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Stochastic differential equations

(SDEs)



SDE definition

Stochastic differential equation:

dXt = α(Xt , θ)dt +
√
β(Xt , θ)dWt , X0 = x0.

Discretised form: (Euler-Maruyama)

xi+1 = xi + α(xi , θ)∆τ +
√
β(xi , θ)∆τ zi+1

Notation:

• xi – state vector at ith timestep

• α – drift vector

• β – diffusion matrix

• θ – unknown parameters

• x0 – initial conditions

• ∆τ – timestep size

• zi+1 – vector of independent N(0, 1) draws
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SDE applications

• Systems biology

• Ecology

• Epidemiology

• Finance/econometrics

• Physics

• . . .

Simple examples later:

• Lotka-Volterra

• SIR epidemic model
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Problem statement

• We observe states at several time points

• (Usually partial noisy observations)

• Primary goal

• Infer parameters θ

• e.g. their posterior distribution

• Secondary goals

• Infer states x

• Model choice/criticism
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Posterior distribution

• Let p(θ) be prior density for parameters

• Posterior distribution is

p(θ, x |y) ∝ p(θ)p(x |θ)p(y |x , θ)

(prior × SDE model × observation model)

• where

• p(x |θ) product of normal densities for state increments

(i.e. xi+1 − xi values)

• and p(y |x , θ) product of normal densities at observation times

• n.b. right hand side is unnormalised posterior p(θ, x , y)
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Posterior inference

• Likelihood tractable!

• Can use MCMC, SMC etc

• Challenging as posterior high dimensional and lots of

dependency

• One approach is to use bridging (next slide)

• ABC also possible (e.g. Picchini 2014)

• But lots of hard-to-quantify approximation error
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Bridge constructs

• Propose x via a bridge construct

• Use within Monte Carlo inference

• Bridge construct is approx state distribution conditioned on
observations

(usually conditioning just on next observation)

• Derived mathematically

• Various bridges used in practice

• Struggle with highly non-linear paths, large gaps between

observations times, low observation variance

• Choosing bridges and designing new ones hard work!

• We automate this using machine learning

• “Variational bridge”
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Variational inference



Variational inference

• Goal: inference on posterior p(θ|y)

• Given unnormalised version p(θ, y)

• Introduce q(θ;φ)

• Family of approximate posteriors

• Controlled by parameters φ

• Idea: find φ giving best approximate posterior

• Converts Bayesian inference into optimisation problem

• n.b. produces approximation to posterior
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Mean field approximation

• Simplest variational approximation

• Assumes q(θ;φ) is N(µ,Λ) for diagonal Λ

• So φ = (µ,Λ)

• Helpful computationally

• Makes strong – often unrealistic – assumptions about

posterior!
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Variational inference

• VI finds φ minimising KL(q(θ;φ)||p(θ|y))

• Equivalent to maximising ELBO (evidence lower bound),

L(φ) = Eθ∼q(·;φ)

[
log

p(θ, y)

q(θ;φ)

]
(Jordan, Ghahramani, Jaakkola, Saul 1999)

• Computationally tractable choice
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Variational inference

• Optimum q often finds posterior mode well

• But usually overconcentrated!

(unless family of qs allows very good matches)

(source: Yao, Vehtari, Simpson, Gelman 2018)
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Maximising the ELBO

• Several optimisation methods:

• Variational calculus

• Parametric optimisation (various flavours)
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Maximising the ELBO

• “Reparameterisation trick”

(Kingma and Welling 2014; Rezende, Mohamed and Wierstra 2014;

Titsias and Lázaro-Gredilla 2014)

• Write θ ∼ q(·;φ) as θ = g(ε, φ) where:

• g inverible function

• ε base random variable e.g. N(0, I)

• Mean field case: θ = µ+ Λ1/2ε

• Optimisation possible using:

• Stochastic gradient descent

• Automatic differentiation
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Variational inference for SDEs



Variational inference for SDEs

• We want posterior p(θ, x |y) for SDE model

• Define

q(θ, x ;φ) = q(θ;φθ)q(x |θ;φx)

• We use mean-field approx for q(θ;φθ)

• Leaves choice of q(x |θ;φx)
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Variational inference for SDEs

• q(x |θ;φx) should approximate p(x |θ, y)

• SDE theory suggests this itself obeys a SDE

(see e.g. Rogers and Williams 2013)

• But with different drift and diffusion to original SDE

• No nice tractable form, so we try to learn from simulations
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Variational approximation to states

• We define q(x |θ;φx) by a discretised SDE

• We let drift α̃ and diffusion β̃ depend on:

• Parameters θ

• Most recent x and t values

• Details of next observation

• To get flexible parametric functions we use neural network

• φx is neural network parameters (weights and biases)
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Variational approximation to states

• Drift and diffusion calculated from neural network

• Used to calculate x1

• Fed back into same neural network to get next drift and

diffusion

• . . .

• Recurrent neural network structure

• V flexible (but tricky to scale up)
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Variational approximation to states

• Typically we take

xi+1 = xi + α̃∆t +

√
β̃∆tzi+1

• Sometimes want to ensure non-negativity of xs

• So we use

xi+1 = h

(
xi + α̃∆t +

√
β̃∆tzi+1

)
• Where h outputs non-negative values e.g. softplus function

h(z) = log(1 + ez)
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Algorithm summary

Initialise φθ, φx

Begin loop

Sample θ from q(θ;φθ) (independent normals)

Sample x from q(x ; θ, φx) (run RNN)

Update φθ, φx by stochastic optimisation

End loop

(n.b. can use larger Monte Carlo batch size)
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Example



Lotka-Volterra example

• SDE model from Golightly and Wilkinson (2011)

• Prey population at time t is Ut

• Predator population at time t is Vt

• Drift

α(Xt , θ) =

(
θ1Ut − θ2UtVt

θ2UtVt − θ3Vt

)
• Diffusion

β(Xt , θ) =

(
θ1Ut + θ2UtVt −θ2UtVt

−θ2UtVt θ3Vt + θ2UtVt

)
• Parameters:

• θ1 controls prey growth

• θ2 controls predator growth by consuming prey

• θ3 controls predator death
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Settings - model

• Simulated data at times 0, 10, 20, 30, 40

• IID priors: log θi ∼ N(0, 32) for i = 1, 2, 3

• Discretisation time step ∆τ = 0.1

• Observation variance Σ = I - small relative to typical

population sizes

• Challenging scenario:

• Non-linear state paths

• Small observation variance

• Long gaps between observations
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Settings - variational inference

• Batch size 50 for gradient estimate

• 4 layer neural network (20 ReLU units / layer)

• Softplus transformation to avoid proposing negative

population levels

• Various methods to avoid numerical problems in training
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Results
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Parameter inference results
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• Black: true parameter values

• Blue: variational output

• Green: importance sampling (shows over-concentration)

Computing time: ≈ 2 hours on a desktop PC
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Epidemic example

• Boarding school data

• We look at:

• SIR SDE model of Fuchs (2013)

• Version with time-varying infection rate
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Epidemic example - constant infection rate
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Epidemic example - varying infection rate
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Epidemic example - varying infection rate
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Conclusion



Summary

• Variational approach to approx Bayesian inference for SDEs

• Modest tuning requirements (compated to MCMC)

• Results in a few hours on a desktop PC

• Good estimation of posterior mode
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Current/future work

• Faster inference (using alternatives to RNNs)

• Big data - long or wide

• Other models e.g. state space models, MJPs

• Model comparison/improvement

• Real applications - suggestions very welcome!
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