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong$

## The mapping $\Psi: \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{x_{0}}}(\omega) / \cong \longrightarrow \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong$

Claim
The mapping

$$
\Psi: \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{X_{0}}}(\omega) / \cong \rightarrow \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong
$$

given by

$$
\Psi([\mathbb{X}])=\left[\mathbb{Y}_{\mathbb{X}}\right] \text {, for all }[\mathbb{X}] \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega) / \cong
$$

is well defined.

## The mapping $\Psi: \operatorname{Mod}_{L_{b}}^{\tau_{T_{0}}}(\omega) / \cong \longrightarrow \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong$

Claim
The mapping

$$
\Psi: \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{X_{0}}}(\omega) / \cong \rightarrow \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong
$$

given by

$$
\Psi([\mathbb{X}])=\left[\mathbb{Y}_{\mathbb{X}}\right], \text { for all }[\mathbb{X}] \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega) / \cong
$$

is well defined.
Proof. If $\mathbb{X}_{1}, \mathbb{X}_{2} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ and $\mathbb{X}_{1} \cong \mathbb{X}_{2}$, then by the previous Claim $\mathbb{Y}_{\mathbb{X}_{1}} \cong \mathbb{Y}_{\mathbb{X}_{2}}$, that is $\left[\mathbb{Y}_{\mathbb{X}_{1}}\right]=\left[\mathbb{Y}_{\mathbb{X}_{2}}\right]$.

## A trivial fact

## A trivial fact

Fact
If $\mathbb{Y}$ is monomorphic and $\mathbb{Y} \cong \mathbb{Z}$, then $\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}}\right]=\operatorname{otp}\left[\mathcal{L}_{\mathbb{Z}}\right]$.

## A trivial fact

Fact
If $\mathbb{Y}$ is monomorphic and $\mathbb{Y} \cong \mathbb{Z}$, then $\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}}\right]=\operatorname{otp}\left[\mathcal{L}_{\mathbb{Z}}\right]$.
Proof. Let $f \in \operatorname{Iso}(\mathbb{Z}, \mathbb{Y})$ and $\tau \in \operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}}\right]$.
Let $\mathbb{X}=\langle Y,<\rangle \in \mathcal{L}_{\mathbb{Y}}$, where $\operatorname{otp}(\mathbb{X})=\tau$.
Then $\mathbb{X}_{1}:=\left\langle Z, f^{-1}[<]\right\rangle \cong_{f} \mathbb{X}$; thus, $\operatorname{otp}\left(\mathbb{X}_{1}\right)=\tau$.
For $i \in I$ and $\bar{z} \in Z^{n_{i}}$ we have

$$
\bar{z} \in R_{i}^{\mathbb{Z}} \text { iff } f \bar{z} \in R_{i}^{\mathbb{Y}} \text { iff } \mathbb{X} \models \varphi_{i}[f \bar{z}] \text { iff } \mathbb{X}_{1} \models \varphi_{i}[\bar{z}],
$$

which gives $\mathbb{X}_{1} \in \mathcal{L}_{\mathbb{Z}}$. So, $\tau=\operatorname{otp}\left(\mathbb{X}_{1}\right) \in \operatorname{otp}\left[\mathcal{L}_{\mathbb{Z}}\right]$.

## Size of the fibers of $\Psi$

## Size of the fibers of $\Psi$

Claim
For each linear order $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ we have

$$
\begin{equation*}
\left|\Psi^{-1}\left[\left\{\left[\mathbb{Y}_{\mathbb{X}}\right]\right\}\right]\right| \leq\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| . \tag{*}
\end{equation*}
$$

## Size of the fibers of $\Psi$

Claim
For each linear order $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ we have

$$
\begin{equation*}
\left|\Psi^{-1}\left[\left\{\left[\mathbb{Y}_{\mathbb{X}}\right]\right\}\right]\right| \leq\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| . \tag{*}
\end{equation*}
$$

