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Problem
DATA CLASSIFICATION (SEGMENTATION)

Problem: Segment a data set into a pre-specified number of clusters,
using a small amount of labeled data.

Applications:

1 email filtering
2 medical diagnosis
3 internet fraud detection
4 classifying DNA sequences
5 speech signal segmentation

6 face recognition
7 handwritten digits recognition
8 video tracking
9 document classification

10 financial predictions 2 / 48



Goal of the Talk

Introduce a newly formulated forward and reverse auction
method 1 for data classification.

1Journal of Computational Physics (2018) (with co-authors M. Jacobs and
S. Esedoglu), Auction Dynamics: A Volume Constrained MBO Scheme.
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Advantages

Accurate and efficient, compared to state-of-the-art, and requires
remarkably little training/labeled data.

(In)equality volume/class size constraints are incorporated and
imposed exactly at every iteration.

Unconditionally stable; algorithm always terminates with the right
properties.

4 / 48



Approach

Input: Data Set

Graphical Representation

Build an Optimization Model on the Graph

Solve Optimization Model Using
Newly Formulated Auction Dynamics

Output: A Class Assigned to Each Element of the Data Set
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Graphical Framework

V : vertices
E : edges
n = number of vertices
N = number of classes
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Processing the Data: Step 1

Step 1: Assign to each element of the data set (represented by a
vertex on a graph) a vector in Rm, called a FEATURE VECTOR.
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Processing the Data: Step 2

Step 2: Use the feature vectors to compute the weight function.

The weight function w is constructed so that it assigns
a big value of w(x , y) for similar elements x and y .
a small value of w(x , y) for dissimilar elements x and y .

An example:
w(x , y) = e−K (x,y)2/σ,

where
K (x , y) = L2-norm of the difference of the feature vectors of x and y
σ is a positive parameter.
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Labeled Data and Class Size Information

Goal: Find an optimal partition Σ = {Σ1,Σ2, ...,ΣN} of V
satisfying two conditions:

Labeled data F : Fi ⊂ F is the set of labeled points associated
with class i :

Fi ⊂ Σi for all 1 ≤ i ≤ N.

Class size information: we impose the constraints

Li ≤ |Σi | ≤ Ui , (1)

where Li and Ui are lower and upper bounds on the class sizes.
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Problem

Direction: find a partition such that vertices belonging to different
subsets of the partition are as dissimilar as possible.

Combining the graph cut with the labeled data and class size
constraints, we consider:

arg min
Σ

Cut(Σ) = arg min
Σ

N∑
i=1

∑
x∈Σi

∑
y /∈Σi

w(x , y)

s.t. Fi ⊂ Σi , Li ≤ |Σi | ≤ Ui , (2)

where the minimization is over all partitions.
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Problem

First, we rewrite the problem using indicator functions ui for Σi ,
which indicate the partition. can be described by an indicator
functions u = (u1, ...,un) : V 7→ {0,1}N :

ui (x) :=

{
1, x ∈ Σi
0, x /∈ Σi

, i = {1, . . . ,N} . (3)

The graph cut can be written in u notation as:

Cut(u,w) =
N∑

i=1

∑
x,y∈V

w(x , y)ui (x)(1− ui (y)), (4)

Standard technique: expand the state space of u.

16 / 48



Graph Heat Content

Graph Heat Content (GHC):

GHC(u,w) =
N∑

i=1

∑
x,y∈V

w(x , y)ui (x)(1− ui (y)), (5)

where u : V → KN = {u : V → [0,1]N :
∑N

i=1 ui (x) = 1} and ui (x)
represents the probability that x belongs to class i .

17 / 48



Novel Optimization Scheme

One new approach we have introduced consists of successively
minimizing linearizations of the graph heat content under
volume/class-size constraints 2:

uk+1 = arg min
{u:V\F→[0,1]N :

∑N
i=1 ui (x)=1}

N∑
i=1

∑
x∈V\F

ui (x)
( ∑

y /∈Σk
i

w(x , y)
)

s.t. Li − |Fi | ≤
∑

x∈V\F

ui (x) ≤ Ui − |Fi |, (6)

where Σk = {Σk
1, ...Σ

k
N} is a partition obtained using uk .

