## Winter School 2019

January 26th-February 2nd 2019 Hejnice, Czech Republic

#### Invited speakers

- James Cummings
- Miroslav Hušek
- Wiesław Kubiś
- Jordi Lopez-Abad

## www.winterschool.eu

# Logic Colloquium 2019

## August 11th-16th 2019, Prague, Czech Republic

## www.lc2019.cz

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

#### Program Committee

- Andrew Arana
- Lev Beklemishev (chair)
- Agata Ciabattoni
- Russell Miller
- Martin Otto
- Pavel Pudlák
- Stevo Todorčević
- Alex Wilkie

## The HL-property and indestructible reaping families

David Chodounský

Charles University in Prague

joint work with Osvaldo Guzmán and Michael Hrušák

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

*Tree* is a perfect initial subtree of  $2^{<\omega}$  with no leaves. The set of trees is denoted **S**.

(S, ⊂) ordered by inclusion forms the *Sacks forcing* (S, <)For A ⊂ ω and p ∈ S we denote  $p ↾ A = \{ t ∈ p ⊢ | t | ∈ A \}$ .

Theorem (Halpern-Läuchli), weak version

Let  $p \in \mathbf{S}$  and  $c \colon p \to 2$ . There exists  $q \in \mathbf{S}$ ,  $q \subseteq p$  and  $A \in [\omega]^{\omega}$  such that  $q \upharpoonright A$  is *c*-monochromatic.

*Tree* is a perfect initial subtree of  $2^{<\omega}$  with no leaves. The set of trees is denoted **S**.

(S, ⊂) ordered by inclusion forms the *Sacks forcing* (S, <)For A ⊂ ω and p ∈ S we denote  $p ↾ A = \{ t ∈ p ⊢ | t | ∈ A \}$ .

Theorem (Halpern-Läuchli), weak version

Let  $p \in \mathbf{S}$  and  $c: p \to 2$ . There exists  $q \in \mathbf{S}$ ,  $q \subseteq p$  and  $A \in [\omega]^{\omega}$  such that  $q \upharpoonright A$  is *c*-monochromatic.

*Tree* is a perfect initial subtree of  $2^{<\omega}$  with no leaves. The set of trees is denoted **S**.

(S, ⊂) ordered by inclusion forms the *Sacks forcing* (S, <)For A ⊂ ω and p ∈ S we denote  $p ↾ A = \{ t ∈ p ⊢ | t | ∈ A \}$ .

Theorem (Halpern-Läuchli), weak version

Let  $p \in \mathbf{S}$  and  $c: p \to 2$ . There exists  $q \in \mathbf{S}$ ,  $q \subseteq p$  and  $A \in [\omega]^{\omega}$  such that  $q \upharpoonright A$  is *c*-monochromatic.

#### Definition

 $\mathcal{R} \subset \mathcal{P}(\omega)$  is *HL* if for every  $c: 2^{<\omega} \to 2$  exists  $q \in \mathbf{S}$  and  $A \in \mathcal{R}$  such that  $q \upharpoonright A$  is *c*-monochromatic.

• 
$$[\omega]^{\omega}$$
 is HL.

*Tree* is a perfect initial subtree of  $2^{<\omega}$  with no leaves. The set of trees is denoted **S**.

(S, ⊂) ordered by inclusion forms the *Sacks forcing* (S, <)For A ⊂ ω and p ∈ S we denote  $p ↾ A = \{ t ∈ p ⊢ | t | ∈ A \}$ .

Theorem (Halpern-Läuchli), weak version

Let  $p \in \mathbf{S}$  and  $c: p \to 2$ . There exists  $q \in \mathbf{S}$ ,  $q \subseteq p$  and  $A \in [\omega]^{\omega}$  such that  $q \upharpoonright A$  is *c*-monochromatic.

#### Definition

 $\mathcal{R} \subset \mathcal{P}(\omega)$  is *HL* if for every  $c: 2^{<\omega} \to 2$  exists  $q \in \mathbf{S}$  and  $A \in \mathcal{R}$  such that  $q \upharpoonright A$  is *c*-monochromatic.

 $\blacktriangleright$   $[\omega]^{\omega}$  is HL.

• If  $\mathcal{R}$  is HL, then  $\mathcal{R}$  is reaping.

