Gradient flows, interpolations and large deviations

Christian Léonard

Université Paris Nanterre

Banff
10-13 December, 2018

co-authors

- Ivan Gentil
- Luigia Ripani
+ thanks to Giovanni Conforti for stimulating conversations
aim
build interpolations related to the dissipation mechanism of a gradient flow
(1) gradient flows in $\mathrm{P}\left(\mathbb{R}^{n}\right)$
(2) interpolations in \mathbb{R}^{n}
(3) interpolations in $\mathrm{P}\left(\mathbb{R}^{n}\right)$

interpolations

quadratic optimal transport

$$
W_{2}^{2}(\alpha, \beta):=\inf _{\pi: \pi_{0}=\alpha, \pi_{1}=\beta} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}|y-x|^{2} \pi(d x d y), \quad \alpha, \beta \in \mathrm{P}\left(\mathbb{R}^{n}\right)
$$

- $0 \leq s \leq 1, \quad \Omega=C\left([0,1], \mathbb{R}^{n}\right)$
- $\mu \in C\left([0,1], \mathrm{P}\left(\mathbb{R}^{n}\right)\right)$
- $\mathcal{A}(\mu):=\inf \left\{E_{P} \int_{[0,1]}\left|\dot{X}_{s}\right|^{2} / 2 d s ; P \in \mathrm{P}(\Omega): P_{s}=\mu_{s}, \forall 0 \leq s \leq 1\right\}$
displacement interpolation between α and β

$$
\inf \left\{\mathcal{A}(\mu): \mu: \mu_{0}=\alpha, \mu_{1}=\beta\right\}=W_{2}^{2}(\alpha, \beta)
$$

interpolations

- displacement interpolations are the constant speed geodesics (in a metric sense) of the Wasserstein geometry on $\mathrm{P}\left(\mathbb{R}^{n}\right)$, [Otto]

Benamou-Brenier formula

$$
\begin{aligned}
& W_{2}^{2}(\alpha, \beta)=\inf _{(\nu, v)} \int_{[0,1] \times \mathbb{R}^{n}}\left|v_{s}\right|^{2} d \nu_{s} d s=\inf _{\nu} \int_{[0,1]}\left\|\dot{\nu}_{s}\right\|_{\nu_{s}}^{2} d s \\
& \quad \partial_{s} \nu+\operatorname{div}(\nu v)=0
\end{aligned}
$$

$$
\left\|\dot{\nu}_{s}\right\|_{\nu_{s}}^{2}:=\inf _{v: \partial_{s} \nu+\operatorname{div}(\nu v)=0} \int_{\mathbb{R}^{n}}|v|^{2} d \nu_{s}
$$

interpolations

- displacement interpolations are the constant speed geodesics (in a metric sense) of the Wasserstein geometry on $\mathrm{P}\left(\mathbb{R}^{n}\right)$, [Otto]

Benamou-Brenier formula

$$
\begin{aligned}
& W_{2}^{2}(\alpha, \beta)=\inf _{(\nu, v)} \int_{[0,1] \times \mathbb{R}^{n}}\left|v_{s}\right|^{2} d \nu_{s} d s=\inf _{\nu} \int_{[0,1]}\left\|\dot{\nu}_{s}\right\|_{\nu_{s}}^{2} d s \\
& \quad \partial_{s} \nu+\operatorname{div}(\nu v)=0
\end{aligned}
$$

- $\left\|\dot{\nu}_{s}\right\|_{\nu_{s}}^{2}:=\inf _{v: \partial_{s} \nu+\operatorname{div}(\nu v)=0} \int_{\mathbb{R}^{n}}|v|^{2} d \nu_{s}$
- $\partial_{s} \nu+\operatorname{div}(\nu \dot{\nu})=0$
- $\dot{\nu}=\nabla \phi$

interpolations

- displacement interpolations are the constant speed geodesics (in a metric sense) of the Wasserstein geometry on $\mathrm{P}\left(\mathbb{R}^{n}\right)$, [Otto]

Benamou-Brenier formula

$$
\begin{aligned}
& W_{2}^{2}(\alpha, \beta)=\inf _{(\nu, v)} \int_{[0,1] \times \mathbb{R}^{n}}\left|v_{s}\right|^{2} d \nu_{s} d s=\inf _{\nu} \int_{[0,1]}\left\|\dot{\nu}_{s}\right\|_{\nu_{s}}^{2} d s \\
& \quad \partial_{s} \nu+\operatorname{div}(\nu v)=0
\end{aligned}
$$

- $\left\|\dot{\nu}_{s}\right\|_{\nu_{s}}^{2}:=\inf _{v: \partial_{s} \nu+\operatorname{div}(\nu v)=0} \int_{\mathbb{R}^{n}}|v|^{2} d \nu_{s}$
- $\partial_{s} \nu+\operatorname{div}(\nu \dot{\nu})=0$
- $\dot{\nu}=\nabla \phi$
- displacement interpolations are not regular
- ϵ-entropic interpolations are regular approximations

gradient flows

Fokker-Planck equation

$$
\partial_{t} m-\operatorname{div}\left(m U^{\prime} / 2\right)=\Delta m / 2
$$

