
.
.

. . . . . .

Background
studies

Mathematical
model

Traveling wave
results

The adaptive
moving mesh
methods

1D MBLE

2D MBLE

Conclusions

References

1

Moving mesh finite difference methods for
non-monotone two-phase flows in porous media

Hong Zhang

Supervisor: Paul A. Zegeling

Department of Mathematics, Utrecht University, NL

27 May - 1 June, 2018 · Banff



.
.

. . . . . .

Background
studies

Mathematical
model

Traveling wave
results

The adaptive
moving mesh
methods

1D MBLE

2D MBLE

Conclusions

References

2

Outline

Background studies

Mathematical model

Traveling wave results

The adaptive moving mesh methods

Conclusions



.
.

. . . . . .

Background
studies

Mathematical
model

Traveling wave
results

The adaptive
moving mesh
methods

1D MBLE

2D MBLE

Conclusions

References

3

Pouring water into sand

Water and sands, figures are downloaded from Google.
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Monotonic flow
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The formation of gravity-driven fingers following
ponded infiltration

Gravity driven fingers1.

1MJ Nicholl and RJ Glass. “Infiltration into an Analog Fracture”. In:
Vadose Zone Journal 4.4 (2005), pp. 1123–1151.
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Finger structure

An illustration of non-monotonic finger pattern2.

2Mehdi Eliassi. “On continuum -scale numerical simulation gravity -driven
fingers in unsaturated porous material”. PhD thesis. 2001.
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Mathematical Model

▶ Mass conservation law:

∂(ϕραSα)

∂t
+

∂

∂x
(ραvα) = 0, α = w, n (1.1)

where ϕ is the porosity of the porous medium, Sα, ρα and
vα are the saturation, density and volumetric velocity of
phase α.

▶ Darcy’s law:

vα = −krαK

µα

∂

∂x
(pα − ραgx) = −λα(

∂pα
∂x

− ραg), α = w, n

(1.2)

where g is the gravitational acceleration constant, K is
the intrinsic permeability, krα, µα, λα = krαK

µα
and pα are

the relative permeability function, viscosity, mobility and
pressure of phase α, respectively.
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Define the total velocity vT = vn + vw and fractional flow rate
of the wetting phase f = λw

λw+λn
, then the velocity of the

wetting phase can be expressed by

vw = vT f [1 +
λn

vT
(
∂

∂x
(pn − pw) + (ρw − ρn)g)]. (1.3)

By substituting vw into mass equation for the wetting phase, we
obtain

ϕ
∂Sw

∂t
+

∂

∂x

[
vT f [1 +

λn

vT
(
∂

∂x
(pn − pw) + (ρw − ρn)g)]

]
= 0. (1.4)
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Dynamic capillary pressure relationship

▶ Under equilibrium conditions:

pn − pw = pc = Pc(Sw). (1.5)

▶ Under non-equilibrium conditions, Hassanizadeh (1990)3

proposed:

pn − pw = Pc(Sw)− τ(Sw)
∂Sw

∂t
. (1.6)

The dynamic coefficient τ [Pa s] is also known as damping
coefficient and may still be a function of saturation.

3S Majid Hassanizadeh and William G Gray. “Mechanics and
thermodynamics of multiphase flow in porous media including interphase
boundaries”. In: Advances in water resources 13.4 (1990), pp. 169–186.
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Model 1: Dynamic capillary pressure model

Adding the dynamic capillary pressure relationship to the
two-phase flow equation gives:

ϕ
∂Sw

∂t
+

∂

∂x

[
qf(Sw)

+ λn(Sw)f(Sw)
( ∂

∂x
(Pc(Sw)− τ

∂Sw

∂t
) + (ρw − ρn)g

)]
= 0.

(1.7)
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Finger structure

An illustration of non-monotonic finger pattern4.

