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Background

Typical situaton in clinical applications:
Data available from many patients, but few data per individual.

Example: Fertility treatment in reproductive endocrinology

Large variation in success rates among
clinics (8-35%) due to

I different treatment protocols,

I high intra- and inter-individul
variability in the female menstrul
cycle

Question: Can we construct a mechanistic model of the menstrual
cycle that displays this variability and that can be used to evaluate
treatment success rates in silico?
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Outline

1. Physiological background

2. Data

3. Model construction

4. Model parametrization

5. Model applications
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The human menstrual cycle

Exactly timed interplay of
physiological processes

I follicle development

I ovulation and fertilization

I formation of corpus luteum

I embryonic attachment and
growth in the uterus

⇒ coordination between neural
and endocrine systems

Unwanted childlessness among
couples in Europe: 12-15%

(http://www.websters-online-dictionary.org/definiions/Menstrual Cycle)
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Assisted reproductive technology (ART)

Ovarian stimulation and in-vitro fertilization (IVF):
downregulation + stimulation + oocyte retrieval

(http://www.sunfert.com/stimulation-protocols/)

Aim: between 11 and 15 mature oocytes
Success rates: 8 - 35%, depending on the clinic
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Cycle data

−10 0 10 20 30 40
0

20

40

60

80

100

IU
/L

LH

−10 0 10 20 30 40
0

5

10

15

20

IU
/L

FSH

−10 0 10 20 30 40
0

100

200

300

400

500

pg
/m

l

E2

−10 0 10 20 30 40
0

5

10

15

20

25

30

ng
/m

l

P4

BIRS Workshop 2018, Nov 15 6 Susanna Röblitz



Treatment protocol data
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Drug data

Single dose nafarelin (GnRH agonist)
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Single and multiple dose cetrorelix (GnRH antagonist)
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GynCycle
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GynCycle: 33 ODEs, 114 parameters [Röblitz et al., J Theoret Biol 2013]

computation of hormone profiles and follicle development over time
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PKPD Modelling: GnRH agonists
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Frequentists’ approach

Assumption: there exists a fixed but unknown parametrization θ
→ estimate θ (ill-posed!) and generate predictions:
least squares minimization by error-oriented Gauss-Newton method
NLSCON → restriction to subspace of identifiable parameters
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Gauss-Newton algorithm NLSCON

I solution of the nonlinear least squares problem by a global
adaptive Gauss-Newton method

‖F ′(θ(k))∆θ(k) + F (θ(k))‖2 → min

θ(k+1) = θ(k) + λk∆θ(k), k = 0, 1, 2, . . .

[Deuflhard: Newton Methods for Nonlinear Problems, 2004]

I sequence of linear least squares problems with Jacobian F ′(p)

F ′ij(θ) =
∂

∂θj
yki (ti , θ), i = 1, . . . ,m, ki ∈ {1, . . . , n}

I detection of linear dependencies by monitoring the
subcondition numbers

F ′(θ)Π = QR, r11 ≥ r22 ≥ . . . ≥ rqq, scj = r11/rjj < 1/εθ
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Generic model

Study influence of drug, dose and timing of administration on
hormonal profiles in a “normal” menstrual cycle [Röblitz et al. (2013)]
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Virtual patients

Generate model instances (parametrizations) compatible with real
patient data for the normal cycle [Mancini et al. (2014)].

finite set of biologically admissable parameter sets

  

Real Patient 

Virtual patient

(a) Medical level

(b) Computation level

offline −→ online
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Bayesian Inference

I θ ∈ Θ ⊂ Rd unknown parameters

I x ∈ X ⊂ Rn measurements

I likelihood model M = {p(x |θ), x ∈ X , θ ∈ Θ}

Bayesian Inference
I Input:

I prior π(θ)
I measurement(s) x ∈ X
I likelihood p(x | θ)

I Output:
I posterior:

p(θ | x) ∝ p(x | θ)π(θ)

Empirical Bayes Methods
I Input:

I prior π(θ)
I measurements X = (x1, . . . , xm)

for several individuals with
individual parameters θm ∈ Θ

I likelihoods p(xm | θm)

I Output:
I density estimate π(θ)
I individual posteriors:

p(θm | xm) ∝ p(xm | θm)π(θm)
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Empirical Bayes: Workflow

Prior πP

Patient Data D1 Patient Data D2 . . . Patient Data DM

Likelihood L1 Likelihood L2 . . . Likelihood LM

Posterior P1 Posterior P2 . . . Posterior PM

Treatment in Silico

Succes Rate S1 Succes Rate S2 . . . Succes Rate SM
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Empirical Bayes: Typical approach

I View the unknown prior as a hyperparameter π
I Apply a parameter estimation technique to infer it from its

likelihood for the measurement X = (x1, . . . , xM), e.g.

