
Sparse Approximation for Nonlinear
Dynamics and Stationary Processes

Giang Tran

Department of Applied Mathematics, University of Waterloo, Canada

joint work with

Lam Si Tung Ho, Dalhousie University
Hayden Schaeffer, Carnegie Mellon University
Rachel Ward, University of Texas at Austin

Numerical Analysis and Approximation Theory meet Data Science
Banff International Research Station, April 2018



Problem Set-up

I Given: (possibly noisy or corrupted) samples of a nonlinear
continuous function y = f(x) : Rd → Rn(

x1, y1
)
, . . . , (xm, ym)

I Goal: recover the underlying equation f = (f1, f2, . . . , fn)

I Suppose f = (f1, f2, . . . , fn) are multivariate polynomials of
maximal degree p:

fk(x) =
∑

α1+···+αd≤p
ckαx

α1
1 xα2

2 . . . xαd
d .

I Goal is then to recover polynomial coefficients {ckα}k,α



Problem Set-up (cont’d)

Problems of interest:

I Nonlinear dynamical systems with bifurcation

I High-dimensional nonlinear dynamical systems

I Chaotic systems in 3D with corrupted data

I Stationary processes (identically distributed + concentration
inequality)

Main ideas: sparse optimization + compressed sensing



Problem Set-up (cont’d)

I Learning nonlinear dynamics:

I Nonlinear dynamical systems with bifurcation

I High-dimensional nonlinear dynamical systems

I Chaotic systems in 3D with corrupted data

I Given m samples (possibly noisy or corrupted) of snapshots:

(x(t1), ẋ(t1)) , . . . , (x(tm), ẋ(tm))

I Goal: learn the multivariate polynomial f : Rd → Rd s.t.

dx

dt

∣∣∣∣
t=ti

= f(x(ti )), i = 1, . . . ,m.



Example 1: Nonlinear Systems with Bifurcation

I Given multiple data sets that follow the same physical law, what
can we say about its governing equation? For example,

ẋ1 = 10(x2 − x1)

ẋ2 = −x1x3 + (24− 4λ)x1 + λ x2

ẋ3 = x1x3 −
8

3
x3,
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Figure: State space plots for λ = −1 (left), λ = 7.075 (middle), and λ = 7.73 (right),
where the dynamics are chaos, a pitchfork bifurcation, and limit cycles, respectively.



Example 2: High-Dimensional Nonlinear Systems

I Lorenz 96: a canonical family of ODEs for approximating
dynamics of atmosphere:

dxk

dt
= xk+1xk−1 − xk−2xk−1 − xk + F , k = 1, · · · , d ,

where x−1 = xd−1, x0 = xd , and xd+1 = x1 and F is a forcing
constant.

I Finite difference discretization of many PDEs with applications
range from population dynamics to combustion physics.

I For example, Fisher’s equation can be written as

dxk
dt

= xk+1 − 2xk + xk−1 + γ(xk − x2
k ), k = 1, · · · , d .



“Kernel Trick” to Linearize Problem

I Form data and velocity matrices from given snapshots:

X =

 | · · · |
X1 · · · Xd

| · · · |

 =


x1(t1) · · · xd(t1)
x1(t2) · · · xd(t2)

... · · ·
...

x1(tm) · · · xd(tm)


m×d

, Ẋ =

 | · · · |
Ẋ1 · · · Ẋd

| · · · |


m×d

I Construct dictionary matrix from data:

Φ =

 | | | | | |
1 X1 · · · Xd X 2

1 X1X2 · · · X 2
d · · ·

| | | | | |


m×N

where N =
(
p+d
d

)
is number of multivariate monomials of degree ≤ p.



“Kernel Trick” to Linearize Problem

I Recovering poly. coefficients C = [c1
α, c

2
α, . . . c

d
α ]|α|≤p ∈ RN×d

as solution to the linear inverse problem 1

Ẋ = Φ C.

I In the presence of measurement errors (in data,
time-derivative approximations,...), the problem becomes

Ẋ = Φ C + E .

I We will investigate properties of the matrix Φ in various type
of input data.

1Brunton, Proctor, and Kutz, “Discovering governing equations from data by
sparse identification of nonlinear dynamical systems”, PNAS 2016.