Proof. We show that $\Lambda([\mathbb{Z}])=\operatorname{otp}(\mathbb{Z})$ defines an injection

$$
\Lambda: \Psi^{-1}\left[\left\{\left[\mathbb{Y}_{\mathbb{X}}\right]\right\}\right] \xrightarrow{1-1} \operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right] .
$$

For $[\mathbb{Z}] \in \Psi^{-1}\left[\left\{\left[\mathbb{Y}_{\mathbb{X}}\right]\right\}\right]$ we have $\left[\mathbb{Y}_{\mathbb{Z}}\right]=\Psi([\mathbb{Z}])=\left[\mathbb{Y}_{\mathbb{X}}\right]$, that is, $\mathbb{Y}_{\mathbb{Z}} \cong \mathbb{Y}_{\mathbb{X}}$
and, by Fact, $\operatorname{otp}(\mathbb{Z}) \in \operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{Z}}}\right]=\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right]$.
Since $\mathbb{Z} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{Z}_{0}}}(\omega)$ we have otp $(\mathbb{Z}) \in \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]$.
$\Lambda$ is an injection: if $[\mathbb{Z}] \neq\left[\mathbb{Z}^{\prime}\right]$, then $\mathbb{Z} \not \not \mathbb{Z}^{\prime}$, and, hence, $\operatorname{otp}(\mathbb{Z}) \neq \operatorname{otp}\left(\mathbb{Z}^{\prime}\right)$.

## PROOF OF VAUGHT'S CONJECTURE

Part II: Proof by discussion
(Cases A,B and Subcases B1,B2)

# Case A: Some $\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ is chained by an $\omega$-categorical 

 linear order
## Case A: Some $\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ is chained by an $\omega$-categorical linear order

## Claim

Then $\mathbb{Y}$ is an $\omega$-categorical $L$-structure.
So, $\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega)\right| \cong \mid=1$ and we are done.

## Case A: Some $\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ is chained by an $\omega$-categorical linear order

## Claim

Then $\mathbb{Y}$ is an $\omega$-categorical $L$-structure.
So, $\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|=1$ and we are done.
Proof. By the theorem of Engeler, Ryll-Nardzewski and Svenonius, the group $\operatorname{Aut}(\mathbb{X})$ is oligomorphic; that is, for each $n \in \mathbb{N}$ we have $\left|\omega^{n} / \sim_{\mathbb{X}, n}\right|<\omega$, where $\bar{x} \sim_{\mathbb{X}, n} \bar{y}$ iff $f \bar{x}=\bar{y}$, for some $f \in \operatorname{Aut}(\mathbb{X})$.
Since $\mathbb{Y}$ is definable in $\mathbb{X}$ we have $\operatorname{Aut}(\mathbb{X}) \subset \operatorname{Aut}(\mathbb{Y})$,
which implies that for $n \in \mathbb{N}$ and each $\bar{x}, \bar{y} \in \omega^{n}$ we have
$\bar{x} \sim_{\mathbb{X}, n} \bar{y} \Rightarrow \bar{x} \sim_{\mathbb{Y}, n} \bar{y}$.
Thus $\left|\omega^{n} / \sim_{\mathbb{Y}, n}\right| \leq\left|\omega^{n} / \sim_{\mathbb{X}, n}\right|<\omega$, for all $n \in \mathbb{N}$, and, since $|L| \leq \omega$, by the same theorem, $\mathbb{Y}$ is $\omega$-categorical.