4Mehdi Eliassi. “On continuum -scale numerical simulation gravity -driven
fingers in unsaturated porous material”. PhD thesis. 2001.
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Hysteresis in capillary pressure

Many studies have shown that the relationship between
capillary pressure and saturation also depends on the history of
flow displacement and on the rate of change of saturation.
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Figure 1: Capillary pressure and hysteresis loops.
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Model 2: A simplified hysteresis model

The hysteresis operator

P hyst
c : Sw(·) → pc(·). (1.8)

In the drainage process, when Sw decreases, pc follows the
drainage pressure-saturation curve P dr

c (Sw). In the imbibition
process, when Sw increases, pc follows the imbibition
pressure-saturation curve P im

c (Sw). In this hysteresis model,
between the drainage and imbibition curves, pc and Sw evolve as

∂pc
∂t

= −β
∂Sw

∂t
, (1.9)

The discretization of Eq. (1.9) is

pnc = pn−1
c − β(Sn

w − Sn−1
w ). (1.10)
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Model 2: A simplified hysteresis model

The algorithm for computing pc is as follows

1. Set pnc = pn−1
c − β(Sn

w − Sn−1
w ).

2. If pnc < P im
c (Sn

w), set p
n
c = P im

c (Sn
w).

3. If pnc > P dr
c (Sn

w), set p
n
c = P dr

c (Sn
w). The above algorithm

is denoted as pnc = P hyst
c (Sn

w).
Combining capillary pressure hysteresis with the dynamic
capillary pressure relationship we obtain

pn − pw = P hyst
c (Sw)− τ

∂Sw

∂t
. (1.11)

Substituting the hysteretic relationship into the two phase
flow equation we get Model 2.
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Hysteresis in dynamic coefficient τ
Experimental studies in Mirzaei et al. 20135 suggest that τ is also

hysteretic.

Figure 2: Hysteresis in drainage and imbibition τ -Swcurves (Mirzaei et al. 2013)

5Mahsanam Mirzaei and Diganta Bhusan Das. “Experimental investigation
of hysteretic dynamic effect in capillary pressure–saturation relationship for
two-phase flow in porous media”. In: AIChE Journal 59.10 (2013),
pp. 3958–3974.
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Hysteresis in dynamic coefficient τ

Assume in the hysteresis process τ decreases from τ im to τdr.
Since τhyst may possibly due to the hysteresis in the retention
pressure curve Sakaki et al. 20106, for simplicity, we introduce
τhyst as

τhyst = (τ im − τdr)[
Physt
c (Sw)− 1

2 (P
im
c (Sw) + P dr

c (Sw))

P im
c (Sw)− P dr

c (Sw)
+

1

2
] + τdr.

(1.12)

Substituting the dynamic capillary pressure with hysteresis and
hysteretic dynamic coefficient into the two phase flow equation
will result in Model 3 with hystereresis in both τ and pc.

6Toshihiro Sakaki, Denis M O’Carroll, and Tissa H Illangasekare. “Direct
quantification of dynamic effects in capillary pressure for drainage–wetting
cycles”. In: Vadose Zone Journal 9.2 (2010), pp. 424–437.
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Reformulation of the non-equilibrium equation

Denote p = pn − pw, the non-equilibrium equation can be
rewritten as

ϕ
Pc(Sw)− p

τ
+

∂

∂x
[qf(Sw) + λn(Sw)f(Sw)(

∂p

∂x
+ (ρw − ρn)g)] = 0,

∂Sw

∂t
=

Pc(Sw)− p

τ
.

(1.13)

Since Model 2 and Model 3 are incorporated with the capillary
pressure hysteresis, we replace Pc(Sw) in Eq. (1.13) by

P hyst
c (Sw) when solving these two models and replace τ by

τhyst when solving Model 3.



.
.

. . . . . .

Background
studies

Mathematical
model

Traveling wave
results

The adaptive
moving mesh
methods

1D MBLE

2D MBLE

Conclusions

References

18

Numerical results of three models
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Comparisions between Model 1, 2, 3 and
experiments for different flux rates7
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7David A DiCarlo. “Experimental measurements of saturation overshoot on
infiltration”. In: Water Resources Research 40.4 (2004), W04215.
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1D Modified Buckley-Leverett equation

Let u be the wetting phase saturation Sw, the two-phase flow
equation with dynamic capillary pressure can be rewritten as

∂u

∂t
+

∂F (u)

∂x
= − ∂

∂x
[H(u)

