

Mathematical Institute

Experimental verification of a coarse-grained model of mRNA localization reveals robustness regulated via crowding

Jonathan U. Harrison, Richard M. Parton, Ilan Davis, Ruth E. Baker

BIRS, Banff 15th November 2018 @jonty3502

Oxford Mathematics

Post-transcriptional regulation of mRNA

- Many cell types use post-transcriptional regulation of mRNA to target proteins precisely in space and time
- mRNA localization is key in establishment of the body axis, cell migration, synaptic plasticity

What controls mRNA localization?

- What ensures mRNA localization is so robust?
- What biological mechanisms regulate this robustness?

Drosophila egg chambers have a characteristic pattern of connections between cells

Alsous, Jasmin Imran, Paul Villoutreix, Alexander M. Berezhkovskii, and Stanislav Y. Shvartsman. "Collective growth in a small cell network." Current Biology 27, no. 17 (2017): 2670-2676.

Localization of mRNA in *Drosophila* egg chambers

- In oogenesis, mRNAs are transported from the maternal nurse cells to the oocyte
- Nurse cells are connected by ring canals

Moesin GFP grk mRNA

Connectivity between cells can be characterised due to ring canals

2

Connectivity between cells can be characterised due to ring canals

- Simple compartment-based ODE model
- Production in each cell
- Transport between cells connected by a ring canal

Connectivity between cells can be characterised due to ring canals

2

	(-4+4v	V	ν	0	v	0	0	0	v	0	0	0	0	0	0	0)	
B =	$1 - \nu$	$-3 \pm 2\alpha$	0	v	0	v	0	0	0	14	0	0	0	0	0	0	
	1	0		0	0	0	, ,	0	õ	0	č		0	õ		Ň	
	1-0	0	$-2 \pm \nu$	0	U	0	v	0	0	0	2	0	u	0	U	v	
	0	$1 - \nu$	0	-2 + v	0	0	0	$M_{\rm c}$	0	0	0	v	0	0	0	0	
	$1 - \nu$	0	0	0	-1	0	0	0	0	0	0	0	ν	0	0	0	
	0	$1 - \nu$	0	0	0	-1	0	0	0	0	0	0	0	ν	0	0	
	0	0	$1-\nu$	0	0	0	$^{-1}$	0	0	0	0	0	0	0	ν	0	
	0	0	0	$1 - \nu$	0	0	0	$^{-1}$	0	0	0	0	0	0	0	ν	
	$1 - \nu$	0	0	0	0	0	0	D	$-\nu$	0	0	0	0	0	0	0	
	0	$1 - \nu$	0	0	0	0	0	D	0	$-\nu$	0	0	0	0	0	0	
	0	U	$1 - \nu$	0	0	0	0	0	0	0	$^{-\nu}$	0	0	0	0	0	
	0	0	0	$1 - \nu$	0	0	0	0	0	0	0	$-\nu$	0	0	0	0	
	0	0	0	0	$1 - \nu$	0	0	0	0	0	0	0	$-\nu$	0	0	0	
	0	0	0	0	0	$1 - \nu$	0	0	0	0	0	0	0	$-\nu$	0	0	
	0	0	0	0	0	0	$1-\nu$	0	0	0	0	0	0	0	-v	0	
	0	0	0	0	0	0	0	1 - v	0	0	0	0	0	0	0	-v)	

Coarse-grained model dy $= a \mathbf{v} + b \mathbf{B}(\nu) \mathbf{y}$ dt mRNA transport mRNA production at rate a at rate b

Coarse-grained model $\frac{d\mathbf{y}}{dt} = a\mathbf{v} + b\mathbf{B}(\nu)\mathbf{y}$ $= VDc + k_1 + 15ak_2t$ Quasi-steady-state Effect of initial

condition

Constant term

linear increase

Bayesian inference framework

Measurement model $\mathbf{z} \sim NB(\Phi \mathbf{y}, \sigma)$

where Φ has diagonal entries $[\phi, 1, ..., 1]$

Bayesian inference allows us to propagate forward uncertainties in measurement and incorporate expert knowledge

Sample from posterior distribution $p(\theta | \mathbf{z})$ via MCMC (Hamiltonian Monte Carlo)

Stan http://mc-stan.org/

Results at steady state show transport through ring canals is strongly biased

95% credible interval for ν of [0.94,1.00]

Results at steady state show transport through ring canals is strongly biased

95% credible interval for ν of [0.94,1.00]

Results in dynamic regime suggest production and transport are carefully balanced

95% credible intervals: a [9.5, 18.9] particles hr⁻¹ b [0.16, 0.35] hr⁻¹ Scaling to comparable units shows production and transport are balanced $a \approx b \langle \tilde{\mathbf{y}} \rangle$