## Case B: The set $\bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\tau}(\omega)} \mathcal{L}_{\mathbb{Y}}$ does not contain $\omega$-categorical linear orders

## Case B: The set $\bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ does not contain $\omega$-categorical linear orders

Then, by Rubin's theorem

$$
\forall \mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) \quad \forall \mathbb{X} \in \mathcal{L}_{\mathbb{Y}}\left|\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}}}(\omega) / \cong\right|=\mathfrak{c} .
$$

## Case B: The set $\bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ does not contain $\omega$-categorical linear orders

Then, by Rubin's theorem

$$
\forall \mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) \forall \mathbb{X} \in \mathcal{L}_{\mathbb{Y}}\left|\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}}}(\omega) / \cong\right|=\mathfrak{c} .
$$

Clearly, there is no constant $\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$, that is

$$
\forall \mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) \quad \mathcal{L}_{\mathbb{Y}} \neq L O_{\omega}
$$

## Case B: The set $\bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ does not contain $\omega$-categorical linear orders

Then, by Rubin's theorem

$$
\forall \mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) \quad \forall \mathbb{X} \in \mathcal{L}_{\mathbb{Y}}\left|\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}}}(\omega) / \cong\right|=\mathfrak{c} .
$$

Clearly, there is no constant $\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$, that is

$$
\forall \mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega) \quad \mathcal{L}_{\mathbb{Y}} \neq L O_{\omega}
$$

We prove that

$$
\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega)\right| \cong \mid=\mathfrak{c}
$$

distinguishing subcases B1 and B2.

Subcase B1: For some $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ there is a 1.o. $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$ with at least one end-point

Subcase B1: For some $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ there is a 1.o. $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$ with at least one end-point

Then we take such $\mathbb{Y}_{0}$ and $\mathbb{X}_{0}$

# Subcase B1: For some $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ there is a 1.o. $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$ with at least one end-point 

Then we take such $\mathbb{Y}_{0}$ and $\mathbb{X}_{0}$ and recall the general discussion from Part I of the proof.

# Subcase B1: For some $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ there is a l.o. $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$ with at least one end-point 

Then we take such $\mathbb{Y}_{0}$ and $\mathbb{X}_{0}$ and recall the general discussion from Part I of the proof. $\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|=\mathfrak{c}$ will be true if $\Psi$ is at-most-countable-to-one.

## Subcase B1: For some $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ there is a l.o. $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$ with at least one end-point

Then we take such $\mathbb{Y}_{0}$ and $\mathbb{X}_{0}$ and recall the general discussion from Part I of the proof. $\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega)\right| \cong \mid=\mathfrak{c}$ will be true if $\Psi$ is at-most-countable-to-one. That follows from the bound $(*)$ for the size of the fibers of $\Psi$ and the following claim

Claim

$$
\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{X_{0}}}(\omega)\right]\right| \leq \omega, \text { for all } \mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)
$$

## Subcase B1: For some $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ there is a 1.o. $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$ with at least one end-point

Then we take such $\mathbb{Y}_{0}$ and $\mathbb{X}_{0}$ and recall the general discussion from Part I of the proof. $\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega)\right| \cong \mid=\mathfrak{c}$ will be true if $\Psi$ is at-most-countable-to-one. That follows from the bound $(*)$ for the size of the fibers of $\Psi$ and the following claim

Claim

$$
\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| \leq \omega, \text { for all } \mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega) .
$$

In the proof of the Claim we will use the following

## Description of the set $\mathcal{L}_{\mathbb{Y}}$ (Gibson, Pouzet and Woodrow)

## Description of the set $\mathcal{L}_{\mathbb{Y}}$ (Gibson, Pouzet and Woodrow)

Theorem (Gibson, Pouzet and Woodrow)
If $\mathbb{Y} \in \operatorname{Mod}_{L}(Y)$ is an infinite monomorphic structure and $\mathbb{X}=\langle Y,<\rangle \in \mathcal{L}_{\mathbb{Y}}$, then one of the following holds

## Description of the set $\mathcal{L}_{\mathbb{Y}}$ (Gibson, Pouzet and Woodrow)

Theorem (Gibson, Pouzet and Woodrow)
If $\mathbb{Y} \in \operatorname{Mod}_{L}(Y)$ is an infinite monomorphic structure and $\mathbb{X}=\langle Y,<\rangle \in \mathcal{L}_{\mathbb{Y}}$, then one of the following holds
(I) $\mathcal{L}_{\mathbb{Y}}=L O_{Y}$, that is, each linear order $\triangleleft$ on $Y$ chains $\mathbb{Y}$,