∂

∂x
(pc(u)− τ

∂u

∂t
)]. (2.1)

F (u) =
1

ϕ
f(u)[vT + λn(u)(ρw − ρn)g], (2.2)

H(u) =
1

ϕ
λn(u)f(u). (2.3)

Equation (2.1) is also called the Modified Buckley-Leverett
equation (MBLE).
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Riemann problem

u(x, 0) =

{
ul, x ≤ 0,

ur, x > 0,
(3.1)

With different combinations of (ul, ur, τ), the MBL equation
may have different types of solutions.
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Traveling wave results

Let η = x− st and substituting u(η) into the MBLE results in a
third order ODE{

− su′ + [F (u)]′ = −[H(u)p′c(u)u
′]′ − sτ [H(u)u′′]′,

u(−∞) = ul, u(∞) = ur, ul, ur ∈ [0, 1],
(3.2)

Assuming u′(±∞) = 0, u′′(±∞) = 0, integrating this equation
over (η,∞) gives

− s(u− ur) + [F (u)− F (ur)] = −H(u)p′c(u)u
′ − sτH(u)u′′,

u(−∞) = ul, u(∞) = ur,
(3.3)

with s determined by the Rankine-Hugoniot condition
s = F (ul)−F (ur)

ul−ur
.
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Traveling wave results
When F (u) = u2

u2+M(1−u)2
, H(u) = ϵ2, pc(u) = −u

ϵ , Van Duijn

et al. 20078, proved that the existence of the TW solution
depends on the values of (ul, ur, τ).
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Figure 3: Bifurcation diagram.

8CJ van Duijn, LA Peletier, and IS Pop. “A new class of entropy solutions
of the Buckley-Leverett equation”. In: SIAM Journal on Mathematical
Analysis 39.2 (2007), pp. 507–536.
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Traveling wave results

Table 1: Results summarized from van Duijn et al. 2007.

Region Solution description

(uB , τ) ∈ A1
Rarefaction wave from uB down to uα trailing an admissible

Lax shock from uα down to u0

(uB , τ) ∈ A2
Rarefaction wave from uB down to ū trailing an undercom-

pressive shock from ū down to u0

(uB , τ) ∈ B
An admissible Lax shock from uB up to ū (may exhibit oscilla-

tions near ul = uB) trailing an undercompressive shock from

ū down to u0

(uB , τ) ∈ C1 An admissible Lax shock from uB down to u0

(uB , τ) ∈ C2
An admissible Lax shock from uB down to u0 (may exhibit

oscillations near ul = uB



.
.

. . . . . .

Background
studies

Mathematical
model

Traveling wave
results

The adaptive
moving mesh
methods

1D MBLE

2D MBLE

Conclusions

References

25

Example

Consider flux function F (u) = u2

u2+M(1−u)2
[vT + C(1− u2)],

where M = 10, C = 10.
The initial condition is taken as

u(x, 0) = u0 + 0.5(uB − u0)(1.0− tanh(200x)), x ∈ [−0.1, 1.1].
(3.4)
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Example

Influence of flux rate:
τ = 3.3812, vT = 1.0, 0.6, 0.4, 0.1, u0 = 0, T = 1.
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Figure 4: Bifurcation diagrams (left) and numerical solutions (right).
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The adaptive moving mesh method

For a scalar solution u,

1. the popular arc-length type monitor reads

ω =
√
1 + α|ux|2. (4.1)

2. Consider an adaptive smooth monitor function

ω = (1− β)α(t) + β|uξ|
1
m , (4.2)

with α(t) = 1
|Ωc|

∫
Ωc

|uξ|
1
mdξ, β is the ratio of points in the

critical areas.
To equidistribute the monitor function, we adopt a moving
mesh PDE (MMPDE) with smoothing,

∂

∂ξ

( ˙̃n

ω

)
= − 1

τs

∂

∂ξ

(
ñ

ω

)
, ñ = [I − σs(σs + 1)(∆ξ)2

∂2

∂ξ2
]n.