- $m_{t} \in \mathrm{P}\left(\mathbb{R}^{n}\right), \quad t \geq 0$
- $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$

gradient flows

Fokker-Planck equation

$$
\partial_{t} m-\operatorname{div}\left(m U^{\prime} / 2\right)=\Delta m / 2
$$

- $m_{t} \in \mathrm{P}\left(\mathbb{R}^{n}\right), \quad t \geq 0$
- $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- hypothesis: $U^{\prime \prime} \geq \kappa$ Id, $\quad \kappa>0$
- $m_{t}=\mathcal{S}_{t}\left(m_{0}\right), \quad$ semi-group
- $m_{\infty}:=\lim _{t \rightarrow \infty} m_{t}=e^{-U}$ Leb

gradient flows

JKO

$t \mapsto m_{t}$ is the W_{2}-gradient flow in $\mathrm{P}\left(\mathbb{R}^{n}\right)$ of $\mathcal{F}:=\frac{1}{2} H\left(\cdot \mid m_{\infty}\right)$

- free energy: $\mathcal{F}(\alpha)=\frac{1}{2}\left[\int_{\mathbb{R}^{n}} U d \alpha+H(\alpha \mid\right.$ Leb $\left.)\right], \quad \alpha \in \mathrm{P}\left(\mathbb{R}^{n}\right)$
- relative entropy: $H(\alpha \mid m):=\int_{\mathbb{R}^{n}} \log (d \alpha / d m) d \alpha$
- $\dot{\mu}_{t}=-\operatorname{grad}_{\mu_{t}}^{W} \mathcal{F}$

gradient flows

JKO

$t \mapsto m_{t}$ is the W_{2}-gradient flow in $\mathrm{P}\left(\mathbb{R}^{n}\right)$ of $\mathcal{F}:=\frac{1}{2} H\left(\cdot \mid m_{\infty}\right)$

- free energy: $\mathcal{F}(\alpha)=\frac{1}{2}\left[\int_{\mathbb{R}^{n}} U d \alpha+H(\alpha \mid\right.$ Leb $\left.)\right], \quad \alpha \in \mathrm{P}\left(\mathbb{R}^{n}\right)$
- relative entropy: $H(\alpha \mid m):=\int_{\mathbb{R}^{n}} \log (d \alpha / d m) d \alpha$
- $\dot{\mu}_{t}=-\operatorname{grad}_{\mu_{t}}^{W} \mathcal{F}$

Gentil-L-Ripani 18

(1) $\left(m_{t}\right)_{t \geq 0}$ is also the gradient flow of \mathcal{F} with respect to a large deviation cost
(2) this large deviation cost leads to the regular ϵ-entropic interpolations

gradient flows

- state space: $\mathcal{X}=\mathbb{R}^{n}$
- warming up serving as an analogy, before $\mathcal{X}=\mathrm{P}\left(\mathbb{R}^{n}\right)$
- path:

$$
\omega=\left(\omega_{t}\right)_{t \geq 0} \in C\left([0, \infty), \mathbb{R}^{n}\right)=: \Omega_{\infty}
$$

- free energy: $\quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\dot{\omega}_{t}=-F^{\prime}\left(\omega_{t}\right), \quad t \geq 0
$$

gradient flows

- state space: $\mathcal{X}=\mathbb{R}^{n}$
- warming up serving as an analogy, before $\mathcal{X}=P\left(\mathbb{R}^{n}\right)$
- path: $\omega=\left(\omega_{t}\right)_{t \geq 0} \in C\left([0, \infty), \mathbb{R}^{n}\right)=: \Omega_{\infty}$
- free energy: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\dot{\omega}_{t}=-F^{\prime}\left(\omega_{t}\right), \quad t \geq 0
$$

results

hypothesis: $\quad F^{\prime \prime} \geq K I d, \quad K>0$

- semigroup: $\omega_{t}=\mathrm{S}_{t}\left(\omega_{0}\right), \quad t \geq 0$
- contraction: $\quad\left|S_{t}(x)-S_{t}(y)\right| \leq e^{-K t}[x-y], \quad t \geq 0$

$$
\left|S_{t}(x)-x_{*}\right| \leq e^{-K t}\left|x-x_{*}\right|
$$

$x_{*}=\operatorname{argmin} F: \quad$ equilibrium state

gradient flows

- state space: $\mathcal{X}=\mathbb{R}^{n}$
- warming up serving as an analogy, before $\mathcal{X}=P\left(\mathbb{R}^{n}\right)$
- path: $\omega=\left(\omega_{t}\right)_{t \geq 0} \in C\left([0, \infty), \mathbb{R}^{n}\right)=: \Omega_{\infty}$
- free energy: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\dot{\omega}_{t}=-F^{\prime}\left(\omega_{t}\right), \quad t \geq 0
$$