## Description of the set $\mathcal{L}_{\mathbb{Y}}$ (Gibson, Pouzet and Woodrow)

Theorem (Gibson, Pouzet and Woodrow)
If $\mathbb{Y} \in \operatorname{Mod}_{L}(Y)$ is an infinite monomorphic structure and $\mathbb{X}=\langle Y,<\rangle \in \mathcal{L}_{\mathbb{Y}}$, then one of the following holds
(I) $\mathcal{L}_{\mathbb{Y}}=L O_{Y}$, that is, each linear order $\triangleleft$ on $Y$ chains $\mathbb{Y}$,
(II) $\mathcal{L}_{\mathbb{Y}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$,

## Description of the set $\mathcal{L}_{\mathbb{Y}}$ (Gibson, Pouzet and Woodrow)

Theorem (Gibson, Pouzet and Woodrow)
If $\mathbb{Y} \in \operatorname{Mod}_{L}(Y)$ is an infinite monomorphic structure and $\mathbb{X}=\langle Y,<\rangle \in \mathcal{L}_{\mathbb{Y}}$, then one of the following holds
(I) $\mathcal{L}_{\mathbb{Y}}=L O_{Y}$, that is, each linear order $\triangleleft$ on $Y$ chains $\mathbb{Y}$,
(II) $\mathcal{L}_{\mathbb{Y}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$,
(III) There are finite subsets $K$ and $H$ of $Y$ such that $\mathbb{X}=\mathbb{K}+\mathbb{M}+\mathbb{H}$ and

$$
\mathcal{L}_{\mathbb{Y}}=\bigcup_{\substack{\triangleleft_{K} \in L L_{K}}}\left\{\left\langle K, \triangleleft_{K}\right\rangle+\mathbb{M}+\left\langle H, \triangleleft_{H}\right\rangle,\left\langle H, \triangleleft_{H}\right\rangle^{*}+\mathbb{M}^{*}+\left\langle K, \triangleleft_{K}\right\rangle^{*}\right\} \cdot .^{a}
$$

[^0]
## Description of the set $\mathcal{L}_{\mathbb{Y}}$ (Gibson, Pouzet and Woodrow)

Theorem (Gibson, Pouzet and Woodrow)
If $\mathbb{Y} \in \operatorname{Mod}_{L}(Y)$ is an infinite monomorphic structure and $\mathbb{X}=\langle Y,<\rangle \in \mathcal{L}_{\mathbb{Y}}$, then one of the following holds
(I) $\mathcal{L}_{\mathbb{Y}}=L O_{Y}$, that is, each linear order $\triangleleft$ on $Y$ chains $\mathbb{Y}$,
(II) $\mathcal{L}_{\mathbb{Y}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$,
(III) There are finite subsets $K$ and $H$ of $Y$ such that $\mathbb{X}=\mathbb{K}+\mathbb{M}+\mathbb{H}$ and

$$
\mathcal{L}_{\mathbb{Y}}=\bigcup_{\substack{\triangleleft_{H} \in L O_{K} \\ \triangleleft_{H}}}\left\{\left\langle K, \triangleleft_{K}\right\rangle+\mathbb{M}+\left\langle H, \triangleleft_{H}\right\rangle,\left\langle H, \triangleleft_{H}\right\rangle^{*}+\mathbb{M}^{*}+\left\langle K, \triangleleft_{K}\right\rangle^{*}\right\} \cdot{ }^{a}
$$

[^1]Since we are in Case B, (I) is impossible.

## Proof of Claim

## Proof of Claim

Let $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ and $\tau:=\operatorname{otp}(\mathbb{X})$. Recall that we prove

$$
\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| \leq \omega .
$$

## Proof of Claim

Let $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ and $\tau:=\operatorname{otp}(\mathbb{X})$. Recall that we prove

$$
\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| \leq \omega .
$$

If $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}$ satisfies (III), then otp $\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right]=\left\{\tau, \tau^{*}\right\}$ and we are done.