 $\mathcal{R}$  is a *reaping* family if for each  $A \subset \omega$  exist  $R \in \mathcal{R}$  such that  $R \subset A$  or  $R \cap A = \emptyset$ .

## Theorem (Baumgartner–Laver, Miller, Yiparaki) The following are equivalent for $\mathcal{R} \subset \mathcal{P}(\omega)$ :

- 1.  $\mathcal{R}$  is HL,
- 2.  $\mathcal{R}$  is **S**-reaping indestructible,
- 3.  ${\mathcal R}$  is reaping in a generic extension via forcing  ${\boldsymbol S},$

## Theorem (Baumgartner–Laver, Miller, Yiparaki) The following are equivalent for $\mathcal{R} \subset \mathcal{P}(\omega)$ :

- 1.  $\mathcal{R}$  is HL,
- 2.  $\mathcal{R}$  is **S**-reaping indestructible,
- 3.  ${\mathcal R}$  is reaping in a generic extension via forcing  ${\boldsymbol S},$
- 4.  $\mathcal{R}$  is a reaping family in some extension containing a new real,

## Theorem (Baumgartner-Laver, Miller, Yiparaki) The following are equivalent for $\mathcal{R} \subset \mathcal{P}(\omega)$ :

- 1.  $\mathcal{R}$  is HL,
- 2.  $\mathcal{R}$  is **S**-reaping indestructible,
- 3.  $\mathcal{R}$  is reaping in a generic extension via forcing **S**,
- 4.  $\mathcal{R}$  is a reaping family in some extension containing a new real,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

5. for every  $p \in \mathbf{S}$ ,  $c: p \to 2$  there is  $q \subseteq p$  and  $A \in \mathcal{R}$  such that  $q \upharpoonright A$  is *c*-monochromatic,

## Theorem (Baumgartner–Laver, Miller, Yiparaki) The following are equivalent for $\mathcal{R} \subset \mathcal{P}(\omega)$ :

- 1.  $\mathcal{R}$  is HL,
- 2.  $\mathcal{R}$  is **S**-reaping indestructible,
- 3.  ${\mathcal R}$  is reaping in a generic extension via forcing  ${\boldsymbol S},$
- 4.  $\mathcal{R}$  is a reaping family in some extension containing a new real,

- 5. for every  $p \in \mathbf{S}$ ,  $c: p \to 2$  there is  $q \subseteq p$  and  $A \in \mathcal{R}$  such that  $q \upharpoonright A$  is *c*-monochromatic,
- 6. for every  $p \in \mathbf{S}$  there is  $q \subseteq p$  and  $A \in \mathcal{R}$  such that  $A \subset \bigcap [q]$  or  $A \cap \bigcup [q] = \emptyset$ .

## Theorem (Baumgartner–Laver, Miller, Yiparaki) The following are equivalent for $\mathcal{R} \subset \mathcal{P}(\omega)$ :

- 1.  $\mathcal{R}$  is HL,
- 2.  $\mathcal{R}$  is **S**-reaping indestructible,
- 3.  ${\mathcal R}$  is reaping in a generic extension via forcing  ${\boldsymbol S},$
- 4.  $\mathcal{R}$  is a reaping family in some extension containing a new real,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 5. for every  $p \in \mathbf{S}$ ,  $c: p \to 2$  there is  $q \subseteq p$  and  $A \in \mathcal{R}$  such that  $q \upharpoonright A$  is *c*-monochromatic,
- 6. for every  $p \in \mathbf{S}$  there is  $q \subseteq p$  and  $A \in \mathcal{R}$  such that  $A \subset \bigcap [q]$  or  $A \cap \bigcup [q] = \emptyset$ .

#### Proposition

Let  $\mathcal{R}$  be a reaping family. If  $|\mathcal{R}| < \mathfrak{c}$ , then  $\mathcal{R}$  is HL.

## Terminology

- $\mathcal{I} \subset \mathcal{P}(\omega)$  is an *ideal* if closed under finite unions and subsets.
- $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$  a *co-ideal*. Every co-ideal is a reaping family.
- $\mathcal{F} \subset \mathcal{P}(\omega)$  is a *filter* if closed under finite intersections and supersets.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

•  $\mathcal{U} \subset \mathcal{P}(\omega)$  is an *ultrafilter* if it is a reaping filter. Equivalently, a maximal filter.