results

hypothesis: $\quad F^{\prime \prime} \geq K I d, \quad K>0$

- semigroup: $\omega_{t}=\mathrm{S}_{t}\left(\omega_{0}\right), \quad t \geq 0$
- contraction: $\quad\left|S_{t}(x)-S_{t}(y)\right| \leq e^{-K t}[x-y], \quad t \geq 0$

$$
\left|S_{t}(x)-x_{*}\right| \leq e^{-K t}\left|x-x_{*}\right|
$$

$x_{*}=\operatorname{argmin} F: \quad$ equilibrium state

- free energy dissipation: $\frac{d}{d t} F\left(\omega_{t}\right)=F^{\prime}\left(\omega_{t}\right) \cdot \dot{\omega}_{t}=-\left|F^{\prime}\right|^{2}\left(\omega_{t}\right) \leq 0$
- $I=\left|F^{\prime}\right|^{2}: \mathcal{X} \rightarrow[0, \infty)$

gradient flows

slowing down: $\quad \epsilon \rightarrow 0^{+}$

$$
\text { - } \omega_{t}^{\epsilon}:=\omega_{\epsilon t}, \quad \dot{\omega}_{t}^{\epsilon}=\epsilon \dot{\omega}_{\epsilon t}=-\epsilon F^{\prime}\left(\omega_{t}^{\epsilon}\right), \quad F \leadsto \epsilon F
$$

gradient flows

slowing down: $\quad \epsilon \rightarrow 0^{+}$

- $\omega_{t}^{\epsilon}:=\omega_{\epsilon t}, \quad \dot{\omega}_{t}^{\epsilon}=\epsilon \dot{\omega}_{\epsilon t}=-\epsilon F^{\prime}\left(\omega_{t}^{\epsilon}\right), \quad F \leadsto \epsilon F$
- $\ddot{\omega}_{t}^{\epsilon}=-\epsilon \frac{d}{d t} F^{\prime}\left(\omega_{t}^{\epsilon}\right)=\epsilon^{2} F^{\prime \prime} F^{\prime}\left(\omega_{t}^{\epsilon}\right)=\epsilon^{2}\left(\left|F^{\prime}\right|^{2} / 2\right)^{\prime}\left(\omega_{t}^{\epsilon}\right)$

Newton's equation

$$
\ddot{\omega}_{t}^{\epsilon}=-\epsilon^{2} V^{\prime}\left(\omega_{t}^{\epsilon}\right), \quad V=-I / 2=-\left|F^{\prime}\right|^{2} / 2
$$

gradient flows

slowing down: $\quad \epsilon \rightarrow 0^{+}$

- $\omega_{t}^{\epsilon}:=\omega_{\epsilon t}, \quad \dot{\omega}_{t}^{\epsilon}=\epsilon \dot{\omega}_{\epsilon t}=-\epsilon F^{\prime}\left(\omega_{t}^{\epsilon}\right), \quad F \leadsto \epsilon F$
- $\ddot{\omega}_{t}^{\epsilon}=-\epsilon \frac{d}{d t} F^{\prime}\left(\omega_{t}^{\epsilon}\right)=\epsilon^{2} F^{\prime \prime} F^{\prime}\left(\omega_{t}^{\epsilon}\right)=\epsilon^{2}\left(\left|F^{\prime}\right|^{2} / 2\right)^{\prime}\left(\omega_{t}^{\epsilon}\right)$

Newton's equation

$$
\ddot{\omega}_{t}^{\epsilon}=-\epsilon^{2} V^{\prime}\left(\omega_{t}^{\epsilon}\right), \quad V=-I / 2=-\left|F^{\prime}\right|^{2} / 2
$$

along the gradient flow, the force field is the gradient of (half) the free energy dissipation

$$
\frac{d}{d t} F\left(\omega_{t}^{\epsilon}\right)=-\left|\epsilon F^{\prime}\right|^{2}\left(\omega_{t}^{\epsilon}\right)
$$

interpolations

building interpolations related to this free energy dissipation force field
(1) $\left\{\begin{array}{l}\dot{\omega}=-F^{\prime}(\omega) \\ \omega_{0}=x^{0}\end{array} \quad\right.$ iff it solves $\inf _{\omega: \omega_{0}=x^{0}} \int_{[0, \infty)} \frac{1}{2}\left|\dot{\omega}_{t}+F^{\prime}\left(\omega_{t}\right)\right|^{2} d t$

