On some relations between Optimal Transport and Stochastic Geometric Mechanics

Banff, December 2018

Ana Bela Cruzeiro
Dep. Mathematics IST and
Grupo de Física-Matemática Univ. Lisboa

Based on joint works with M. Arnaudon, X. Chen, J.-C. Zambrini

Extensions of (some) results, with applications to fluids: with T. Ratiu, C. Léonard

Recalling the Monge-Kantorovich (MK) optimal transport problem (flat case)

$$
\inf _{\pi \in \Pi(\mu, \sigma)} \frac{1}{2} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|x-y\|^{2} d \pi(x, y)
$$

where $\Pi(\mu, \sigma)=\{$ joint distributions s.t. the marginals along x and y coordinates are μ and σ resp. $\}$.
Since "the cost"

$$
\|x-y\|^{2}=\inf _{X} \int_{0}^{1}\|\dot{X}(t)\|^{2} d t
$$

$X \in\left\{C\left([0,1] ; \mathbb{R}^{d}\right): X(0)=x, X(1)=y\right\}$, the MK problem is equivalent to

$$
\inf _{\pi} \frac{1}{2} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left(\iint_{0}^{1}\|\dot{X}(t)\|^{2} d t d P_{x, y}\right) d \pi(x, y)
$$

or, by desintegration, to

$$
\inf _{P} \iint_{0}^{1} \frac{1}{2}\|\dot{X}(t)\|^{2} d t d P
$$

with P prob. measure on $C^{1}\left([0,1] ; \mathbb{R}^{d}\right)$ with marginals μ and σ at $t=0, t=1$ and $P_{x, y}$ the one with initial and final marginals δ_{x} and δ_{y}.

Eulerian (control) version of this problem:

$$
\inf _{v} \frac{1}{2} \iint_{0}^{1}\left\|v\left(t, x^{v}(t)\right)\right\|^{2} d t d P
$$

v continuous, $\dot{x}^{v}(t)=v\left(t, x^{v}(t)\right)$ a.s., law of $x^{v}(0)=\mu$, law of $x^{v}(1)=\sigma$.
If $d \mu=\rho_{0} d x, d \sigma=\rho_{1} d x$ given, law of $x^{v}(t)=\rho_{t} d x$, then

$$
\frac{\partial \rho}{\partial t}=-\operatorname{div}(\rho v)
$$

(continuity equation)

If ψ solves the Hamilton-Jacobi equation

$$
\frac{\partial \psi}{\partial t}=-\frac{1}{2}\|\nabla \psi\|^{2}
$$

and $\frac{\partial \rho}{\partial t}=-\operatorname{div}(\rho \nabla \psi)$, with $\rho(0, x)=\rho_{0}(x), \rho(1, x)=\rho_{1}(x)$, then $v=\nabla \psi$ solves the problem. Moreover

$$
\frac{\partial v}{\partial t}=-(v \cdot \nabla) v
$$

On $C\left([0,1] ; \mathbb{R}^{d}\right)$ consider the laws (Q) of diffusions

$$
d X(t)=\sqrt{\epsilon} d W(t)+Y(t) d t, \quad \text { law of } X(0)=d x
$$

Entropy functional of Q w.r.t. P :

$$
H(Q ; P)=\int \log \left(\frac{d Q}{d P}\right) d Q
$$

Choose for P the law of the Wiener process

$$
H(Q ; P)=H\left(Q_{0} ; P_{0}\right)+\frac{1}{2} \iint_{0}^{1}\|Y(t)\|^{2} d t d Q,
$$

where Q_{0}, P_{0} are the marginals of Q and P at time 0 . This is a consequence of Girsanov's Theorem.

Schrödinger problem: minimise the entropy functional, subject to given Q_{0} and Q_{1}.