## Terminology

- $\mathcal{I} \subset \mathcal{P}(\omega)$  is an *ideal* if closed under finite unions and subsets.
- ►  $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$  a *co-ideal*. Every co-ideal is a reaping family.
- $\mathcal{F} \subset \mathcal{P}(\omega)$  is a *filter* if closed under finite intersections and supersets.

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

•  $\mathcal{U} \subset \mathcal{P}(\omega)$  is an *ultrafilter* if it is a reaping filter. Equivalently, a maximal filter.

#### Definition

Let  $\mathcal{I} \subset \mathcal{P}(\omega)$  be an ideal.  $\mathcal{I}$  is an *HL-ideal* if  $\mathcal{I}^+$  is HL.

## Terminology

- $\mathcal{I} \subset \mathcal{P}(\omega)$  is an *ideal* if closed under finite unions and subsets.
- ►  $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$  a co-ideal. Every co-ideal is a reaping family.
- $\mathcal{F} \subset \mathcal{P}(\omega)$  is a *filter* if closed under finite intersections and supersets.
- $\mathcal{U} \subset \mathcal{P}(\omega)$  is an *ultrafilter* if it is a reaping filter. Equivalently, a maximal filter.

#### Definition

Let  $\mathcal{I} \subset \mathcal{P}(\omega)$  be an ideal.  $\mathcal{I}$  is an *HL-ideal* if  $\mathcal{I}^+$  is HL.

► An ideal  $\mathcal{I}$  is P<sup>+</sup> if for every sequence  $\{X_n \in \mathcal{I}^+ | n \in \omega\}$ there exists  $Y = \{y_n \in [X_n]^{<\omega} | n \in \omega\}$  such that  $\bigcup Y \in \mathcal{I}^+$ .

#### Proposition

Every  $P^+$  ideal is an HL-ideal.

#### Definition

Let  $\mathcal{I} \subset \mathcal{P}(\omega)$  be an ideal.  $\mathcal{I}$  is an *HL-ideal* if  $\mathcal{I}^+$  is HL.

► An ideal  $\mathcal{I}$  is P<sup>+</sup> if for every sequence  $\{X_n \in \mathcal{I}^+ | n \in \omega\}$ there exists  $Y = \{y_n \in [X_n]^{<\omega} | n \in \omega\}$  such that  $\bigcup Y \in \mathcal{I}^+$ .

#### Proposition

Every P<sup>+</sup> ideal is an HL-ideal.

#### Example

Every Ramsey ultrafilter is an HL family.

• Ultrafilter  $\mathcal{U}$  is *Ramsey* if  $\mathcal{U} \to (\mathcal{U})_2^2$ 

#### Katětov order

#### Definition

For (ideals)  $\mathcal{X}, \mathcal{Y} \subset \mathcal{P}(\omega)$  we define  $\mathcal{X} \leq_{\mathrm{K}} \mathcal{Y}$  if there exists  $f_{\mathrm{K}} : \omega \to \omega$  such that  $f_{\mathrm{K}}^{-1}[X] \in \mathcal{Y}$  for every  $X \in \mathcal{X}$ .

#### Observation

Let  $\mathcal{I}, \mathcal{J} \subset \mathcal{P}(\omega)$  be ideals,  $\mathcal{I} \leq_{K} \mathcal{J}$ . If  $\mathcal{J}$  is an HL-ideal, then  $\mathcal{I}$  is also an HL-ideal.

### Katětov order

#### Definition

For (ideals)  $\mathcal{X}, \mathcal{Y} \subset \mathcal{P}(\omega)$  we define  $\mathcal{X} \leq_{\mathrm{K}} \mathcal{Y}$  if there exists  $f_{\mathrm{K}} : \omega \to \omega$  such that  $f_{\mathrm{K}}^{-1}[X] \in \mathcal{Y}$  for every  $X \in \mathcal{X}$ .

#### Observation

Let  $\mathcal{I}, \mathcal{J} \subset \mathcal{P}(\omega)$  be ideals,  $\mathcal{I} \leq_{K} \mathcal{J}$ . If  $\mathcal{J}$  is an HL-ideal, then  $\mathcal{I}$  is also an HL-ideal.