Sparse Optimization and Bifurcation



Nonlinear Dynamics with Bifurcation

I Consider the Lorenz system with a single bifurcation parameter λ:
ẋ1 = 10(x2 − x1)

ẋ2 = −x1x3 + (24− 4λ)x1 + λ x2

ẋ3 = x1x3 −
8

3
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Figure: State space plots for different λ with dt = 0.005.



Sparse Group Penalization
I Denote the coefficient matrix

Cj =

 | | | |
c

(1)
j c

(2)
j . . . c

(m)
j

| | | |


n×m

I Observe: The vectors c
(i)
j have the same support set for all i !

I Solve the following group-sparse optimization problem:

min
Cj

m∑
i=1

‖Φ(i)c
(i)
j − V

(i)
j ‖

2
2 + γ‖Cj‖2,0

where the `2,0 penalty is defined as:

‖A‖2,0 := #

k :

(∑
`

|ak, `|2
)1/2

6= 0

 .



Numerical Method

I Proximal descent method + Hard-iterative thresholding

I Step 1: Gradient descent

(
c̃(i)
)k+1

=
(
c(i)
)k
− (Φ(i))T

(
Φ(i)

(
c(i)
)k
− V (i)

)

I Step 2: Hard-iterative thresholding

(c(i))k+1 =

 0, if ‖row‖ < √γ
argmin

c(i)

‖Φ(i)c(i) − V (i)‖2
2 otherwise.



Group Hard-Iterative Thresholding Algorithm

Given: initialization matrix C 0, tol and parameters γ.

while ‖C k+1 − C k‖∞ > tol do

for i = 1 to m:(
c̃(i)
)k+1

=
(
c(i)
)k − (Φ(i))T

(
Φ(i)

(
c(i)
)k − V (i)

)
end for

Sk+1 = supp
(
H√γ

[
c̃(1), c̃(2), · · · , c̃(m)

])
for i = 1 to m:

(c(i))k+1 = argmin
c(i)

‖Φ(i)c(i) − V (i)‖2
2 s.t. supp(c(i)) ⊂ Sk+1

end for

end while



Convergence Guarantees

min
C

F (C ) :=
m∑
i=1

‖Φ(i)c(i) − V (i)‖2
2 + γ‖C‖2,0

Theorem
Let C k be the sequence generated by the proposed numerical
scheme, then F (C k+1) ≤ F (C k) and there are subsequences that
converge to local minimizers. In addition, if

D := diag[Φ(1), . . . ,Φ(m)]

is coercive then the sequence C k converges to a local minimizer.



Convergence Guarantees: General Bound

Proposition (General bound)

Suppose, for each i , n ≤ `i , there exists a subset S ⊂ [`i ] of size
|S | = n such that {X (i)(k ,−) | k ∈ S} do not belong to a
common algebraic hypersurface of degree ≤ p.

This is a necessary and sufficient condition for the dictionary matrix
D to be full rank: for each D(i), there exists a δi > 0 such that

inf
u

‖Φ(i)u‖2

‖u‖2
≥ δi . (1)
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Numerical Results: Lorenz 3D
I Consider the Lorenz system with a single bifurcation

parameter λ: 
ẋ1 = 10(x2 − x1)

ẋ2 = −x1x3 + (24− 4λ)x1 + λ x2

ẋ3 = x1x3 −
8
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Figure: State space plots for different λ with dt = 0.005.



Numerical Results: Lorenz 3D
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Figure: Noisy velocity space plots corresponding to the data given in
Figure 3 with noise level σnoise = 0.5%.



Numerical Results: Lorenz 3D

Coeff. Set 1 Set 2 Set 3 Set 4 Set 5
1 0 0 0 0 0
x1 28.0232 (28) 5.2104 (5.2) -3.6068 (-3.6) -4.2960 (-4.3) -6.9246 (-6.92)
x2 -1.0093 (-1.0) 4.6970 (4.7) 6.9020 (6.9) 7.0719 (7.075) 7.7310 (7.73)
x3 0 0 0 0 0
...

...
...

...
...

...
x1x3 -1.0002 (-1) -1.0003 (-1) -0.9989 (-1) -1.0002 (-1) -0.9992 (-1)

...
...

