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Exponential integrators

We consider the simplest exponential integrator for
u'(t) = Au(t) + g(u(t)), u(0) = uo
that is exponential Euler
Unt1 = tn + hp1(hA)(Aun + g(un))

where h is the time step and ¢ is the entire function

e? -1

pi(z) = ——.
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Exponential integrators

We consider the simplest exponential integrator for
u'(t) = Au(t) + g(u(t)), u(0) = uo
that is exponential Euler
Unt1 = tn + hp1(hA)(Aun + g(un))

where h is the time step and ¢ is the entire function

e? -1

pi(z) = ——.

Given the augmented matrix
= A v
A—[O 0}, v = Aup + g(up)

we have

exp(hA) m _ [hm(lhA)v]
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Power series expansion of the backward error for exp(A)

We formally approximate exp(A) as
p(s LA)° = exp(A+ AA) = exp(A + sh(s LA))

where p(z) is a polynomial of degree m (with p(0) = 1) and h(z)
has a power series expansion

h(z) =log(e *p(2)) = > ckz*

k=(+1

where £ is the largest integer such that p(j)(O) =1,,;=0,1,...,¢
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Power series expansion of the backward error for exp(A)

We formally approximate exp(A) as
p(s71A)* = exp(A+ AA) = exp(A + sh(s *A))
where p(z) is a polynomial of degree m (with p(0) = 1) and h(z)
has a power series expansion
o
h(z) = log(ep(2) = 3 cuz*
k=041

where £ is the largest integer such that p(j)(O) =1,,;=0,1,...,¢
Therefore, [|AA| < tol - ||A] if

IAA] _ Ih(sTr A _ h(sHIAID
= < < tol
A [s~A| sTH A

where h(z) = 3°0° . 1 |ck| 2%
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Precomputation of the threshold

We can precompute in high precision the threshold 6 such that

h
(Hm = tol.

Then
JAA] < tol- Al if sHA] <.
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Precomputation of the threshold

We can precompute in high precision the threshold 6 such that

h(:) = tol.
Then
JAAI < tol - [|A]| if LAl <.
Given
ag(A) = max{[| A7|[/9, || AT/ (a1
then

|AA| < tol-||A] ifs ta,(A) <fand q(¢g—1)<l+1

The sequence {ag(A)}q usually decreases for nonnormal matrices.
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Precomputation of the threshold

We can precompute in high precision the threshold 6 such that

h(:) = tol.
Then
JAA]| < tol- [|A]if LAl < 6.
Given
ag(A) = max{[| A7|[/9, || AT/ (a1
then

|AA| < tol-||A] ifs ta,(A) <fand q(¢g—1)<l+1

The sequence {ag(A)}q usually decreases for nonnormal matrices.
Usually we work with shifted matrices B = A — ul.
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Families of polynomial approximations

Instead of a single polynomial of degree m, we can consider
sequences {pm}m. For instance

» truncated Taylor series py(z) = > 1y 2'/i!
[Al-Mohy-Higham, 2011]
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Families of polynomial approximations

Instead of a single polynomial of degree m, we can consider
sequences {pm}m. For instance

» truncated Taylor series py(z) = > 1y 2'/i!
[Al-Mohy-Higham, 2011]

> Interpolation pp,(z) = Y217 elzo:717] Hj':;é(z — zj) at
Leja—Hermite points [C., Kandolf, Ostermann, Rainer,
Zivcovich 2016-2018]

2=z1=...=2 =0,

1
Ziy1 € arg max H|x—zj-] i=04+1,...,m—1
x€[—c,c] -
Jj=0
For each m, ¢ can be chosen in order to maximize 6.
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More information from the spectrum of A

The field of values VW(A) satisfies

W(A) = W(AH + ASH) - W(AH) + W(ASH) =
conv(o(Ag)) + conv(o(Asn)) C [, v] +1i[n, 5]

We use Gershgorin's disks to obtain the rectangle [, v] + i[n, A].
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More information from the spectrum of A

The field of values VW(A) satisfies

W(A) = W(AH + ASH) - W(AH) + W(ASH) =
conv(o(Ag)) + conv(o(Asn)) C [, v] +1i[n, 5]

We use Gershgorin's disks to obtain the rectangle [, v] + i[n, A].
After applying the obvious shift y, with abuse of notation, we get

W(A) € R(A) = [-v,v] +i[-5, ]
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More information from the spectrum of A

The field of values VW(A) satisfies

W(A) = W(AH + ASH) - W(AH) + W(ASH) =
conv(o(Ag)) + conv(o(Asn)) C [, v] +1i[n, 5]

We use Gershgorin's disks to obtain the rectangle [, v] + i[n, A].
After applying the obvious shift y, with abuse of notation, we get

W(A) € R(A) = [-v,v] +i[-5, ]

and
A(A) SW(A) +A: € R(A) + A

where \.(A) = {z € C: ||(zl — A)7||2 > 71} is the
e-pseudo-spectrum of Aand A, = {z € C: |z| <&}
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Contour integral expansion of the backward error

A:(A) does not scale with A: we consider instead

A(SHtAHQ(tA) - W(tA) + A5||tA||2 - R(tA) + A5||tA||2 =
t(R(A) + Agja,) € tRs(A)

where R5(A) is the extented rectangle

Rs(A) = [=v = 6[lAll2, v + 6[|All2] + i[5 — 6[|All2, B + S| All2].