(4.3)
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critical areas.
To equidistribute the monitor function, we adopt a moving
mesh PDE (MMPDE) with smoothing,

∂

∂ξ

( ˙̃n

ω

)
= − 1

τs

∂

∂ξ

(
ñ

ω

)
, ñ = [I − σs(σs + 1)(∆ξ)2

∂2

∂ξ2
]n.

(4.3)
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Discretizations
Applying the second order centered finite difference scheme to
the MMPDE (4.3) in the space direction yields



[I − σs(σs + 1)δxx](ẋi+1 − ẋi)

ωi+1/2(xi+1 − xi)2
−

[I − σs(σs + 1)δxx](ẋi − ẋi−1)

ωi−1/2(xi − xi−1)2
=

1

τs

 [I − σs(σs + 1)δxx]
1

xi+1−xi

ωi+1/2

−
[I − σs(σs + 1)δxx]

1
xi−xi−1

ωi−1/2

 , i = 2, · · · , N − 2,

ẋi+1 − 2ẋi + ẋi−1 = 0, i = 1, N − 1,

ẋ0 = ẋN = 0,

(4.4)

where δxx is the second-order difference operator and
ṅi = − ẋi+1−ẋi

(xi+1−xi)2
, i = 0, 1, · · · , N − 1.

The transformed physical PDE

(I − τ
∂

∂x
H(u)

∂

∂x
)(u̇− uxẋ) +

∂

∂x
F (u) +

∂

∂x
[H(u)

∂

∂x
pc(u)] = 0, (4.5)

is also discretized using the second-order centered difference
scheme.
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Example 1

Consider M = 0.5, ϵ = 10−3, τ = 5 and initial condition

u(x, 0) =


0.25, x ∈ [0, 0.75],
0.66, x ∈ (0.75, 2.25),
0, x ∈ [2.25, 3].

(4.6)
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Example 1
Moving mesh solutions (top left); −ux at the right boundary of the plateau (top

right); zoom in at the basin area (bottom left) and at the plateau area (bottom

right).
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Grid trajectories

Left: adaptive smoothed monitor; right: arc-length type
monitor.
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The Brooks-Corey model

Table 2: Constants and Brooks-Corey models.

Density [kg m−3] ρw = 998.21 ρn = 1.2754
Viscosity [kg m−1s−1] µw = 1.002e-03 µn = 1.82e-05
Mobility [m s kg−1] λw = Kkrw

µw
λn = Kkrn

µn

Constants g = 9.81 [m s−2] K = κµw
ρwg

[m2]

Capillary pressure Relative permeability

Se = Sw−Swr
1−Swr

krw = S
2+3λ

λ
e

Brooks-Corey model
pc = pdS

− 1
λ

e , for pc > pd krn = (1− Se)2(1− S
2+λ
λ

e )
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Numerical solutions of the MBL equation using the
Brooks-Corey model

Table 3: Travelling wave results for u0 = 0.003, 0.03 with vT =
1.32× 10−4 [ms−1]

u0 uB τ Wave description

0.003 0.4212 1246 Non-monotone plateau

0.03 0.4212 1246 Non-monotone overshoot

0.03 0.4212 5271 Non-monotone plateau
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 = 0.03, τ = 5271.2, t = 460

Figure 5: Comparisons between experimental result in DiCarlo 2004
and numerical solutions obtained for (u0, τ, t) = (0.003, 1246, 460),
(0.03, 1246, 350), (0.03, 5271, 460) using moving mesh method with
N = 800.
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2D Modified Buckley-Leverett equation

The 2D MBL equation reads

∂u

∂t
+

∂

∂x
F (u) +

∂

∂z
G(u) +∇ · [D(u)∇u]− τ∇ · [H(u)∇∂u

∂t
] = 0,

(4.7)

where

F (u) =
1

ϕ
fw(u)v

x
T , G(u) =

1

ϕ
fw(u)[v

z
T − λn(u)(ρw − ρn)g],

D(u) =
1

ϕ
λn(u)fw(u)P

′
c(u), H(u) =

1

ϕ
λn(u)fw(u).
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Transformation of physical equation