...
...

...
...

x4
3 0 0 0 0 0

Recovered coefficients from all five sets for
dx2

dt
. The true values

are highlighted in (red).



Sparse Approximation in High-Dimensional

Nonlinear Dynamical Systems



Sparsity-of-Effect Principle

I For high-dimensional systems (d � 1), system is usually
dominated by main effects and first- and second-order
interactions.

I For d large, consider polynomial dictionary only up to degree

p = 2, then D is m × N where N =
(

2+d
d

)
= (d+1)(d+2)

2 .

I In systems of practical interest, low-order interactions also
sparse – exploit!

I Reformulate as a basis pursuit problem for an
underdetermined system (m� N):

min ‖C‖1, s.t ‖Ẋ − D C‖ ≤ σ

where σ represents error in time-derivative approximations.



Sparse Approximation in High-Dimensional Systems

min ‖C‖1, s.t ‖Ẋ − D C‖ ≤ σ

I Limitation in theory for high-dimensional nonlinear dynamical
system compared to rich (but technical) theory for
ergodicity/chaos in 3D nonlinear systems.

I In our work, we show that in many scenarios, we can obtain
sparse recovery for C.

I Main idea: random initializations + multiple trajectories.



Sparse Approximation in High-Dimensional Systems

I Given snapshots from K different trajectories:

{x(t1, 1), . . . , x(tm, 1)}, {ẋ(t1, 1), . . . , ẋ(tm, 1)}, . . .
{x(t1,K ), . . . , x(tm,K )}, {ẋ(t1,K ), . . . , ẋ(tm,K )}

I Form dictionary matrix D of size mK × N and solve for C.

Theorem (Schaeffer, T’, and Ward, 2017)
Assume each component of f (x) = (f1(x), . . . , fd(x)) is quadratic and
has at most s non-zero polynomial coefficients; the K initializations
{x(t1, 1), . . . , x(t1,K )} are drawn i.i.d. uniformly from [−1, 1]d ; and the
number of bursts K ≥ 9c∗ s logN log(ε−1).

Then with probability 1− ε, C is the unique solution to the
`1-minimization problem:

min ‖C‖1 subject to Ẋ = D C,

and recovery is stable with respect to inexact sparsity and robust with
respect to additive noise (as from approximating derivatives).
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Sparse Approximation in High-Dimensional Systems

I The initializations could be taken to be i.i.d. from other
distributions such as Gaussian or Chebyshev distribution

I Choose appropriate orthonormal monomials w.r.t different
distributions: uniform dist. vs Legendre polynomials, Gaussian
dist. vs Hermite polynomials, ...

I The reconstruction guarantees can be extended to
I higher-order polynomial systems (the constant in the

theoretical result will increase)
I other bounded orthonormal basis such as sines and cosines,...

I The basis pursuit problem can be solved using spgl1 2,
SpaRSA3, or cvx.

2Van Den Berg and Friedlander, “Probing the Pareto frontier for basis pursuit
solutions”, SIAM Journal on Scientific Computing, 2008.

3Wright, Nowark, and Figueiredo, “Sparse reconstruction by separable
approximation”, IEEE Trans. on Signal Processing, 2009.



Example 1: Lorenz 96 – Phase Transition

Lorenz 96:
dxk
dt

= −xk−2 xk−1 + xk−1 xk+1 − xk + F , k = 1, . . . , d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

dt = 0.001, m = 5, no thres

dt = 0.01, m = 5, no thres

dt = 0.001, m = 10, no thres

dt = 0.01,m = 10,thres = 0.005

Probability of exact recovery vs the undersampling rate K/N with N = 1326, F = 8.

For dt = 0.001, K = 80 is needed to achieve 90% prob. of success for both m.



Example 1: Lorenz 96 – Comparison

200 400 600 800 1000 1200
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The coefficients learned from basis pursuit method (left), the least-square algorithm

(middle), and the sequential thresholding algorithm (right) for the 35th component of

the Lorenz 96 with d = 50, dt = 0.001. The threshold parameter for the last two

methods is set to be 0.05.

I The least-square and the sequential thresholding solutions have
sparsity s � 10 and coefficients on the order of 107.