- this serves as a definition (minimizing movement)

interpolations

building interpolations related to this free energy dissipation force field

- this serves as a definition (minimizing movement)
(2) small time step: $\epsilon>0, \quad \Omega^{x y}:=\left\{\omega \in \Omega ; \omega_{0}=x, \omega_{1}=y\right\}$

$$
\begin{aligned}
\inf _{\omega: \omega_{0}=x, \omega_{\epsilon}=y} & \int_{[0, \epsilon]} \frac{1}{2}\left|\dot{\omega}_{t}+F^{\prime}\left(\omega_{t}\right)\right|^{2} d t \\
& =F(y)-F(x)+\epsilon^{-1} \inf _{\omega \in \Omega^{x y}} \int_{[0,1]}\left\{\frac{\left|\dot{\omega}_{s}\right|^{2}}{2}+\epsilon^{2} \frac{\left|F^{\prime}\right|^{2}\left(\omega_{s}\right)}{2}\right\} d s
\end{aligned}
$$

interpolations

building interpolations related to this free energy dissipation force field

(1) $\left\{\begin{array}{l}\left.\dot{\omega}=-F^{\prime}(\omega) \quad \text { iff it solves } \inf _{\omega: \omega_{0}=x^{0}} \int_{[0, \infty)} \frac{1}{2}\left|\dot{\omega}_{t}+F^{\prime}\left(\omega_{t}\right)\right|^{2} d t .\right\} x^{0} . \\ \omega_{0}=\end{array}\right.$

- this serves as a definition (minimizing movement)
(2) small time step: $\epsilon>0, \quad \Omega^{x y}:=\left\{\omega \in \Omega ; \omega_{0}=x, \omega_{1}=y\right\}$

$$
\inf _{\omega: \omega_{0}=x, \omega_{\epsilon}=y} \int_{[0, \epsilon]} \frac{1}{2}\left|\dot{\omega}_{t}+F^{\prime}\left(\omega_{t}\right)\right|^{2} d t
$$

$$
=F(y)-F(x)+\epsilon^{-1} \inf _{\omega \in \Omega^{x y}} \int_{[0,1]}\left\{\frac{\left|\dot{\omega}_{s}\right|^{2}}{2}+\epsilon^{2} \frac{\left|F^{\prime}\right|^{2}\left(\omega_{s}\right)}{2}\right\} d s
$$

(3) $A^{\epsilon}(\omega):=\int_{[0,1]} L^{\epsilon}\left(\omega_{s}, \dot{\omega}_{s}\right) d s=\int_{[0,1]}\left\{\frac{\left|\dot{\omega}_{s}\right|^{2}}{2}+\epsilon^{2} \frac{I\left(\omega_{s}\right)}{2}\right\} d s$
(1) $\inf _{\omega \in \Omega^{x y}} A^{\epsilon}(\omega)=: C_{\epsilon F}(x, y)$

interpolations

- $A^{\epsilon}(\omega):=\int_{[0,1]} L^{\epsilon}\left(\omega_{s}, \dot{\omega}_{s}\right) d s=\int_{[0,1]}\left\{\frac{\left|\dot{\omega}_{s}\right|^{2}}{2}+\epsilon^{2} \frac{I\left(\omega_{s}\right)}{2}\right\} d s$
ϵF-cost, $\quad \epsilon F$-interpolation

$$
\inf _{\omega \in \Omega^{x y}} A^{\epsilon}(\omega)=: C_{\epsilon F}(x, y)
$$

- $C_{\epsilon F}(x, y)=|y-x|^{2} / 2+O\left(\epsilon^{2}\right)$,
- $\gamma^{\epsilon, x y} \underset{\epsilon \rightarrow 0^{+}}{\rightarrow} \gamma^{x y}$

interpolations

- $A^{\epsilon}(\omega):=\int_{[0,1]} L^{\epsilon}\left(\omega_{s}, \dot{\omega}_{s}\right) d s=\int_{[0,1]}\left\{\frac{\left|\dot{\omega}_{s}\right|^{2}}{2}+\epsilon^{2} \frac{I\left(\omega_{s}\right)}{2}\right\} d s$
ϵF-cost, $\quad \epsilon F$-interpolation

$$
\inf _{\omega \in \Omega^{x y}} A^{\epsilon}(\omega)=: C_{\epsilon F}(x, y)
$$

- $C_{\epsilon F}(x, y)=|y-x|^{2} / 2+O\left(\epsilon^{2}\right)$,
- $\gamma^{\epsilon, x y} \underset{\epsilon \rightarrow 0^{+}}{\rightarrow} \gamma^{x y}$

interpolations and dissipation

along the ϵF-interpolations, the force field is (half) the gradient of the free energy dissipation of the ϵ-slowed down gradient flow

interpolations

ϵ-modified contraction of the gradient flow in \mathbb{R}^{n}

$$
C_{\epsilon F}\left(S_{t}(x), S_{t}(y)\right) \leq e^{-2 K t} C_{\epsilon F}(x, y), \quad \forall t, x, y
$$