The partition Σk+1 is recovered from uk+1:

Σk+1
i = {x ∈ V : i = arg max

1≤j≤N
uk+1

j (x)} for all 1 ≤ i ≤ N. (7)

Class size constraints make this problem hard!
2Journal of Computational Physics (2018) (with co-authors M. Jacobs and S. Esedoglu),

Auction Dynamics: A Volume Constrained MBO Scheme.
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A Standard Technique: Lagrangian Multipliers

Consider the problem with exact class size constraints, which is
less general:

uk+1 = arg min
{u:V\F→[0,1]N :

∑N
i=1 ui (x)=1}

N∑
i=1

∑
x∈V

ui (x)
( ∑

y /∈Σk
i

w(x , y)
)

s.t.
∑

x∈V\F

ui (x) = Ei − |Fi |, (8)

If we incorporate the volume constraints with a Lagrange
multiplier λ, the solution to above is a partition Σ given by:

Σk+1
i = {x ∈ V : i = arg min

1≤i≤N
{
( ∑

y /∈Σk
i

w(x , y)
)
− λ∗i }, (9)

where λ∗ is the optimal Lagrange multiplier.
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A Standard Technique: Lagrangian Multipliers

While the scheme seems straightforward,

computing the optimal Lagrange multiplier λ∗ is highly challenging
for more than 2 classes.

We need to consider inequality class size constraints.

We instead approach our problem by solving its reformulation by
novel forward and reverse auction dynamics!
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A New Approach

A new approach: to connect the optimization problem to the
ASSIGNMENT PROBLEM, a modified version of which we solve
using novel forward and reverse auction dynamics.
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The Assignment Problem

Given two disjoint sets X and L of equal size r and a value
function a : X × L→ R, the assignment problem seeks to find a
one-to-one matching M = {(x1, `1), . . . , (xr , `r )} of X and L (i.e. a
bijection), such that the total value of the matching∑

(x,`)∈M

a`(x) (10)

is maximized.
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The Assignment Problem

By using a binary vector z, where z`(x) = 1 if (x , `) are matched
and z`(x) = 0 otherwise, we can rewrite the assignment problem:

arg max
z:X×L→{0,1}

∑
x∈X

∑
`∈L

a`(x)z`(x) s.t.
∑
x∈X

zi (x) = 1,
∑
i∈L

zi (x) = 1.

(11)

If we relax the binary constraint on z to 0 ≤ z ≤ 1, it has been
shown that the problem is not changed.
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Link

Let’s now link our two problems!!!

Our Problem:
Minimizing Linearizations

of Graph Heat Content
+ Constraints

Assignment Problem
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Problem

Theorem 1 (JCP(2018), with co-authors M. Jacobs and S. Esedoglu)

The problem of minimizing the linearization of the graph heat content
with inequality class size constraints can be expressed as the
following modified assignment problem:

arg max
z:V\F→R, 0≤z≤1

N∑
i=1

∑
x∈V

ai (x)zi (x)

s.t.
N∑

i=1

zi (x) = 1,

Bi − |Fi | ≤
∑

x∈V\F

zi (x) ≤ Ui − |Fi |, (12)

where ai (x) = 1−
∑

y /∈Σi
w(x , y), and z indicates

the assignment/classification. a

aJournal of Computational Physics (2018) (with co-authors M. Jacobs and S. Esedoglu), Auction
Dynamics: A Volume Constrained MBO Scheme
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Intuitive Interpretation of the Modified Assignment
Problem

Each class is an institution that offers a number of memberships.
Vertices x ∈ V are people, and each person would like to
become a member of some institution.
The coefficients ai (x) represent how much person x wants to be
a member of class i .
No person wants to have a membership in more than one class,
and each class has a constraint on the number of memberships.
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Intuitive Interpretation

The solution to our modified assignment problem

arg max
z:V\F→R, 0≤z≤1

N∑
i=1

∑
x∈V

ai (x)zi (x)

s.t.
N∑

i=1

zi (x) = 1, Li − |Fi | ≤
∑

x∈V\F

zi (x) ≤ Ui − |Fi |, (13)

where ai (x) = 1−
∑

y /∈Σi
w(x , y), is the matching of people and

classes that maximizes the total satisfaction of the population,
but still satisfies the constraints.