## Proof of Claim

Let $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ and $\tau:=\operatorname{otp}(\mathbb{X})$. Recall that we prove

$$
\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| \leq \omega .
$$

If $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}$ satisfies (III), then $\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right]=\left\{\tau, \tau^{*}\right\}$ and we are done. Otherwise, we have $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$.

## Proof of Claim

Let $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ and $\tau:=\operatorname{otp}(\mathbb{X})$. Recall that we prove

$$
\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| \leq \omega .
$$

If $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}$ satisfies (III), then $\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right]=\left\{\tau, \tau^{*}\right\}$ and we are done. Otherwise, we have $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$. If $\{\mathbb{I}, \mathbb{F}\}$ is a gap in $\mathbb{X}$, then $\mathbb{F}+\mathbb{I}$ and $\mathbb{I}^{*}+\mathbb{F}^{*}$ are l.o.w.e.p.

## Proof of Claim

Let $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ and $\tau:=\operatorname{otp}(\mathbb{X})$. Recall that we prove

$$
\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| \leq \omega
$$

If $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}$ satisfies (III), then otp $\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right]=\left\{\tau, \tau^{*}\right\}$ and we are done.
Otherwise, we have $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$. If $\{\mathbb{I}, \mathbb{F}\}$ is a gap in $\mathbb{X}$, then $\mathbb{F}+\mathbb{I}$ and $\mathbb{I}^{*}+\mathbb{F}^{*}$ are l.o.w.e.p. Since we are in Case B1, we have $\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*} \not \equiv \mathbb{X}_{0}$

## Proof of Claim

Let $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ and $\tau:=\operatorname{otp}(\mathbb{X})$. Recall that we prove

$$
\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| \leq \omega .
$$

If $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}$ satisfies (III), then otp $\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right]=\left\{\tau, \tau^{*}\right\}$ and we are done. Otherwise, we have $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$. If $\{\mathbb{I}, \mathbb{F}\}$ is a gap in $\mathbb{X}$, then $\mathbb{F}+\mathbb{I}$ and $\mathbb{I}^{*}+\mathbb{F}^{*}$ are l.o.w.e.p.
Since we are in Case B1, we have $\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*} \not \equiv \mathbb{X}_{0}$ and, hence, $\operatorname{otp}(\mathbb{F}+\mathbb{I}), \operatorname{otp}\left(\mathbb{I}^{*}+\mathbb{F}^{*}\right) \notin \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]$. Thus, $\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{T}_{0}}}(\omega)\right] \subset \Theta$, where

$$
\begin{aligned}
\Theta & :=\left\{\tau, \tau^{*}\right\} \cup \bigcup_{x \in \omega}\left\{\tau_{x}, \tau_{x}^{*}, \sigma_{x}, \sigma_{x}^{*}\right\}, \text { where } \\
\tau_{x} & :=\operatorname{otp}\left((x, \infty)_{\mathbb{X}}+(-\infty, x]_{\mathbb{X}}\right) \\
\sigma_{x} & :=\operatorname{otp}\left([x, \infty)_{\mathbb{X}}+(-\infty, x)_{\mathbb{X}}\right)
\end{aligned}
$$

## Proof of Claim

Let $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$ and $\tau:=\operatorname{otp}(\mathbb{X})$. Recall that we prove

$$
\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]\right| \leq \omega .
$$