I Our solution is 5-sparse in the Legendre basis, when transformed
back, it is nearly exact (up to a few significant digits)!



Other Sampling Strategies

I Depend on the degree of prior knowledge about the data or
the governing equations, the number of initializations can be
reduced.

I Due to the localization of ODE system discretized from a PDE

K ∼ c s log(`) log(ε−1).

I Due to a strong decay of correlations of chaotic systems ⇒
Sample both at small time-scale (for time-derivative
approximation) and at large-scale (for ergodicity).



Sparse Recovery in Low-Dimensional

Nonlinear Dynamical Systems



Corrupted Chaotic Systems

20

y

0

-10

0

z

-10

10

x

20

0 -2010

Figure: Lorenz System with 15% Corrupted Data



Problem Formulation

I Under same assumptions as before, now observe data
corresponding to the time-∆ map, corrupted by outliers:

xoj = x(tj) + O1,j , tj = j∆, j = 0, 1, . . . ,m,

ẋoj = ẋ(tj) + O2,j , tj = j∆, j = 0, 1, . . . ,m

where #{j : |O1,j | > 0}+ #{j : |O2,j | > 0} ≤ s for s < m but
support is unknown a priori.

I In this setting, given the corrupted data matrices X o and Ẋ o ,
the difference matrix

Ẋ o − Φ(X o)C

will have at most 2s nonzero rows, the locations of which are
unknown a priori.



Problem Formulation (cont’d)

I Proposed reconstruction in corrupted data setting: solve the
jointly sparse optimization problem

(C, E) = argmin
C,E

‖E‖2,1 = argmin
C,E

m∑
i=1

‖E(i , :)‖2,

subject to Ẋ o = Φ(X o)C + E and C is sparse.



Numerical Scheme

(C, E) = argmin
C,E

‖E‖2,1 = argmin
C,E

m∑
i=1

‖E(i , :)‖2,

subject to Φ(X o)C + E = Ẋ o and C is sparse.

I The corresponding augmented Lagrangian is of the form

(C, E , b) =argmin
C,E,b

m∑
i=1

‖E(i , :)‖2 +
µ

2
‖Φ(X o)C + E − Ẋ o + b‖2

F ,

subject to C is sparse.
(2)

I It can be solved via alternating directional method of
multipliers (ADMM)/Split Bregman,...



Numerical Scheme (cont’d)

Algorithm
Given: E0, b0, tol and parameters λ, µ.

while ||Ek − Ek−1||∞ > tol do

Ck+1 = Sh

(
(Φ(X ◦))−1(Ẋ ◦ − Ek − bk), λ

)
Ek+1 = S2

(
Ẋ ◦ − bk − Φ(X ◦)Ck+1, µ

)
bk+1 = bk + Φ(X ◦)Ck+1 + Ek+1 − Ẋ ◦

end while

where

Sh(u, γ) := u · I|u|≥γ =

{
u if |u| ≥ γ
0 otherwise,

S2(uj , γ) = max

(
1− 1

γ‖u‖2
, 0

)
uj , for each row uj of u.



Numerical Results: Lorenz System
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1 0 0 0

x -9.9999 27.9995 0

y 9.9999 -0.9999 0

z 0 0 -2.6666

x2 0 0 0

xy 0 0 0.9999

xz 0 -0.9999 0

y 2 0 0 0
...

...
...

...

z4 0 0 0

Lorenz system ẋ = −10x + 10y , ẏ = 28x − y − xz , ż = −2.66z + xy , with

19.19% corrupted data, 40000 measurements, ∆t = 0.0005. The model

recovers the coefficients with 0.0096% error and detect exactly the locations of

the outliers after 24 iterations.



Lorenz System - Small Sample Size

I 5000 measurements, ∆t = 0.0005, with 71.89% corruption. The model
detects exactly the locations of the outliers and recovers the coefficients
with 0.0477% error.

2010
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I If T ≤ 2 (4000 measurements), the scheme doesn’t work well

I It’s important to have sufficient amount of measurements.