Posterior predictions from the model

Prediction of behaviour for gurken overexpression

Overexpressor

Prediction of behaviour for gurken overexpression $\frac{d\mathbf{y}}{dt} = 2a \, \mathbf{v} + b \, \mathbf{B}(\nu) \, \mathbf{y}$

Overexpressor

Prediction of behaviour for gurken overexpressor

Prediction of behaviour for gurken overexpressor

Prediction of behaviour for gurken overexpressor

Localization of RNA in oocyte of the overexpression mutant reveals robustness

- 1. Blocking of ring canals
- 2. Inhomogeneous production
- 3. Density dependent transport

1. Blocking of ring canals

Alter entries of matrix B to remove connections between certain cells

2. Inhomogeneous production

Production of RNA in nuclei of different cells may vary in the OE mutant due to the GAL4-UAS system used to drive the mutation

Estimate $\mathcal{A}V$ based on nascent transcription data

3. Density dependent transport

Previously assumed transport was linear in the amount of RNA in a nurse cell by

But due to availability of molecular motors, transport may saturate

$$bf(y)$$
 where $f(y) = \frac{y}{1 + \beta y}$

Expected log predictive density (elpd)

$$\mathbb{E}\left[\log\left(\int p(y^{OE} \mid \theta) p(\theta \mid y^{WT}) \, d\theta\right)\right] \approx \frac{1}{n} \sum_{i=1}^{n} \log\left(\int p(y_i^{OE} \mid \theta) p(\theta \mid y^{WT}) \, d\theta\right)$$

Expected log predictive density (elpd)

$$\mathbb{E}\left[\log\left(\int p(y^{OE} \mid \theta) p(\theta \mid y^{WT}) \, d\theta\right)\right] \approx \frac{1}{n} \sum_{i=1}^{n} \log\left(\int p(y_i^{OE} \mid \theta) p(\theta \mid y^{WT}) \, d\theta\right)$$

Pseudo-BMA weighting for model k $w_k = \frac{\exp(\mathbf{elpd}_k)}{\sum_{k=1}^{K} \exp(\mathbf{elpd}_k)}$

Expected log predictive density (elpd)

$$\mathbb{E}\left[\log\left(\int p(y^{OE} \mid \theta)p(\theta \mid y^{WT}) \, d\theta\right)\right] \approx \frac{1}{n} \sum_{i=1}^{n} \log\left(\int p(y_i^{OE} \mid \theta)p(\theta \mid y^{WT}) \, d\theta\right)$$

Pseudo-BMA weighting for model k $w_k = \frac{\exp(\mathbf{elpd}_k)}{\sum_{k=1}^{K} \exp(\mathbf{elpd}_k)}$

Stacking weights

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} w_{k} p(y_{i}^{OE} | y^{WT}, M_{k}) \right) \text{ subject to } w_{k} \ge 0, \sum_{k=1}^{K} w_{k} = 1$$

Expected log predictive density (elpd)

$$\mathbb{E}\left[\log\left(\int p(y^{OE} \mid \theta) p(\theta \mid y^{WT}) \, d\theta\right)\right] \approx \frac{1}{n} \sum_{i=1}^{n} \log\left(\int p(y_i^{OE} \mid \theta) p(\theta \mid y^{WT}) \, d\theta\right)$$

Pseudo-BMA weighting for model k $exp(elpd_k)$

$$w_k = \sum_{k=1}^{K} \exp(\mathbf{elpd}_k)$$

Stacking weights

Vehtari, Aki, Andrew Gelman, and Jonah Gabry. "Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC." *Statistics and Computing* 27.5 (2017): 1413-1432.

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} w_k p(y_i^{OE} | y^{WT}, M_k) \right) \text{ subject to } w_k \ge 0, \sum_{k=1}^{K} w_k = 1$$

Yao, Yuling, et al. "Using stacking to average Bayesian predictive distributions." arXiv preprint arXiv:1704.02030(2017).

Blocking of ring canals

Conclusions

- Simple model connected to data via Bayesian inference is powerful in distinguishing between hypotheses
- Tightly regulated balance between between production and transport
- Crowding of RNA-protein complexes helps to regulate robustness of mRNA localization via blocking of ring canals

Acknowledgements

Ruth E. Baker http://www.iamruthbaker.com/

Richard M. Parton

llan Davis

Engineering and Physical Sciences Research Council Wolfson Centre for Mathematical Biology

MATHEMATICAL INSTITUTE

Mathematical Institute

Experimental verification of a coarse-grained model of mRNA localization reveals robustness regulated via crowding

Jonathan U. Harrison, Richard M. Parton, Ilan Davis, Ruth E. Baker

BIRS, Banff 15th November 2018 @jonty3502

Oxford Mathematics