Based on the quasi-Lagrangian approach, we transform the
MBLE from the physical coordinate (x, z) to the computational
coordinate (ξ, η),

ut +
1

J

(
zηF (u)− xηG(u)︸ ︷︷ ︸

F̃

)
ξ
+

1

J

(
xξG(u)− yξF (u)︸ ︷︷ ︸

G̃

)
η

+
1

J

[( D(u)

J
(z2ηuξ + x2

ηuξ − zξzηuη − xξxηuη)︸ ︷︷ ︸
R

)
ξ

+
( D(u)

J
(z2ξuη + x2

ξuη − zξzηuξ − xξxηuξ)η︸ ︷︷ ︸
S

)]

−
τ

J

[( H(u)

J
(z2ηutξ + x2

ηutξ − zξzηutη − xξxηutη)︸ ︷︷ ︸
P

)
ξ

−
( H(u)

J
(z2ξutη + x2

ξutη − zξzηutξ − xξxηutξ)︸ ︷︷ ︸
Q

)
η

]
= 0.
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Discretization of flux terms

The advection terms are discretized into conservation forms,
taking F̃ (u)ξ as an example:

¯̃Fξi,j =

¯̃Fn
i+1/2,j −

¯̃Fn
i−1/2,j

∆ξ
, ¯̃Fi+1/2,j =

¯̃F (u−i+1/2,j , u
+
i+1/2,j).
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For the discretization of the flux terms, we employ

1. a central difference scheme,

¯̃F (u−
i+1/2,j

, u+
i+1/2,j

) = ¯̃F (ui,j , ui+1,j) (4.8)

=
1

2
[F̃ (ui,j) + F̃ (ui+1,j)], (4.9)

2. a standard local Lax-Friedrichs (LLF) scheme,

¯̃F (u−
i+1/2,j

, u+
i+1/2,j

) =
1

2
[F̃ (u−

i+1/2,j
) + F̃ (u+

i+1/2,j
)

−max |F̃u| · (u+
i+1/2,j

− u−
i+1/2,j

)],

u−
i+ 1

2
,j

= ui,j , u+

i+ 1
2
,j

= ui+1,j ,

(4.10)
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For the discretization of the flux terms, we employ

1. a central difference scheme,

¯̃F (u−
i+1/2,j

, u+
i+1/2,j

) = ¯̃F (ui,j , ui+1,j) (4.8)

=
1

2
[F̃ (ui,j) + F̃ (ui+1,j)], (4.9)

2. a standard local Lax-Friedrichs (LLF) scheme,

¯̃F (u−
i+1/2,j

, u+
i+1/2,j

) =
1

2
[F̃ (u−

i+1/2,j
) + F̃ (u+

i+1/2,j
)

−max |F̃u| · (u+
i+1/2,j

− u−
i+1/2,j

)],

u−
i+ 1

2
,j

= ui,j , u+

i+ 1
2
,j

= ui+1,j ,

(4.10)
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▶ 3. a local Lax-Friedrichs scheme with reconstruction using
a linear approximation (LLFR) [Zhengru Zhang and Tao
Tang, 2002],

u−
i+ 1

2
,j
= ui,j +

∆ξ

2
si,j , u+

i+ 1
2
,j
= ui+1,j −

∆ξ

2
si+1,j ,

si,j =
(
sign(s−i,j) + sign(s+i,j)

) ∥s−i,js
+
i,j∥

∥s−i,j∥+ ∥s+i,j∥
,

s−i,j =
ui,j − ui−1,j

∆ξ
, s+i,j =

ui+1,j − ui,j
∆ξ

.

(4.11)



.
.

. . . . . .

Background
studies

Mathematical
model

Traveling wave
results

The adaptive
moving mesh
methods

1D MBLE

2D MBLE

Conclusions

References

40

Moving mesh PDE

The MMPDE6 [Weizhang Huang, 1994] in 2D reads

MMPDE6:


∇̄ · ∇̄ẋ = − 1

τx
∇̄ · (M∇̄x),

∇̄ · ∇̄ż = − 1

τz
∇̄ · (M∇̄z).