If $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}$ satisfies (III), then otp $\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right]=\left\{\tau, \tau^{*}\right\}$ and we are done. Otherwise, we have $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$. If $\{\mathbb{I}, \mathbb{F}\}$ is a gap in $\mathbb{X}$, then $\mathbb{F}+\mathbb{I}$ and $\mathbb{I}^{*}+\mathbb{F}^{*}$ are l.o.w.e.p.
Since we are in Case B1, we have $\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*} \not \equiv \mathbb{X}_{0}$ and, hence, $\operatorname{otp}(\mathbb{F}+\mathbb{I}), \operatorname{otp}\left(\mathbb{I}^{*}+\mathbb{F}^{*}\right) \notin \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)\right]$. Thus, $\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right] \cap \operatorname{otp}\left[\operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{T}_{0}}}(\omega)\right] \subset \Theta$, where

$$
\begin{aligned}
\Theta & :=\left\{\tau, \tau^{*}\right\} \cup \bigcup_{x \in \omega}\left\{\tau_{x}, \tau_{x}^{*}, \sigma_{x}, \sigma_{x}^{*}\right\}, \text { where } \\
\tau_{x} & :=\operatorname{otp}\left((x, \infty)_{\mathbb{X}}+(-\infty, x]_{\mathbb{X}}\right) \\
\sigma_{x} & :=\operatorname{otp}\left([x, \infty)_{\mathbb{X}}+(-\infty, x)_{\mathbb{X}}\right)
\end{aligned}
$$

Since $|\Theta|=\omega$, the claim is proved.

Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$.

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{T}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{T}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\tau_{\mathbb{X}_{0}}}(\omega)$.

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{T}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\tau_{\mathbb{X}_{0}}}(\omega)$. Let $x \in \omega(=X)$

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\tau_{\mathbb{X}_{0}}}(\omega)$. Let $x \in \omega(=X)$
Since $\mathbb{X}$ has no end points we have $\mathbb{X}=(-\infty, x) \mathbb{X}+[x, \infty)_{\mathbb{X}}$;

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$. Let $x \in \omega(=X)$
Since $\mathbb{X}$ has no end points we have $\mathbb{X}=(-\infty, x)_{\mathbb{X}}+[x, \infty)_{\mathbb{X}}$; thus, the 1.o. $[x, \infty)_{\mathbb{X}}+(-\infty, x)_{\mathbb{X}}$ chains $\mathbb{Y}_{\mathbb{X}} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$. Let $x \in \omega(=X)$
Since $\mathbb{X}$ has no end points we have $\mathbb{X}=(-\infty, x)_{\mathbb{X}}+[x, \infty)_{\mathbb{X}}$; thus, the 1.o. $[x, \infty)_{\mathbb{X}}+(-\infty, x)_{\mathbb{X}}$ chains $\mathbb{Y}_{\mathbb{X}} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and has a minimum, which contradicts the assumption of Subcase B2.

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\tau}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$. Let $x \in \omega(=X)$
Since $\mathbb{X}$ has no end points we have $\mathbb{X}=(-\infty, x)_{\mathbb{X}}+[x, \infty)_{\mathbb{X}}$; thus, the 1.o. $[x, \infty)_{\mathbb{X}}+(-\infty, x)_{\mathbb{X}}$ chains $\mathbb{Y}_{\mathbb{X}} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and has a minimum, which contradicts the assumption of Subcase B2.
So, for each $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T X}_{X_{0}}}(\omega)$ we have
$\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\substack{\triangleleft_{K} \in L_{K} \in O_{H}}}\left\{\left\langle K, \triangleleft_{K}\right\rangle+\mathbb{M}+\left\langle H, \triangleleft_{H}\right\rangle,\left\langle H, \triangleleft_{H}\right\rangle^{*}+\mathbb{M}^{*}+\left\langle K, \triangleleft_{K}\right\rangle^{*}\right\}$