- $\left|S_{t}(x)-S_{t}(y)\right|^{2} \leq e^{-2 K t}|x-y|^{2}$

interpolations

" ϵ-modified K-convexity" of F

for any ϵF-interpolation γ and all $0 \leq s \leq 1$

$$
\begin{aligned}
F\left(\gamma_{s}\right) \leq & \theta_{\epsilon K}(1-s) F\left(\gamma_{0}\right)+\theta_{\epsilon K}(s) F\left(\gamma_{1}\right) \\
& -\frac{1-e^{-2 \epsilon K}}{2 \epsilon} \theta_{\epsilon K}(s) \theta_{\epsilon K}(1-s)\left[C_{\epsilon F}\left(\gamma_{0}, \gamma_{1}\right)+\epsilon F\left(\gamma_{0}\right)+\epsilon F\left(\gamma_{1}\right)\right]
\end{aligned}
$$

- $\theta_{\epsilon K}(s):=\frac{1-e^{-2 \epsilon K t}}{1-e^{-2 \epsilon K}} \underset{\epsilon \rightarrow 0^{+}}{\longrightarrow} s$
- K-convexity of F : for any geodesic γ and all $0 \leq s \leq 1$

$$
F\left(\gamma_{s}\right) \leq(1-s) F\left(\gamma_{0}\right)+s F\left(\gamma_{1}\right)-K s(1-s)\left|\gamma_{1}-\gamma_{0}\right|^{2} / 2
$$

interpolations

" ϵ-modified K-convexity" of F

for any ϵF-interpolation γ and all $0 \leq s \leq 1$

$$
\begin{aligned}
F\left(\gamma_{s}\right) \leq & \theta_{\epsilon K}(1-s) F\left(\gamma_{0}\right)+\theta_{\epsilon K}(s) F\left(\gamma_{1}\right) \\
& -\frac{1-e^{-2 \epsilon K}}{2 \epsilon} \theta_{\epsilon K}(s) \theta_{\epsilon K}(1-s)\left[C_{\epsilon F}\left(\gamma_{0}, \gamma_{1}\right)+\epsilon F\left(\gamma_{0}\right)+\epsilon F\left(\gamma_{1}\right)\right]
\end{aligned}
$$

- $\theta_{\epsilon K}(s):=\frac{1-e^{-2 \epsilon K t}}{1-e^{-2 \epsilon K}} \underset{\epsilon \rightarrow 0^{+}}{\longrightarrow} s$
- K-convexity of F : for any geodesic γ and all $0 \leq s \leq 1$

$$
F\left(\gamma_{s}\right) \leq(1-s) F\left(\gamma_{0}\right)+s F\left(\gamma_{1}\right)-K s(1-s)\left|\gamma_{1}-\gamma_{0}\right|^{2} / 2
$$

- thank you Giovanni

interpolations

ϵ-modified basic convexity inequality

$$
C_{\epsilon F}\left(y, x_{*}\right) \leq \frac{\epsilon}{\tanh (K \epsilon)}\left[F(y)-F\left(x_{*}\right)\right], \quad \forall y
$$

- $s=0, \gamma_{0}=x_{*}$
- $\epsilon \rightarrow 0^{+}$leads to $\left[F(y)-F\left(x_{*}\right)\right] \geq K\left|y-x_{*}\right|^{2} / 2, \forall y$

large deviations

- Fokker-Planck equation:

$$
\partial_{t} m-\operatorname{div}\left(m U^{\prime} / 2\right)=\Delta m / 2
$$

- $\left(m_{t}\right)_{t \geq 0}$ a gradient flow with respect to a large deviation cost
- this large deviation cost gives regular interpolations

large deviations

- Fokker-Planck equation: $\quad \partial_{t} m-\operatorname{div}\left(m U^{\prime} / 2\right)=\Delta m / 2$
- $\left(m_{t}\right)_{t \geq 0}$ a gradient flow with respect to a large deviation cost
- this large deviation cost gives regular interpolations
- stochastic representation of $\left(m_{t}\right)$
- $\left\{\begin{array}{l}d Z_{t}=-U^{\prime}\left(Z_{t}\right) / 2 d t+d W_{t}, \quad t \geq 0 \\ Z_{0} \sim m_{0}\end{array}\right.$
- Markov generator: $\quad\left(-U^{\prime} \cdot \nabla+\Delta\right) / 2$
- $R^{m_{0}}=\operatorname{Law}(Z) \in \mathrm{P}\left(\Omega_{\infty}\right)$
- $m_{t}=\operatorname{Law}\left(Z_{t}\right)=R_{t}^{m_{0}} \in \mathrm{P}\left(\mathbb{R}^{n}\right)$

large deviations

- Fokker-Planck equation: $\quad \partial_{t} m-\operatorname{div}\left(m U^{\prime} / 2\right)=\Delta m / 2$
- $\left(m_{t}\right)_{t \geq 0}$ a gradient flow with respect to a large deviation cost
- this large deviation cost gives regular interpolations
- stochastic representation of $\left(m_{t}\right)$
- $\left\{\begin{array}{l}d Z_{t}=-U^{\prime}\left(Z_{t}\right) / 2 d t+d W_{t}, \quad t \geq 0 \\ Z_{0} \sim m_{0}\end{array}\right.$
- Markov generator: $\quad\left(-U^{\prime} \cdot \nabla+\Delta\right) / 2$
- $R^{m_{0}}=\operatorname{Law}(Z) \in \mathrm{P}\left(\Omega_{\infty}\right)$
- $m_{t}=\operatorname{Law}\left(Z_{t}\right)=R_{t}^{m_{0}} \in \mathrm{P}\left(\mathbb{R}^{n}\right)$
- $R:=R^{m_{\infty}}$ is m_{∞}-reversible