Ideally, each person would like to become a member of their
favorite class, but this is not possible if more than Ui people want
to be members of some class i .

The main difficulty: how to correctly handle these conflicts.
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Market Mechanism

Our auction dynamics technique uses a market mechanism:

PRICE
Each class i has an (evolving) membership price pi , and if
person x is a member of i , then they must pay pi .
This can help to resolve conflicts by making the most popular
classes more expensive.

INCENTIVE
Each class can also offer an incentive ti to attract customers.

STRATEGY
In general, people will want to buy a membership offering the
best value:

i? ∈ ics(x ,p) = arg max
1≤i≤N

ai (x)− pi + ti . (14)
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Link

Suppose person x is assigned to class offering the best value:
i? ∈ ics(x ,p) = arg max1≤i≤N ai (x)− pi + ti .

Class constraints will probably not be satisfied.

Does there exist an equilibrium price vector p∗ and incentive vector t∗
that give a feasible matching (i.e satisfies class size constraints)?

Yes! (Theorem)

How do we find the equilibrium prices and incentives of classes?
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Duality and Price Vector

How do we find the equilibrium prices and incentives of classes?
Answer: DUALITY!!!

Theorem 2 (JCP (2018), with co-authors M. Jacobs and S. Esedoglu)

The equilibrium price vector p∗ and equilibrium incentive vector t∗
that give a feasible matching (with respect to class size constraints)
can be obtained from solving the dual of the modified assignment
problem a:

min
p≥0,t≥0,π∈Rn

N∑
i=1

piUi−tiLi +
∑
x∈V

π(x) s.t. pi−ti +π(x) ≥ ai (x), (15)

where
p = the prices of classes
t = the incentives offered by classes to attract customers.
π(x) = auxiliary variable; optimal value is the best deal offered to
x by any phase.

aJournal of Computational Physics (2018) (with co-authors M. Jacobs and S. Esedoglu), Auction
Dynamics: A Volume Constrained MBO Scheme
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Complementary Slackness

Due to the complementary slackness condiction, if a feasible
assignment z? and dual variables (p?, t?, π?) are optimal for their
respective problems, then each person x is assigned a
membership which satisfies the market strategy; i.e. person x is
assigned to class offering the best value:

i? ∈ ics(x ,p) = arg max
1≤i≤N

ai (x)− p?i + t?i . (16)
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Forward and Reverse Auction Dynamics

We propose to solve our modified assignment problem using
newly formulated forward and reverse auction dynamics with a
market mechanism, inspired by the work of Bertsekas.

Our algorithm simulates a real-life auction.
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Forward and Reverse Auction Dynamics

Each step of the algorithm either:

modifies the prices and incentives of the classes

OR increases the number of people matched to a class.
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Forward and Reverse Auction Dynamics

Forward Auction: People bid on the classes.
Reverse Auction: The classes deficient in members compete for
people by providing incentives to attract the necessary number of
customers.
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Part I of the Algorithm: Forward Auction
If unmatched, person x bids on a class offering the best
value: i? ∈ ics(x ,p) = arg max1≤i≤N ai (x) − pi + ti

Bid: b(x) = pi∗ − ti∗ + ε+ (ai∗(x)− pi∗ + ti∗)− (ainext (x)− pinext + tinext )

Low Demand Class High Demand Class

Gets accepted immediately
Gets accepted, but the lowest

bidder (of the class) thus far gets
unmatched from the class

Price of class increased

Eventually, the increase of prices of high demand phases will
incentivize unmatched people to switch their bid.