If $Y(t)=v(t, X(t))$, the density ρ_{t} of X at time t satisfies the Fokker-Planck equation

$$
\frac{\partial \rho}{\partial t}=-\operatorname{div}(\rho v)+\frac{\epsilon}{2} \Delta \rho
$$

If, moreover, $v=\nabla \varphi$ satisfies Hamilton-Jacobi-Bellman equation,

$$
\frac{\partial \varphi}{\partial t}=-\frac{1}{2}\|\nabla \varphi\|^{2}+\frac{\epsilon}{2} \Delta \varphi
$$

then $v=\nabla \varphi$. So

$$
\frac{\partial v}{\partial t}=-(v \cdot \nabla) v+\frac{\epsilon}{2} \Delta v
$$

(Burgers equation)

Remarks:

1. With the change of variable $v=\nabla \varphi, \varphi=-\log \eta, \frac{\partial \eta}{\partial t}=\frac{\epsilon}{2} \Delta \eta$ (heat equation)
2. When $\epsilon \rightarrow 0$ formally Schrödinger problem converges to the optimal transport problem (C. Léonard, etc)
(delicate problem)

G Lie group with

$<>$ right (left) invariant metric
∇ Levi-Civita connection
e identity element
$\mathcal{G} \simeq T_{e}(G)$ Lie algebra
$\left\{H_{i}\right\}$ o.n. basis of \mathcal{G}, right invariant, (we suppose finite dimensional),
$\nabla_{H_{i}} H_{i}=0$
Brownian motion on G with generator $=$ Laplace-Beltrami operator:

$$
d g^{0}(t)=T_{e} R_{g^{0}(t)}\left(\sum_{i} H_{i} \circ d W^{i}(t)\right)=T_{e} R_{g^{0}(t)}\left(\sum_{i} H_{i} \cdot d W^{i}(t)\right)
$$

where $T_{a} R_{g(t)}: T_{a} G \rightarrow T_{a g(t)} G$ is the differential of the right translation $R_{g(t)}(x):=x g(t), \forall x \in G$ at the point $x=a \in G$.

General diffusion processes:

$$
\begin{gathered}
d g(t)=T_{e} R_{g(t)}\left(\sum_{i} H_{i} \circ d W^{i}(t)+u(t) d t\right) \\
T_{e} R_{g(t)} u(t)=\frac{D^{\nabla} g(t)}{d t}
\end{gathered}
$$

where, by definition, D^{∇} is the (mean) derivative defined as: for $\xi(t)=\int_{0}^{t} T_{0 \leftarrow s} \circ d g(s)$, where $T_{\cdot \leftarrow 0}: T_{g(0)} G \rightarrow T_{g(\cdot)} G$ is the stochastic parallel transport associated to ∇, define

$$
\frac{D \xi(t)}{d t}=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} E\left[\xi(t+\epsilon)-\xi(t) \mid \mathcal{P}_{t}\right]
$$

and

$$
\frac{D^{\nabla} g(t)}{d t}:=T_{t \leftarrow 0} \frac{D \xi(t)}{d t}
$$

From Girsanov's Theorem the law Q of g on $C([0,1] ; G)$ is absolutely continuous w.r.t. the law P of g^{0} (same initial distributions) with density given by

$$
\begin{aligned}
\frac{d Q}{d P}=\exp \{ & \int_{0}^{1} \sum_{i}<T_{g} R_{g^{-1}} \frac{D^{\nabla} g(t)}{d t}, H_{i} d W^{i}(t)> \\
& \left.-\frac{1}{2} \int_{0}^{1}\left\|T_{g} R_{g^{-1}} \frac{D^{\nabla} g(t)}{d t}\right\|^{2} d t\right\}
\end{aligned}
$$

Therefore the entropy is

$$
H(Q ; P)=\frac{1}{2} \iint_{0}^{1}\left\|T_{g} R_{g^{-1}} \frac{D^{\nabla} g(t)}{d t}\right\|^{2} d t d Q
$$

Denote by α the invariant measure on G, P_{x} law of the Brownian motion g^{0} on G starting at $x, P_{t}(x, \alpha(d y))$ its transition semigroup.