large deviations

- particle system: $\quad Z^{1}, Z^{2}, \ldots$ iid (R)
- empirical measures: $\widehat{Z}^{N}:=N^{-1} \sum_{1 \leq i \leq N} \delta_{Z^{i}} \in \mathrm{P}\left(\Omega_{\infty}\right)$

$$
\begin{aligned}
& \overline{\mathrm{Z}}^{N}:=\left(\widehat{\mathrm{Z}}_{t}^{N}\right)_{t \geq 0} \in \mathcal{C}:=C\left([0, \infty), \mathrm{P}\left(\mathbb{R}^{n}\right)\right) \\
& \hat{\mathrm{Z}}_{t}^{N}=\overline{\mathrm{Z}}_{t}^{N} \in \mathrm{P}\left(\mathbb{R}^{n}\right), \quad t \geq 0
\end{aligned}
$$

large deviations

- particle system: $\quad Z^{1}, Z^{2}, \ldots$ iid (R)
- empirical measures: $\widehat{Z}^{N}:=N^{-1} \sum_{1 \leq i \leq N} \delta_{Z^{i}} \in \mathrm{P}\left(\Omega_{\infty}\right)$

$$
\begin{aligned}
& \overline{\mathrm{Z}}^{N}:=\left(\widehat{\mathrm{Z}}_{t}^{N}\right)_{t \geq 0} \in \mathcal{C}:=C\left([0, \infty), \mathrm{P}\left(\mathbb{R}^{n}\right)\right) \\
& \hat{\mathrm{Z}}_{t}^{N}=\overline{\mathrm{Z}}_{t}^{N} \in \mathrm{P}\left(\mathbb{R}^{n}\right), \quad t \geq 0
\end{aligned}
$$

- large deviations as $N \rightarrow \infty$

(by Sanov's theorem)

$\mathbb{P}\left(\widehat{Z}^{N} \in \cdot\right) \underset{N \rightarrow \infty}{\asymp} \exp \left(-N \inf _{P \in .} H(P \mid R)\right)$

- $H(P \mid R):=\int_{\Omega} \log (d P / d R) d P, \quad P \in \mathrm{P}\left(\Omega_{\infty}\right)$

large deviations

(by the contraction principle)
$\mathbb{P}\left(\bar{Z}^{N} \simeq \mu \mid \bar{Z}_{0}^{N} \simeq m_{0}\right) \underset{N \rightarrow \infty}{\asymp} \exp \left(-N J_{m_{0}}(\mu)\right), \quad \mu \in \mathcal{C}$

- $J_{m_{0}}(\mu)=\inf \left\{H\left(P \mid R^{m_{0}}\right) ; P: P_{t}=\mu_{t}, \forall t \geq 0\right\}+\iota_{\left\{\mu_{0}=m_{0}\right\}}$

large deviations

(by the contraction principle)
$\mathbb{P}\left(\bar{Z}^{N} \simeq \mu \mid \bar{Z}_{0}^{N} \simeq m_{0}\right) \underset{N \rightarrow \infty}{\asymp} \exp \left(-N J_{m_{0}}(\mu)\right), \quad \mu \in \mathcal{C}$

- $J_{m_{0}}(\mu)=\inf \left\{H\left(P \mid R^{m_{0}}\right) ; P: P_{t}=\mu_{t}, \forall t \geq 0\right\}+\iota_{\left\{\mu_{0}=m_{0}\right\}}$
- $\operatorname{argmin} J_{m_{0}}=\left(m_{t}\right)_{t \geq 0}$
- strong LLN: knowing that $\lim _{N \rightarrow \infty} \bar{Z}_{0}^{N}=m_{0}$, as, we have:

$$
\lim _{N \rightarrow \infty} \overline{\mathrm{Z}}^{N}=\left(m_{t}\right)_{t \geq 0}
$$

- $P=R^{m_{0}} \Longrightarrow P_{t}=R_{t}^{m_{0}}=m_{t}$

interpolations

building interpolations related to this free energy dissipation force field

$$
\begin{aligned}
-\int_{[0, \epsilon]} & \frac{1}{2}\left|\dot{\omega}_{t}+F^{\prime}\left(\omega_{t}\right)\right|^{2} d t \\
& =F\left(\omega_{\epsilon}\right)-F\left(\omega_{0}\right)+\epsilon^{-1} \int_{[0,1]}\left\{\frac{\left|\dot{\omega}_{s}\right|^{2}}{2}+\epsilon^{2} \frac{\left|F^{\prime}\right|^{2}\left(\omega_{s}\right)}{2}\right\} d s
\end{aligned}
$$

interpolations

building interpolations related to this free energy dissipation force field

- $\int_{[0, \epsilon]} \frac{1}{2}\left|\dot{\omega}_{t}+F^{\prime}\left(\omega_{t}\right)\right|^{2} d t$

$$
=F\left(\omega_{\epsilon}\right)-F\left(\omega_{0}\right)+\epsilon^{-1} \int_{[0,1]}\left\{\frac{\left|\dot{\omega}_{s}\right|^{2}}{2}+\epsilon^{2} \frac{\left|F^{\prime}\right|^{2}\left(\omega_{s}\right)}{2}\right\} d s
$$