(4.12)

Consider a time-dependent monitor function:

M =

[
M1 0
0 M2

]
,Mi = (1− κ)γi(t) + κ ωi, i = 1, 2, (4.13)

γi(t) =

∫ 1

0

∫ 1

0
ωidξdη. (4.14)

If the diagonal elements are identical, we get an adaptive mesh without

directional control. When the monitor components ωi are of the arc-length

type or curvature type of u in each direction, a monitor with directional

control can be obtained.
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Smoothing strategy

A smoothing strategy based on a diffusive mechanism in
[Weizhang Huang, 1997] is also employed,

[I −
(
σξ(σξ + 1)(∆ξ)2

∂2

∂ξ2
+ ση(ση + 1)(∆η)2

∂2

∂η2
)
]M̃ = M,

(4.15)

n⃗ · ∇M̃ = 0, (ξ, η) ∈ ∂Ω, (4.16)

We numerically show that the corresponding adaptive mesh
admit quasi-uniformity properties:


Density ratio along x-direction:

σξ

σξ + 1
≤

∆xi+1(t)

∆xi(t)
≤

σξ + 1

σξ

,

Density ratio along z-direction:
ση

ση + 1
≤

∆zj+1(t)

∆zj(t)
≤

ση + 1

ση
, ∀t ∈ [0, T ].

(4.17)
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Adaptive meshes and density rations

−0.5 0 0.5
−0.5

0

0.5

x

z

−0.5 0 0.5
−0.5

0

0.5

x
z

−0.5 0 0.5
−0.5

0

0.5

x

z
−0.5 0 0.5
0.5

1

1.5

2

x (z)

R
a

tio

 

 

x direction
z direction

−0.5 0 0.5
0.5

1

1.5

2

x (z)

R
a

tio

 

 

x direction
z direction

−0.5 0 0.5
0.5

1

1.5

2

x (z)
R

a
tio

 

 

x direction
z direction

Figure 6: Adaptive meshes and density ratios for κ = 0.25 (left), κ = 0.5

(middle) and κ = 0.75 (right) with σξ = 3, ση = 1.
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Example 1

Solve the 1D MBLE in the z-direction with the central
difference flux (4.8), the LLF flux (4.10) and the LLFR flux
(4.11). 

G(u) =
u2

u2 +M(1− u)2
(1− C(1− u)2),

D(u) = −ϵ, H(u) = ϵ2,

M = 0.5, C = 2, ϵ = 10−3, τ = 2.5.
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Example 1
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Example 2

The 2D MBLE with dynamic capillary pressure term. The initial
condition is of a cylindrical shape

u(x, z, 0) =

{
0.9, x2 + y2 < 0.5,

0, otherwise,
(x, z) ∈ [−1.5, 1.5]×[−1.5, 1.5].

(4.18)
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Results in 1D
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Figure 7: Resutls in 1D at t = 0.5.
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Uniform 3012 central, 1.0253 Uniform 10012 central, 0.9859 Adaptive 3012 central, 0.9698

Uniform 3012 LLFR, 0.9327 Uniform 10012 LLFR, 0.9768 Adaptive 3012 LLFR, 0.9571
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2D simulation with a cubic initial condition

(a) Uniform 10012 LLFR
plateau heigh ≈ 0.9670

(b) Adaptive 3012 Cental,
plateau heigh ≈ 0.9695
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Conclusions

▶ The moving mesh method successfully resolved the
monotone and non-monotone solutions with high accuracy.

▶ To achieve the same accuracy, the moving mesh method
needs approximately a factor of 5-10 fewer grid points than
the uniform case.

▶ The arc-length monitor function has higher accuracy in
steep regions, while the smoothed monitor function gives a
better balance between the smooth and the steep regions.
Presented Results are part of:

Zhang H, Zegeling P A. A numerical study of two-phase flow models with dynamic capillary pressure
and hysteresis[J]. Transport in Porous Media 116(2), 825-846 (2017)

Zhang H, Zegeling P A. Numerical investigations of two-phase flow with dynamic capillary pressure in
porous media via a moving mesh method[J]. Journal of Computational Physics, 2017, 345: 510-527

Zhang H, Zegeling P A. A moving mesh finite difference method for non-monotone solutions of
non-equilibrium equations in porous media[J]. Communications in Computational Physics, 2017, 22
(4), 935-964
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