Lorenz Data with Noise

I Add Gaussian noise to the entire data

I Build the dictionary and approximate the time derivative from
noisy + corrupted data

Standard Deviation # Times Detect Exactly Coefficient Error
of Noise Outliers (over 100) (%)

0.4∆t 89 min = 0.0009,max = 0.0525

0.6∆t 87 min = 0.0006,max = 0.9395

0.8∆t 65 min = 0.0012,max = 1.57

Table: Different noise levels and the recovery results associated with the
Lorenz system, ∆t = 0.0005, 40000 measurements, and around 20%
corrupted



Reconstruction Guarantee Analysis

Theorem (T’ and Ward, 2016)
Suppose we observe corrupted measurements of the time-1 map

X ◦,t = x t + Θ1,t , Ẋ ◦,t = ẋt + Θ2,t , t = 1, 2, . . . ,m,

where xt = x(t) is the flow generated by a strongly ergodic vector field
whose time-1 map satisfies the Central Limit Theorem. Assume the
governing equations are multivariate polynomials of degree at most p.

There are constants C ,C ′ (depending on Λ, ‖Θ‖∞, and ε) such that if
m ≥ CN and s ≤ C ′m.9, then with probability exceeding 1− ε with
respect to x0 ∼ dµ, the polynomial coefficients and locations of the
outliers can be exactly recovered as the solution to the `1-minimization
problem

min
C,E
‖E‖1 subject to Φ(X ◦)C + E = Ẋ ◦
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Sketch of the Proof

Result from statistical properties of Lorenz-like systems:

I Lorenz equations support a compact, connected attractor Λ
and the flow ẋ(t) = f (x(t)) admits a physical measure µ.

I Central Limit Theorem for geometric Lorenz attractors:
Fix η > 0. Let ϕ : R3 → R be a C 1+η function, and let
Z ∼ N (0, σ2). Then there are constants C1 > 0 and Cx ,ϕ ≥ 0
such that∣∣∣∣∣∣ 1

m

m−1∑
j=0

ϕ(xj)−
∫

Λ

ϕdµ− σ√
m
Z

∣∣∣∣∣∣ ≤ Cx,ϕm
−3/4(log(m))1/2(log log(m))1/4

for µ-almost all x ∈ Λ, and σ2 ≤ C1‖ϕ‖2
C1+η .

4Tucker, ‘’The Lorenz attractor exists”, Comptes Rendus de l’Académie des
Sciences-Series I-Mathematics, 1999.

5Arajo, Melbourne, and Varandas, ‘’Rapid mixing for the Lorenz attractor and
statistical limit laws for their time-1 maps”, Comm. in Mathematical Physics, 2015.



Sketch of the Proof

min
C,E
‖E‖1 subject to Φ(X ◦)C + E = Ẋ ◦ (∗)

Result from compressed sensing6:

I Every (C, E), satisfying AC + E = y and E ∈ Rm is s-sparse, is
the unique solution to (*) if and only if A is full column rank
and for every v ∈ R(A) \ {0}, the following holds

2s∑
j=1

|v(j)| <
1

2
‖v‖1

I Generally, only random A shown to reach optimal sparsity
level s � m

log(m)

I We will show that this is also in the setting where A = Φ is
constructed via data from certain chaotic systems!

6Bandeira, Scheinberg, and Vincent, ‘’On partial sparse recovery”, IEEE Signal
Processing Letters 2013.



I Indeed, we can prove that the matrix A = [Φm×r ; Im×m]
satisfies the null space property:

I For every w ∈ kerA \ {~0} and every set S ⊂ {1, . . . ,m + r} of
cardinality s, the following holds

‖wS‖1 <
1

2
‖w‖1.

I The central limit theorem for chaotic systems can be replaced
by other concentration inequalities.

I Extend the proof’s technique of [T. and Ward, 2017] to a
wider class of data that are not required to be independent.



Learning Functions from Stationary Processes



I Suppose we observe corrupted measurements(
U(i) = X(i) + Θ(i),Y(i) = f (X(i))

)m
i=1
⊂ Rd × R,

I Assume

f (x1, · · · , xd) =
∑

|α|=α1+...+αd≤p

cαxα1
1 . . . xαd

d , j = 1, . . . , n,

I Let y = [Y (1) . . .Y (m)]T then y = Φ c + e.

I Adding sparsity constraints to the solution:

min
c,e
‖c‖1 + ‖e‖1 subject to y = Φ c + e.