The upper bounds fit nicely into this perspective, but the lower
bounds might not be fulfilled and require a reverse auction.
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Forward Auction
Algorithm 1: Forward Auction

Input: ε > 0, bounds L,U, coefficients a, initial prices p0, initial
incentives t0 and people x ∈ V

Result: Prices p, admissible incentives t , and complete ε-CS
matching Σ satisfying upper bounds.

Initialization: Mark all x as unassigned, set d = p0 − t0, set Σ = ∅ ;
while some x is marked as unassigned do

for each unassigned x ∈ Dn do
Calculate ics(x ,p) and choose some i∗ ∈ ics(x ,d);
Set b(x) = di∗ + ε+ (ai∗(x)− di∗)− (ainext (x)− dinext );
if |Σi∗ | = Ui∗ then

Find y = arg minz∈Σi∗
b(z);

Remove y from Σi∗ and add x to Σi∗ ;
Mark y as unassigned and mark x as assigned;
Set di∗ = minz∈Σi∗ b(z);

else if |Σi | = Li and di < 0 then
Find y = arg minz∈Σi∗

b(z);
Remove y from Σi∗ and add x to Σi∗ ;
Mark y as unassigned and mark x as assigned;
Set di∗ = min(minz∈Σi∗ b(z),0);

else
Mark x as assigned and add x to Σi∗ ;

end
end

end
Set p = max(d ,0), set t = max(−d ,0);
return (Σ,p, t)
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Part II of the Algorithm: Reverse Auction

If class i∗ is deficient in members:

Pick x matched to another class that was
closest to choosing the deficient class by computing:

arg minx ∆(x) = (acurrent (x)− pcurrent + tcurrent )− (ai∗(x)− pi∗ + ti∗)

Transfer x to the deficient class

Update incentives/prices, if necessary.

Still deficient?Yes No

Proceed with the
next deficient class
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Reverse Auction
Algorithm 2: Reverse Auction

Input: ε > 0, bounds L,U, coefficients a, initial prices p0, initial
admissible incentives t0, complete (but possibly lower
infeasible) ε-CS matching Σ0

Initialization: Set d = p0 − t0, set Σ = Σ0 ;
Result: complete and feasible ε-CS matching and admissible prices

and admissible incentives (Σ,p, t).
while there exists some i with (|Σi | < Ui and di > 0) or (|Σi | < Li ) do

for each i∗ with (|Σi∗ | < Ui∗ and di∗ > 0) or (|Σi∗ | < Li∗ ) do
for each x /∈ Σi∗ do

Let j be x ’s current phase;
Calculate ∆(x) = (aj (x)− dj )− (ai∗(x)− di∗);

end
while (|Σi∗ | < Ui∗ and di∗ > 0) or (|Σi∗ | < Li∗ ) do

Find x ∈ arg miny /∈Σi∗
∆(y);

if |Σi∗ | < Li∗ then
Remove x from its current phase and add x to Σi∗ ;
if |Σi∗ | = Li∗ and ∆(x) ≥ 0 then

Subtract ∆(x) + ε from di∗ ;
end

else
if ∆(x) + ε ≥ di∗ then

Set di∗ = 0;
else

Remove x from its current phase and add x to Σi∗ ;
if |Σi∗ | = Ui∗ and ∆(x) ≥ 0 then

Subtract ∆(x) + ε from di∗ ;
end

end
end

end
end

end
Set p = max(d ,0), set t = max(−d ,0);
return (Σ,p, t)

39 / 48



The Algorithm

To obtain the partition Σk+1 of V of iteration k + 1:

Set an initial value of ε = ε0,
recompute weights in the assignment problem
using the partition Σk of the previous iteration

Run Forward Auction

Run Reverse Auction

ε → ε/α

Is ε < εmin?No Yes

Output is Σk+1,
Proceed with the next iteration
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The Algorithm

Algorithm 3: Auction Dynamics with Volume Bounds
Input: Domain V , initial configuration Σ, surface tensions σ, kernel

K , volume bounds L,U, time step δt , number of steps m,
auction error tolerance εmin, epsilon scaling factor α, initial
epsilon ε0.