$$
\tilde{P}_{\mu}=\int_{G} P_{x} \mu(d x)
$$

Assume μ and σ prob. measures, to be abs. cont. w.r.t. α.
$\mathcal{M}(\mu, \sigma):=\left\{\pi\right.$ prob. measures on $G \times G: \pi\left(g^{0}(0) \in \cdot\right)=$ $\mu(\cdot), \pi\left(g^{0}(1) \in \cdot\right)=\sigma(\cdot), \pi$ abs. cont. w.r.t. $\left.\mu \otimes P_{1}\right\}$

For $\pi \in \mathcal{M}(\mu, \sigma)$, define

$$
P_{\pi}(d \omega)=\int_{G \times G} \pi(d x, d y) P(d \omega \mid 0, x ; 1, y)
$$

prob. measure on $C([0,1] ; G)$.

By Csiszär's Theorem, if $\exists \pi_{0} \in \mathcal{M}(\mu, \sigma): H\left(\pi_{0}, \mu \otimes P_{1}\right)<\infty$, then $\exists^{1} Q$ on $C([0,1] ; G]$ attaining the

$$
\inf _{Q: Q((g(0), g(1) \in \cdot) \in \mathcal{M}(\mu, \sigma)} H\left(Q ; \tilde{P}_{\mu}\right)
$$

with $Q=P_{\pi}, \pi$ attaining

$$
\inf _{\pi} H\left(\pi ; \mu \otimes P_{1}\right)
$$

Moreover Q is the law of a Markov process.

Combining with Girsanov's result, we have

$$
\begin{aligned}
H\left(Q ; \tilde{P}_{\mu}\right) & =\frac{1}{2} \iint_{0}^{1}\left\|T_{g} R_{g^{-1}} \frac{D^{\nabla} g(t)}{d t}\right\|^{2} d t d Q \\
& :=A[g]
\end{aligned}
$$

Stochastic Euler-Poincaré reduction theorem

Theorem. The G-valued semi-martingale

$$
d g(t)=T_{e} R_{g(t)}\left(\sum_{i} H_{i} \circ d W^{i}(t)+u(t) d t\right)
$$

is a critical point of A if and only if the time-dependent vector field $u(\cdot)$ satisfies the equation,

$$
\frac{d}{d t} u(t)=-a d_{u(t)}^{*} u(t)-K(u(t)),
$$

where
for $u \in \mathcal{G}, a d_{u}^{*}: \mathcal{G} \rightarrow \mathcal{G}$ is the adjoint of $\operatorname{ad}_{u}: \mathcal{G} \rightarrow \mathcal{G}$ with respect to the metric $<>$,
and the operator $K: \mathcal{G} \rightarrow \mathcal{G}$ is defined as

$$
K(u)=-\frac{1}{2} \sum_{i}\left(\nabla_{H_{i}} \nabla_{H_{i}} u+R\left(u, H_{i}\right) H_{i}\right)=-\frac{1}{2} \square(u)
$$

(de Rham-Hodge Laplacian)
(Left) variations:

$$
\partial_{L} A[\xi(\cdot)]=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} A\left[\xi_{\varepsilon, v}(\cdot)\right]
$$

with $\xi_{\varepsilon, v}(t)=\boldsymbol{e}_{\varepsilon, v}(t) \xi(t)$

$$
\left\{\begin{array}{l}
\frac{d}{d t} e_{\varepsilon, v}(t)=\varepsilon T_{e} R_{e_{\varepsilon, v}(t)} \dot{v}(t) \tag{1}\\
e_{\varepsilon, v}(0)=e
\end{array}\right.
$$

for $v(\cdot) \in C^{1}([0, T] ; \mathcal{G}), v(0)=v(T)=0$
We differentiate in the direction of $v\left(\left.\frac{d}{d \epsilon}\right|_{\varepsilon=0} e_{\varepsilon, v}=v\right)$

"Proof" of the Theorem:

For $g_{\varepsilon}(t)=e_{\varepsilon, v}(t) g(t)$, by Itô's formula ,

$$
\begin{align*}
& d g_{\varepsilon}(t)=\sum_{i} T_{e} R_{g_{\varepsilon}(t)} A d_{e_{\varepsilon}^{-1}(t)} H_{i} \circ d W_{t}^{i} \tag{2}\\
& \quad+T_{e} R_{g_{\varepsilon}(t)}\left(A d_{e_{\varepsilon}^{-1}(t)}(u(t))+T_{e_{\varepsilon}(t)} R_{e_{\varepsilon}^{-1}(t)} \dot{e}_{\varepsilon}(t)\right) d t
\end{align*}
$$

(no contraction term)
We have $T_{e_{\varepsilon}(t)} R_{e_{\varepsilon}^{-1}(t)} \dot{e}_{\varepsilon}(t)=\varepsilon \dot{v}(t),\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} A d_{e_{\varepsilon}^{-1}(t)} u(t)=-a d_{v(t)} u(t)$ and $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} A d_{e_{\varepsilon}^{-1}(t) H_{i}}=a d_{v(t)} H_{i}$

$$
\begin{align*}
& \left.\frac{d A\left[g_{\varepsilon}(\cdot)\right]}{d \varepsilon}\right|_{\varepsilon=0}=\mathbb{E} \int_{0}^{1}<\left.\frac{d}{d \varepsilon}\left(T_{g_{\varepsilon}(t)} R_{g_{\varepsilon}^{-1}(t)} \frac{D^{\nabla} g_{\varepsilon}(t)}{d t}\right)\right|_{\varepsilon=0}, u(t)>d t \\
& =\int_{0}^{1}<u(t), \dot{v}(t)-a d_{(u(t))} v(t) \\
& +\frac{1}{2} \sum_{i}\left(\nabla_{a d_{v(t)} H_{i}} H_{i}+\nabla_{H_{i}}\left(a d_{v(t)} H_{i}\right)\right)>d t \tag{3}\\
& =\int_{0}^{1}<-\dot{u}(t)-a d_{u(t)}^{*} u(t)-K(u(t)), v(t)>d t
\end{align*}
$$

Remark: When $H_{i}=0$ we recover the deterministic Euler-Poncaré reduction theorem.

The change of variables $u(t)=\nabla \varphi(t)$ gives the Hamilton-Jacobi-Bellman equation

$$
\frac{\partial \varphi}{\partial t}=-\frac{1}{2}\|\nabla \varphi\|^{2}+\frac{1}{2} \Delta_{L B}(\varphi)
$$

Extra remarks:

In the assumptions of Csiszär's theorem
$\left(\exists \pi_{0} \in \mathcal{M}(\mu, \sigma): H\left(\pi_{0}, \mu \otimes P_{1}\right)<\infty\right)$, if π_{0} is abs. cont. w.r.t. $\mu \otimes P_{1}$, then the minimiser is of the form

$$
\pi(d x, d y)=\psi(x) \phi(y) \alpha(d x) P_{1}(x, \alpha(d y))
$$

and

$$
\frac{d \mu}{d \alpha}=\psi P_{1} \phi, \quad \frac{d \nu}{d \alpha}=\phi P_{1}^{*} \psi \quad \text { a.e. }
$$

which allows to transform initial and final conditions μ, σ in ϕ, ψ, initial and final conditions for the equations satisfied by the drift and the one of its time reversed.
（i．M．Arnaudon，X．Chen，A．B．C．，Stochastic Euler－Poincaré reduction，J．Math．Physics（2014）

圕 M．Arnaudon，A．B．C．，C．Léonard，J．C．Zambrini，An entropic interpolation problem for incompressible viscid fluids， arXiv：1704．02126．
（infinite dimensional entropic approach ）
目 X．Chen，A．B．C．，T．S．Ratiu，Constrained and stochastic variational principles for dissipative equations with advected quantities arxiv：1506．05024 （extension of stochastic geometric mechanics results ）

䍰 A．B．C．，Liming Wu，J．C．Zambrini，Bernstein processes associated with a Markov process，Trends Math．，Birkhäuser Boston（2000）

C．Léonard，A survey of the Schrödinger problem and some of its connections with optimal transport，Discrete and Cont．Dyn．Systems （2014）
（general results on the entropy approach ）