πNPMLE = argmax
π

log L(π), L(π) =
M∏

m=1

p(xm | π), p(xm | π) =

∫
p(xm | θ)π(θ)dθ

I πNPMLE turns out to be a discrete distribution with at most
M nodes

I Regularization of πNPMLE using a penalty Φ(π):

πMPLE = argmax
π

log L(π)− γΦ(π)

γ > 0 balances the trade-off between goodness of fit and
smoothness or non-informativity of the prior

I Most penalties in use are variant under transformations of X
=⇒ Results depend on the choice of the parametrization!
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Consistent statistical inference

If equivalent models are used to explain equivalent data,
the results of statistical inference must be consistent!

−ΦI = I[π | M] =

∫
Θ

∫
X
π(θ)p(x | θ) log

(
p(x | θ)

p(x | π)

)
dxdθ

The mutual information (expected information gained from one
observation of the model M on a parameter θ with prior π(θ)) is
invariant under transformations of x and θ and concave in π.

I If the Bayesian inverse problem takes the form x = ϕ(θ) + E ,
ΦI is equivalent to the entropy HX (π) in measurement space,

HX (π) = −
∫

p(x | π) log p(x | π)dx ,

and thereby has a natural interpretation (non-informativity)
[Klebanov, Sikorski, Schütte, Röblitz: Objective Priors in the Empirical Bayes

Framework, https://arxiv.org/abs/1612.00064]
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Transformation invariance

x |θ ∼ N (θ, 0.32), θ ∼ πtrue = 0.5·(N (1, 0.52)+N (3, 0.52))|[0,4], ϕ : θ 7→ θ̃ = exp(θ)

M = 100, MMA algorithm for gradient-based local optimization

Thikonov:

information

penalty:
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Parameter inference for GynCycle

Data: 53 healthy women, 4 hormones, measured roughly every
second day over 30 days
Inference: 82 parameters, 33 initial values

GynCycle: sample trajectories from estimated prior and one
individual posterior

[Klebanov et al., ZR 16-56, 2016]

Julia implementation: https://github.com/axsk/GynC.jl
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A new model for follicular development

x ′i = H+(FSH, δi , η)xi (ξ − xi )(γ − κ(Σx − xi ))

δi ∼ N (σ, µ), xi (ti0) ∼ N (5mm, 1.5mm), Poisson process for ti0

Fit to ultrasound data:
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Behavior under treatment:

Number of dominant follicles: d = 1 +
[
γ
κξ

]
[Lange et al., J Math Biol (2018)]
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Model-based treatment verification

Verify that a given treatment protocol
reaches its goal for the largest possible
number of (virtual) patients
→ evaluate treatment success rate
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Model-based treatment optimization & design

Treatment optimization: finding values for treatment parameters
(type, dose and time of drug) that optimize some KPIs

I number and sizes of dominant follicles (efficacy)

I total amount of drug used (costs)

I range of hormone concentrations, e.g. E2 (safety)
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Model-based treatment optimization

Synthesised generic down-regulation treatments require 40% of the
injections and <25% of the overall Decapeptyl amount required by
reference treatment. Individualised treatments even lighter, still
achieving clinical goals!
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Model-based treatment design

incremental change of
treatment parameters:

I age class

I AMH level

I AFC class

I dose of
stimulation drug

→ set of
Pareto-optimal
treatments, in which at
least one performance
indicator is better
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Conclusion

I We constructed a mechanistic model of the human menstrual
cycle.

I Randomness in the follicle model introduces intra-individual
variability.

I The empirical Bayes approach allowed us to construct a virtual
patient population that displays inter-individual variability.

I The virtual patient population enables treatment verification,
optimization, and design in silico.

Future work:

I Patient-specific parametrization of the follicle model

I Patient-specific treatment planning

I Integration of data and algorithms into a “virtual hospital”
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