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$. Let $x \in \omega(=X)$
Since $\mathbb{X}$ has no end points we have $\mathbb{X}=(-\infty, x)_{\mathbb{X}}+[x, \infty)_{\mathbb{X}}$; thus, the 1.o. $[x, \infty)_{\mathbb{X}}+(-\infty, x)_{\mathbb{X}}$ chains $\mathbb{Y}_{\mathbb{X}} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and has a minimum, which contradicts the assumption of Subcase B2.
So, for each $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T X}_{X_{0}}}(\omega)$ we have
$\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\substack{\triangleleft_{K} \in L L_{K} \\ \triangleleft H \in L O_{H}}}\left\{\left\langle K, \triangleleft_{K}\right\rangle+\mathbb{M}+\left\langle H, \triangleleft_{H}\right\rangle,\left\langle H, \triangleleft_{H}\right\rangle^{*}+\mathbb{M}^{*}+\left\langle K, \triangleleft_{K}\right\rangle^{*}\right\}$
Since the elements of $\mathcal{L}_{\mathbb{Y}_{\mathrm{X}}}$ are l.o.w.e.p., we have $K=H=\emptyset$

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\tau}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$. Let $x \in \omega(=X)$
Since $\mathbb{X}$ has no end points we have $\mathbb{X}=(-\infty, x)_{\mathbb{X}}+[x, \infty)_{\mathbb{X}}$; thus, the 1.o. $[x, \infty)_{\mathbb{X}}+(-\infty, x)_{\mathbb{X}}$ chains $\mathbb{Y}_{\mathbb{X}} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and has a minimum, which contradicts the assumption of Subcase B2.
So, for each $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T X}_{X_{0}}}(\omega)$ we have
$\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\substack{\triangleleft_{K} \in L O_{K} \\ \triangleleft_{H} \in L O_{H}}}\left\{\left\langle K, \triangleleft_{K}\right\rangle+\mathbb{M}+\left\langle H, \triangleleft_{H}\right\rangle,\left\langle H, \triangleleft_{H}\right\rangle^{*}+\mathbb{M}^{*}+\left\langle K, \triangleleft_{K}\right\rangle^{*}\right\}$
Since the elements of $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}$ are l.o.w.e.p., we have $K=H=\emptyset$ and, hence, $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\left\{\mathbb{X}, \mathbb{X}^{*}\right\}$,

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\tau}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T}_{\mathbb{X}_{0}}}(\omega)$. Let $x \in \omega(=X)$
Since $\mathbb{X}$ has no end points we have $\mathbb{X}=(-\infty, x)_{\mathbb{X}}+[x, \infty)_{\mathbb{X}}$; thus, the 1.o. $[x, \infty)_{\mathbb{X}}+(-\infty, x)_{\mathbb{X}}$ chains $\mathbb{Y}_{\mathbb{X}} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and has a minimum, which contradicts the assumption of Subcase B2.
So, for each $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T X}_{X_{0}}}(\omega)$ we have
$\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\substack{\triangleleft_{K} \in L O_{K} \\ \triangleleft_{H} \in L O_{H}}}\left\{\left\langle K, \triangleleft_{K}\right\rangle+\mathbb{M}+\left\langle H, \triangleleft_{H}\right\rangle,\left\langle H, \triangleleft_{H}\right\rangle^{*}+\mathbb{M}^{*}+\left\langle K, \triangleleft_{K}\right\rangle^{*}\right\}$
Since the elements of $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}$ are l.o.w.e.p., we have $K=H=\emptyset$
and, hence, $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\left\{\mathbb{X}, \mathbb{X}^{*}\right\}$,
which gives $\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right]\right| \leq 2$.

## Subcase B2: Each $\mathbb{X} \in \bigcup_{\mathbb{Y} \in \operatorname{Mod}_{L}^{\tau}(\omega)} \mathcal{L}_{\mathbb{Y}}$ is a linear order without end points