Result: Final configuration Σm

Initialization: Set Σ0 := Σ, set ε̄ = εmin/n;
for k from 0 to m − 1 do

Calculate the assignment problem coefficients:
ak+1

i (x) = 1−
∑

y /∈Σk
i

w(x , y);
Initialize prices p = 0, incentives t = 0, and ε = ε0;
while ε ≥ ε̄ do

Run the Forward Auction Algorithm:
(Σout1,pout1, tout1) = Forward Auction(ε,L,U,ak+1,p, t ,Dn);

Run the Reverse Auction Algorithm: (Σout2,pout2, tout2) =
Reverse Auction(ε,L,U,ak+1,pout1, tout1,Σout1);

Set (p, t) = (pout2, tout2);
Divide ε by α;
if ε < ε̄ then

Set Σk+1 = Σout2;
end

end
end
return Σm
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Convergence

Theorem 3 (JCP (2018), with co-authors M. Jacobs and S. Esedoglu)

The algorithm always terminates with the correct class size
properties; it is unconditionally stable with respect to parameters.

The graph-cut energy

arg min
Σ

Cut(Σ) =
1
2

N∑
i=1

∑
x∈Σi

∑
y /∈Σi

w(x , y)

s.t. Fi ⊂ Σi , Li ≤ |Σi | ≤ Ui . (17)

decreases with each iteration of auction dynamics. a

aJournal of Computational Physics (2018) (with co-authors M. Jacobs and S. Esedoglu), Auction
Dynamics: A Volume Constrained MBO Scheme
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Worst Case Time Complexity

Theorem 4 (JCP (2018), with co-authors M. Jacobs and S. Esedoglu)

For a fixed ε,
the worst case time complexity of the forward auction is
O(nN(log(n) + N)(C + G)/ε).
the worst case time complexity of the reverse auction is
O(n2N2(C + G)/ε). a

Here,
C = max

i∈{1,...,N},x∈V
ai (x)

G = max
i 6=j

(p0
j − t0

j )− (p0
i − t0

i )

n = # of vertices

N = # of classes
aJournal of Computational Physics (2018) (with co-authors M. Jacobs and S. Esedoglu), Auction

Dynamics: A Volume Constrained MBO Scheme

43 / 48



Approach

Input: Data Set

Graphical Representation

Build an Optimization Model on the Graph

Solve Optimization Model Using
Newly Formulated Auction Dynamics

Output: A Class Assigned to Each Element of the Data Set

44 / 48



Results-MNIST Data Set

consists of 70,000 28× 28 images of handwritten digits.

Table: MNIST Results

Labeled exact size small gap between no size
Nodes constraints Li and Ui constraints
0.05% 94.84% 93.17% 83.49%
0.1% 96.88% 95.87% 93.16%
0.5% 97.38% 97.20% 97.19%
1.0% 97.43% 97.31% 97.30%
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Results-Optdigits Data Set

is a database of 5620 handwritten digits.

Table: Optdigits Results.

Labeled exact size small gap between no size
Nodes constraints Li and Ui constraints
0.4% 93.04% 91.70% 85.29%
0.5% 95.96% 94.66% 89.76%

0.75% 98.07% 96.62% 94.68%
1% 98.39% 97.14% 96.33%
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Conclusion

We have derived an auction dynamics technique for data
classification.

Some of the advantages of the method include:

requires remarkably little training/labeled data.

unconditional stability; the algorithm always terminates with the
right properties.

ability to incorporate class size constraints and labeled data.

high accuracy

The auction technique is very flexible: applied it to
volume-constrained mean curvature motion.
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Thank you

Thank you!
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