Marco Caliari Error analysis on pseudo-spectra for the matrix exponential



Contour integral expansion of the backward error

A:(A) does not scale with A: we consider instead

A(SHtAHQ(tA) - W(tA) + A5||tA||2 - R(tA) + A5||tA||2 =
t(R(A) + Agja,) € tRs(A)

where R5(A) is the extented rectangle

Rs(A) = [=v = 6[lAll2, v + 6[|All2] + i[5 — 6[|All2, B + S| All2].

Then
18AL ATl 1y
N R L =
Al s Al
_ 1 1 v L£(T)
1 1 1
A — | — A) - d < —2
Il | 5 [ ete)et == a0z < S0l

if h(z) = z°g(z) (£ >1) and T = 9K encloses Asjs—14,(s " A).
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Contour integral expansion of the backward error

A:(A) does not scale with A: we consider instead

A(SHtAHQ(tA) - W(tA) + A5||tA||2 - R(tA) + A5||tA||2 =
t(R(A) + Agja,) € tRs(A)

where R5(A) is the extented rectangle

Rs(A) = [=v = 6[lAll2, v + 6[|All2] + i[5 — 6[|All2, B + S| All2].

Then
18AL ATl 1y
N R L =
Al s Al
_ 1 1 v L£(T)
1 1 1
A — | — A) - d < —2
Il | 5 [ ete)et == a0z < S0l

if h(z) = z°g(z) (£ >1) and T = 9K encloses Asjs—14,(s " A).
This is true if s71Rs(A) C K.



Choice of K

For given c and §, we consider the ellipse I, of foci (4c,0) and
capacity (half sum of the semi-axes) v. We look for 5 such that
1All2 2mo

My, = tol

where g is associated to a given polynomial p,,: [—c,c] — R.
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Choice of K

For given c and §, we consider the ellipse I, of foci (4c,0) and
capacity (half sum of the semi-axes) v. We look for 5 such that

”AA”2 < < ‘C(r’Y6)||g
[ 2 )

My, = tol

where g is associated to a given polynomial p,,: [—c,c] — R.

» For a given (shifted) matrix A, compute the rectangle
Rs(A) = [=v = 6[|All2, v + 8[| All2] +i[=5 — 6[[All2, B + 6]|All2]
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Choice of K

For given c and §, we consider the ellipse I, of foci (4c,0) and
capacity (half sum of the semi-axes) v. We look for 5 such that

”AA”2 < < ‘C(r’Y6)||g
[ 2 )

My, = tol

where g is associated to a given polynomial p,,: [—c,c] — R.

» For a given (shifted) matrix A, compute the rectangle
Rs(A) = [=v = 6[|All2, v + 8[| All2] +i[=5 — 6[[All2, B + 6]|All2]
» compute s as the smallest integer such that s7'Rs(A) C K,,

2 2
(V+ZHZ\H2) N (/J’+<;||é\||2) <1
s°aj s°bj
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Choice of K

For given c and §, we consider the ellipse I, of foci (4c,0) and
capacity (half sum of the semi-axes) v. We look for 5 such that

1842 _ £
[l == T2ms

My, = tol

lg

where g is associated to a given polynomial p,,: [—c,c] — R.

» For a given (shifted) matrix A, compute the rectangle
Rs(A) = [=v = 6[|All2, v + 8[| All2] +i[=5 — 6[[All2, B + 6]|All2]
» compute s as the smallest integer such that s7'Rs(A) C K,,

2 2
(V+ZHZ\H2) N (/J’+<;||é\||2) <1
s°aj s°bj

» approximate exp(A)v as pm(s A)(... (pm(s A V). ..)