Now, we fix arbitrary $\mathbb{Y}_{0} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and $\mathbb{X}_{0} \in \mathcal{L}_{\mathbb{Y}_{0}}$. and recall the general discussion from Part I of the proof.
Suppose that $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\mathbb{X}=\mathbb{I}+\mathbb{F}}\left\{\mathbb{F}+\mathbb{I}, \mathbb{I}^{*}+\mathbb{F}^{*}\right\}$, for some $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\tau_{\mathbb{X}_{0}}}(\omega)$. Let $x \in \omega(=X)$
Since $\mathbb{X}$ has no end points we have $\mathbb{X}=(-\infty, x)_{\mathbb{X}}+[x, \infty)_{\mathbb{X}}$; thus, the 1.o. $[x, \infty)_{\mathbb{X}}+(-\infty, x)_{\mathbb{X}}$ chains $\mathbb{Y}_{\mathbb{X}} \in \operatorname{Mod}_{L}^{\mathcal{T}}(\omega)$ and has a minimum, which contradicts the assumption of Subcase B2.
So, for each $\mathbb{X} \in \operatorname{Mod}_{L_{b}}^{\mathcal{T X}_{X_{0}}}(\omega)$ we have
$\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\bigcup_{\substack{\triangleleft_{K} \in L O_{K} \\ \triangleleft_{H} \in L O_{H}}}\left\{\left\langle K, \triangleleft_{K}\right\rangle+\mathbb{M}+\left\langle H, \triangleleft_{H}\right\rangle,\left\langle H, \triangleleft_{H}\right\rangle^{*}+\mathbb{M}^{*}+\left\langle K, \triangleleft_{K}\right\rangle^{*}\right\}$
Since the elements of $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}$ are l.o.w.e.p., we have $K=H=\emptyset$
and, hence, $\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}=\left\{\mathbb{X}, \mathbb{X}^{*}\right\}$,
which gives $\left|\operatorname{otp}\left[\mathcal{L}_{\mathbb{Y}_{\mathbb{X}}}\right]\right| \leq 2$.
Now, as above, we obtain $\left|\operatorname{Mod}_{L}^{\mathcal{T}}(\omega) / \cong\right|=\mathfrak{c}$.

Proof of Vaught's conjecture for... Part II: Proof by discussion
R. Fraïssé, Theory of relations, Revised edition, With an appendix by Norbert Sauer, Studies in Logic and the Foundations of Mathematics, 145. North-Holland, Amsterdam, (2000)
C. Frasnay, Quelques problémes combinatoires concernant les ordres totaux et les relations monomorphes, Ann. Inst. Fourier (Grenoble) 15,2 (1965) 415-524.
P. C. Gibson, M. Pouzet, R. E. Woodrow, Relational structures having finitely many full-cardinality restrictions, Discrete Math. 291,1-3 (2005) 115134.
W. Hodges, A. H. Lachlan, S. Shelah, Possible orderings of an indiscernible sequence, Bull. London Math. Soc. 9,2 (1977) 212-215.
L. L. Mayer, Vaught's conjecture for o-minimal theories, J. Symbolic Logic 53, 1 (1988) 146-159.
M. D. Morley, The number of countable models, J. Symbolic Logic 35 (1970) 14-18.
M. Pouzet, Application d'une propriété combinatoire des parties d'un ensemble aux groupes et aux relations, Math. Z. 150,2 (1976) 117-134.
M. Pouzet, Application de la notion de relation presque-enchaînable au dénombrement des restrictions finies d'une relation, Z . Math. Logik Grundlag. Math., 27,4 (1981) 289-332.
M. Rubin, Theories of linear order, Israel J. Math. 17 (1974) 392-443.
S. Shelah, End extensions and numbers of countable models, J. Symbolic Logic 43, 3 (1978) 550-562.
S. Shelah, L. Harrington, M. Makkai, A proof of Vaught's conjecture for $\omega$-stable theories, Israel J. Math. 49, 1-3 (1984) 259-280.
R. L. Vaught, Denumerable models of complete theories, 1961 Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959) pp. 303321 Pergamon, Oxford; Panstwowe Wydawnictwo Naukowe, Warsaw.


[^0]:    ${ }^{a}$ The statement follows from Theorem 9 of [3], which is a modification of similar results obtained independently by Frasnay in [2] and by Hodges, Lachlan and Shelah in [4].

[^1]:    ${ }^{a}$ The statement follows from Theorem 9 of [3], which is a modification of similar results obtained independently by Frasnay in [2] and by Hodges, Lachlan and Shelah in [4].