- $J_{m_{0}}(\mu)=\inf \left\{H\left(P \mid R^{m_{0}}\right) ; P: P_{t}=\mu_{t}, \forall t \geq 0\right\}+\iota_{\left\{\mu_{0}=m_{0}\right\}}$

interpolations

building interpolations related to this free energy dissipation force field

- $\int_{[0, \epsilon]} \frac{1}{2}\left|\dot{\omega}_{t}+F^{\prime}\left(\omega_{t}\right)\right|^{2} d t$

$$
=F\left(\omega_{\epsilon}\right)-F\left(\omega_{0}\right)+\epsilon^{-1} \int_{[0,1]}\left\{\frac{\left|\dot{\omega}_{s}\right|^{2}}{2}+\epsilon^{2} \frac{\left|F^{\prime}\right|^{2}\left(\omega_{s}\right)}{2}\right\} d s
$$

- $J_{m_{0}}(\mu)=\inf \left\{H\left(P \mid R^{m_{0}}\right) ; P: P_{t}=\mu_{t}, \forall t \geq 0\right\}+\iota_{\left\{\mu_{0}=m_{0}\right\}}$
- $\mathcal{F}(\alpha)=\frac{1}{2} H\left(\alpha \mid m_{\infty}\right)$
- $\mathcal{A}^{\epsilon}(\mu):=\epsilon \inf \left\{\frac{1}{2}\left[H\left(P \mid R^{\epsilon, \alpha}\right)+H\left(P^{*} \mid R^{\epsilon, \beta}\right)\right] ; P: P_{s}=\mu_{s}, 0 \leq s \leq 1\right\}$
- small time interval: $[0, \epsilon]$
- slowing down: $[0, \epsilon] \rightarrow[0,1], \quad R^{\epsilon}:=\left(X_{\epsilon}\right)_{\#} R$
- time reversal: $\quad P^{*}:=\left(X^{*}\right)_{\#} P, \quad X_{s}^{*}:=X_{1-s}, 0 \leq s \leq 1$

$$
R^{*}=R
$$

interpolations

ϵ-entropic interpolation

$$
\inf \left\{\mathcal{A}^{\epsilon}(\mu) ; \mu: \mu_{0}=\alpha, \mu_{1}=\beta\right\}=: C_{L D}^{\epsilon}(\alpha, \beta), \quad \alpha, \beta \in \mathrm{P}\left(\mathbb{R}^{n}\right)
$$

- Schrödinger problem (1931)
- $C_{L D}^{\epsilon}$: large deviation cost

interpolations

ϵ-entropic interpolation

$$
\inf \left\{\mathcal{A}^{\epsilon}(\mu) ; \mu: \mu_{0}=\alpha, \mu_{1}=\beta\right\}=: C_{L D}^{\epsilon}(\alpha, \beta), \quad \alpha, \beta \in \mathrm{P}\left(\mathbb{R}^{n}\right)
$$

- Schrödinger problem (1931)
- $C_{L D}^{\epsilon}$: large deviation cost
- by the way ... where is the free energy dissipation?

interpolations

- $W_{2}^{2}(\alpha, \beta)=\inf _{(\nu, v)} \int_{[0,1] \times \mathbb{R}^{n}}\left|v_{s}\right|^{2} d \nu_{s} d s=\inf _{\nu} \int_{[0,1]}\left\|\dot{\nu}_{s}\right\|_{\nu_{s}}^{2} d s$

ϵ-modified Benamou-Brenier formula (ref. [CGP], [GLR])

$$
C_{L D}^{\epsilon}(\alpha, \beta)=\inf _{\nu} \int_{[0,1]}\left\{\frac{\left\|\dot{\nu}_{s}\right\|_{\nu_{s}}^{2}}{2}+\epsilon^{2} \frac{\mathcal{I}\left(\nu_{s} \mid m_{\infty}\right)}{2}\right\} d s
$$