/

Vv
s times
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Details

» We used Leja—Hermite interpolation polynomials with £ > 1
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» We used Leja—Hermite interpolation polynomials with £ > 1
» for given intervals [—c, c] and i[—c, c| and given degrees m up
to 55, we computed the corresponding ellipses I,
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Details

» We used Leja—Hermite interpolation polynomials with £ > 1

» for given intervals [—c, c] and i[—c, c| and given degrees m up
to 55, we computed the corresponding ellipses I,

» we optimized over § and ¢

4
- (= 1.5= 01800

—=3.5=0.0178
el = 1,6 = 00180
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Details

» We used Leja—Hermite interpolation polynomials with £ > 1

» for given intervals [—c, c] and i[—c, c| and given degrees m up
to 55, we computed the corresponding ellipses I,

» we optimized over § and ¢

4
- (= 1.5= 01800

—=3.5=0.0178
el = 1,6 = 00180

» given the matrix A, we minimize s - m (matrix-vector cost)
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Numerical results: 1

Ais a 2D diffusion matrix, size 2041 x 2041, HAqu/q =100

Method s | m c Qor~y | £ | s-m | act.its. | rel. err.
Taylor 11 | 53 0 9.3 53 | 583 495 4.4e-14
L-H ps. | 10 | 55 | 4.8 1.0e1 | 0 | 550 460 3.3e-14
L-Hci. | 8 | 51 | 1.3el 7.1 15 | 408 268 1.3e-14

The number of actual iterations is smaller than s - m because of an
early termination criterion

k .
AI
< tol - g _—Iv(l) fork<mand0</<s-1
il

Ak
T | A ()]
if H P v
i=0

then stop substep /
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Numerical results: 2

Ais a 1D Schrodinger matrix, size 69 x 69, ||Aq||i/q = 2450

Method s m c Qor~y | £ s-m | act.its. | rel. err.
Taylor 249 | 55 0 9.9 55 | 13695 13197 7.3e-11
L-H p.s. | 292 | 55 8.4 8.4 1 | 16060 | 10220 | 2.7e-13
L-Hci. | 186 | 54 | 1.3el 7.9 42 | 10044 9858 1.7e-13

There is a hump phenomenon for Taylor series approximation. We

mean that
k A,‘ m A,'
Z_—v(’) > Z_—v(l) fork<mand 0</<s-1
i=0 i! i=0 il

and cancellation takes place.
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Numerical results: 3

Ais triu(-4*ones(20),1) (nilpotent), v is cos((1:20)?),
|All1 = 76, ag(A) = 16.29, limg_oc ag(A) = p(A) =0

Method | s | m c |[Bory | £ | s-m| act.its. | rel. err.
Taylor 2|54 0 9.6 54 | 108 42 3.2e-14
L-Hps. | 2| 53|67 9.6 41 106 42 4.2e-14
L-Hci. | 6| 55|55 9.2 2 330 186 2.0e-14

Since it is not possible to use the values ag(A) for L-H c.i., there
is overscaling.
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Numerical results: 3

Ais triu(-4*ones(20),1) (nilpotent), v is cos((1:20)?),
|All1 = 76, ag(A) = 16.29, limg_oc ag(A) = p(A) =0

Method | s | m c |[Bory | £ | s-m| act.its. | rel. err.
Taylor 2|54 0 9.6 54 | 108 42 3.2e-14
L-Hps. | 2| 53|67 9.6 41 106 42 4.2e-14
L-Hci. | 6 | 55 | 5.5 9.2 2 330 186 2.0e-14

Since it is not possible to use the values ag(A) for L-H c.i., there

is overscaling.
This is the famous triw example by [Al-Mohy-Higham, 2011] for
which Krylov and rational methods may suffer of loss of accuracy.
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Numerical results: 4

Ais triu(-4*ones(110),1) (nilpotent), v is ones(110,1),
|All1 = 436, ag(A) = 112.08

Method | s | m | c | Bor~y | £ | s-m | act.its. | rel. err.
0 9.9 55 | 660 313 3.2e-12

Taylor 12 | 55
L-Hci. | 34|55 |0 9.2 55 | 1870 635 2.2e-14

In this case, we have that L-H c.i. is Taylor, but the abuse of the

values ag(A) makes Taylor to underscale.
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Conclusions

» A mixture of power series and contour integral expansions
would probably be optimal
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Conclusions

» A mixture of power series and contour integral expansions
would probably be optimal

» The backward error analysis can be applied to any polynomial
method (Taylor truncated series, interpolation, Chebyshev
series, ..., Krylov)
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Conclusions

» A mixture of power series and contour integral expansions
would probably be optimal

» The backward error analysis can be applied to any polynomial
method (Taylor truncated series, interpolation, Chebyshev
series, ..., Krylov)

» It should be possible to perform the backward error analysis
on-the-fly [C. and Zivcovich, 2018]
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Conclusions

» A mixture of power series and contour integral expansions
would probably be optimal

» The backward error analysis can be applied to any polynomial
method (Taylor truncated series, interpolation, Chebyshev
series, ..., Krylov)

» It should be possible to perform the backward error analysis
on-the-fly [C. and Zivcovich, 2018]

» matrix-free?
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Conclusions

» A mixture of power series and contour integral expansions
would probably be optimal

» The backward error analysis can be applied to any polynomial
method (Taylor truncated series, interpolation, Chebyshev
series, ..., Krylov)

» It should be possible to perform the backward error analysis
on-the-fly [C. and Zivcovich, 2018]

» matrix-free?

» Thanks for your attention
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