Assumptions:

I max
i
‖Θ(i)‖∞ ≤ BΘ, and max

i
‖X (i)‖∞ ≤ BX

I Assume the common distribution µ of {X (i)}mi=1 is non-degenerated,
i.e., µ(X (1) ∈ A) = 1 implies A contains infinitely many elements.

I {X (i)}mi=1 satisfies the following concentration inequality

Pr

(∣∣∣∣∣
m∑
i=1

ϕ(Xi )−mE[ϕ(X)]

∣∣∣∣∣ ≥ ζ
)
≤ C1 exp

(
− ζ2

C2ωm + C3ζκm

)
,

for any bounded Borel function ϕ.

I
√
ωm logm + κm logm = o(m)



Theorem (Ho, T’, and Ward, 2018)

Under previous assumptions, there are constants C ′,C ′′ depending
only on BΘ,BX , p such that if

m ≥ C ′, s ≤ C ′′m

then the polynomial coefficients of f as well as the outlier vector e
can be exactly recovered from the unique solution to the
`1-minimization problem

min
c,e
‖e‖1 + ‖c‖1 subject to e + Φc = y .



Sparse Recovery for i.i.d. Random Variables

I Bernstein inequality for i.i.d. random variables (Xi ) (Modha and
Masry, 1996): Suppose |ψ(X1)− E(ψ(X1))| ≤ d1 a.s., then we have

Pr

(∣∣∣∣∣
m∑
i=1

ψ(Xi )−mE[ψ(X)]

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

C2m + C3t

)
where

C2 = 2E(ψ2(X1))− 2(E(ψ(X1)))2, C3 =
2

3
d1

and ψ is any bounded Borel function.

I The samples {X (t)} satisfy the concentration inequality with
ωm = m and κm = 1,√

ωm logm + κm logm = o(m).

I So with probability
(
1− 1

mδ

)
for some constant δ > 0, m large

enough, the associated `1-minimization problem has a unique

solution.



Sparse Recovery for Exponentially Strongly α-Mixing Processes

I Recall: for a stationary stochastic process {Xt}, define

α(s) = sup
−∞<t<∞

A∈σ(X−
t ),B∈σ(X+

t+s )

|P(A ∩ B)− P(A)P(B)|

I The stochastic process is said to be exponentially strongly α-mixing
if

α(s) ≤ α exp(−cαsβ), s ≥ 1,

for some α > 0, β > 0, and c > 0, where the constants β and c are

assumed to be known.



Sparse Recovery for Exponentially Strongly α-Mixing Processes

I Exponentially strongly α-mixing satisfies the following concentration
inequality (Modha and Masry, 1996)

Pr

(∣∣∣∣∣
m∑
i=1

ψ(Xi )−mE[ψ(X)]

∣∣∣∣∣ ≥ t

)
≤ C1 exp

(
− t2

(C2m2 + C3tm)/mα

)
where

mα :=

⌊
m

d(8m/cα)1/(β+1)e

⌋
= O(mβ/(β+1)),

C1 = 2(1 + 4e−2α), C2 = 2E(ψ2(X1))− 2(E(ψ(X1)))2, C3 =
2

3
d1

and ψ is any bounded Borel function.
I The samples {X (t)} satisfy the concentration inequality with
ωm = m2/mα, κm = m/mα,√

ωm logm + κm logm = o(m).

I So with probability
(
1− 1

mδ

)
for some constant δ > 0, m large

enough, the associated `1-minimization problem has a unique

solution.



Conclusions and Future Directions

Conclusions

I Shown that the dictionary matrix generated from the
polynomial space satisfies range space property, coercivity,...

I Proved the sparse recovery for high dimensional nonlinear
systems, 3D chaotic systems, and stationary process with
concentration inequalities

I Presented several numerical examples to validate the proposed
methods.

Future directions

I Simulate numerical experiments to validate sparse recovery for
stationary processes

I Analyze reconstruct guarantees for other dictionary matrices

I Look for real applications



Figure: An example where the state space quickly approaches a limit
cycle, which almost stays on a hypersurface of degree 2. The state space
is generated from the Lorenz system with µ = 7.73, initialization
U0 = [1, 1, 2], and time step dt = 0.005.