- $\mathcal{I}\left(\alpha \mid m_{\infty}\right):=\int_{\mathbb{R}^{n}}\left|\nabla \log \sqrt{d \alpha / d m_{\infty}}\right|^{2} d \alpha$
(Fisher information)
- time reversal
- Nelson's stochastic velocities
- depends on α, not on velocity
- regularizing effect

interpolations

- $C_{L D}^{\epsilon}(\alpha, \beta)=\inf _{\nu} \int_{[0,1]}\left\{\frac{\left\|\dot{\nu}_{s}\right\|_{\nu_{s}}^{2}}{2}+\epsilon^{2} \frac{\mathcal{I}\left(\nu_{s} \mid m_{\infty}\right)}{2}\right\} d s$
- compare: $\quad C_{\epsilon F}(x, y):=\inf _{\omega \in \Omega^{x y}} \int_{[0,1]}\left\{\frac{\left|\dot{\omega}_{s}\right|^{2}}{2}+\epsilon^{2} \frac{\left|F^{\prime}\right|^{2}\left(\omega_{s}\right)}{2}\right\} d s$

$$
I=\left|F^{\prime}\right|^{2}
$$

results

- $\mathcal{I}\left(\alpha \mid m_{\infty}\right)=\left\|\operatorname{grad}_{\alpha}^{W} \mathcal{F}\right\|_{\alpha}^{2}$
- $\Gamma-\lim _{\epsilon \rightarrow 0^{+}}\left(C_{L D}^{\epsilon}\right)=\left(W_{2}^{2} / 2\right)$

interpolations

- $U^{\prime \prime} \geq \kappa \mathrm{Id}$
- $K:=\kappa / 2$
ϵ-modified contraction of the gradient flow in $\mathrm{P}\left(\mathbb{R}^{n}\right)$

$$
C_{L D}^{\epsilon}\left(\mathcal{S}_{t}(\alpha), \mathcal{S}_{t}(\beta)\right) \leq e^{-2 K t} C_{L D}^{\epsilon}(\alpha, \beta), \quad \forall t \geq 0, \quad \forall \alpha, \beta \in \mathrm{P}\left(\mathbb{R}^{n}\right)
$$

- $W_{2}^{2}\left(\mathcal{S}_{t}(\alpha), \mathcal{S}_{t}(\beta)\right) \leq e^{-2 K t} W_{2}^{2}(\alpha, \beta)$

interpolations

" ϵ-modified K-convexity" of \mathcal{F} (Conforti)

for any entropic ϵ-interpolation μ and all $0 \leq s \leq 1$

$$
\begin{aligned}
\mathcal{F}\left(\mu_{s}\right) \leq & \theta_{\epsilon K}(1-s) \mathcal{F}\left(\mu_{0}\right)+\theta_{\epsilon K}(s) \mathcal{F}\left(\mu_{1}\right) \\
& -\frac{1-e^{-2 \epsilon K}}{2 \epsilon} \theta_{\epsilon K}(s) \theta_{\epsilon K}(1-s)\left[C_{L D}^{\epsilon}\left(\mu_{0}, \mu_{1}\right)+\epsilon \mathcal{F}\left(\mu_{0}\right)+\epsilon \mathcal{F}\left(\mu_{1}\right)\right]
\end{aligned}
$$

- for any displacement interpolation μ and all $0 \leq s \leq 1$

$$
\mathcal{F}\left(\mu_{s}\right) \leq(1-s) \mathcal{F}\left(\mu_{0}\right)+s \mathcal{F}\left(\mu_{1}\right)-K s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right) / 2
$$

interpolations

ϵ-modified Talagrand inequality

$$
C_{L D}^{\epsilon}\left(\alpha, m_{\infty}\right) \leq \frac{\epsilon}{\tanh (K \epsilon)} \mathcal{F}(\alpha), \quad \forall \alpha \in \mathrm{P}\left(\mathbb{R}^{n}\right)
$$

- $\quad W_{2}^{2}\left(\alpha, m_{\infty}\right) / 2 \leq K^{-1} \mathcal{F}(\alpha), \quad \forall \alpha$

gradient flows, interpolations and large deviations

(1) LD of empirical mesures of diffusive particles
(2) LD rate function: $J(\mu)$ \& slowing down: $[0, \epsilon]$
free energy: $\mathcal{F}(\alpha)$ \& LD cost: $C_{L D}^{\epsilon}(\alpha, \beta)$
(3) identify the free energy dissipation: $\mathcal{I}(\alpha)$

gradient flows, interpolations and large deviations

$\epsilon \mathcal{F}$-interpolations are well-suited approximations of displacement interpolations:

- they allow for proving tight perturbations of transport inequalities involving \mathcal{F}
- they inherit some regularity from the dissipative mechanism (if any) of the gradient flow

gradient flows, interpolations and large deviations

$\epsilon \mathcal{F}$-interpolations are well-suited approximations of displacement interpolations:

- they allow for proving tight perturbations of transport inequalities involving \mathcal{F}
- they inherit some regularity from the dissipative mechanism (if any) of the gradient flow
- rigorous proofs in the present setting
- extension to other free energy functions \mathcal{F}, undone at present time, but the heuristics are known
- Conforti: arXiv:1704.04821 (PTRF online)
- Gentil-L-Ripani: arXiv:1806.01553
thank you for your attention