For  $c: 2^{<\omega} \to 2$  and  $p \in \mathbf{S}$  let  $H_c(p) = \{ n \in \omega \mid p \upharpoonright \{ n \} \text{ is } c \text{-monochromatic } \}.$ Let  $\mathcal{I}_c$  be the ideal generated by  $\{ H_c(p) \mid p \in \mathbf{S} \}.$ 

#### Observation

 $\mathcal{J}$  is an HL-ideal iff  $\mathcal{I}_c \nleq_K \mathcal{J}$  for each  $c: 2^{<\omega} \to 2$ . Equivalently iff  $\mathcal{I}_c \not\subseteq \mathcal{J}$  for each  $c: 2^{<\omega} \to 2$ .

## Examples of HL-ideals

#### Theorem

The following are examples of HL-ideals.

- ▶ P<sup>+</sup> ideals,  $F_{\sigma}$  ideals, extendible to  $F_{\sigma}$ , ...
- nwd; the ideal of nowhere dense subsets of  $\mathbb{Q}$ ,
- $\mathcal{G}_c$ ; an ideal on  $[\omega]^2$ , graphs which do not contain an infinite complete subgraph,
- $\mathcal{G}_{fc}$ ; an ideal on  $[\omega]^2$ , graphs with finite chromatic number,
- $\mathcal{I}_{1/n}$ , the ideal of summable sets on  $\omega$  (is  $F_{\sigma}$ ),
- ► SC, the ideal generated by SC-sets  $A = \{ a_n \mid n \in \omega \} \subset \omega \text{ is an SC-set if } \lim(a_{n+1} - a_n) = \infty,$

► tr(null) = { $A \subset 2^{<\omega} \mid \{x \in 2^{\omega} \mid \exists^{\infty} n \in \omega : x \upharpoonright n \in A\} \in \text{null} \}.$ 

## Examples of HL-ideals

#### Theorem

The following are examples of HL-ideals.

- ▶ P<sup>+</sup> ideals,  $F_{\sigma}$  ideals, extendible to  $F_{\sigma}$ , ...
- nwd; the ideal of nowhere dense subsets of  $\mathbb{Q}$ ,
- $\mathcal{G}_c$ ; an ideal on  $[\omega]^2$ , graphs which do not contain an infinite complete subgraph,
- $\mathcal{G}_{fc}$ ; an ideal on  $[\omega]^2$ , graphs with finite chromatic number,

• 
$$\mathcal{I}_{1/n}$$
, the ideal of summable sets on  $\omega$  (is  $F_{\sigma}$ ),

► *SC*, the ideal generated by SC-sets  $A = \{ a_n \mid n \in \omega \} \subset \omega \text{ is an SC-set if } \lim(a_{n+1} - a_n) = \infty,$ 

► tr(null) =  
{ 
$$A \subset 2^{<\omega} \mid \{ x \in 2^{\omega} \mid \exists^{\infty} n \in \omega : x \upharpoonright n \in A \} \in \text{null} \}.$$

Theorem

$$\mathcal{Z} = \left\{ A \subset \omega + \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0 \right\} \text{ is not HL.}$$



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

### Problems

#### Question

Is it consistent with ZFC that there are no HL-ultrafilters? (I.e. no S-indestructible ultrafilters)? What about Z-ultrafilters? Property (s) ultrafilters?

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

## Problems

#### Question

Is it consistent with ZFC that there are no HL-ultrafilters? (I.e. no **S**-indestructible ultrafilters)? What about  $\mathcal{Z}$ -ultrafilters? Property (s) ultrafilters?

#### Question

Let  $\mathfrak{hl} = \min\{ \operatorname{cof}(\mathcal{I}) \mid \mathcal{I} \text{ is an ideal, not HL-ideal} \}$ Is  $\mathfrak{hl} = \mathfrak{d}$ ? (We know that  $\mathfrak{d} \leq \mathfrak{hl} \leq \operatorname{cof} \mathcal{N}$ )

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

## Problems

#### Question

Is it consistent with ZFC that there are no HL-ultrafilters? (I.e. no **S**-indestructible ultrafilters)? What about  $\mathcal{Z}$ -ultrafilters? Property (s) ultrafilters?

#### Question

Let  $\mathfrak{hl} = \min\{ \operatorname{cof}(\mathcal{I}) \mid \mathcal{I} \text{ is an ideal, not HL-ideal} \}$ Is  $\mathfrak{hl} = \mathfrak{d}$ ? (We know that  $\mathfrak{d} \leq \mathfrak{hl} \leq \operatorname{cof} \mathcal{N}$ )

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Question

What about products of trees?