## Lousy lessons learned

Study design and parameter estimability for spatial and temporal ecological models using data cloning

## Mark Lewis

Stephanie Peacock, Martin Krkošek, Andrew
Bateman, and Subhash Lele

## Parameter estimability



## Data cloning

- Maximum Likelihood Estimates (MLEs) using MCMC in a Bayesian framework by overwhelming the prior
- Global MLEs when your likelihood surface may be flat or multi-modal
- Estimability of parameters in your model


increasing number of clones $\qquad$


## How does data cloning work?

1. Create a $K$ cloned data set
2. Using MCMC, generate draws from your posterior, based on some (proper) prior and the likelihood of the cloned data vector
3. Compute means and sample variances from the marginal posteriors from the MCMC output

Given enough clones....
4. The MLE is the mean of the posterior, and the variance is $K$ times the MCMC sample variance

$$
\mathcal{D}^{k}=\underbrace{\mathcal{D}, \mathcal{D}, \ldots, \mathcal{D}}_{k \text { times }} \quad \begin{aligned}
& \mathcal{D} \text { : data } \\
& k: \text { number of clones }
\end{aligned}
$$

$\mathcal{M}$ : model

$$
\operatorname{Pr}\left(\mathcal{M} \mid \mathcal{D}^{k}\right) \propto \operatorname{Pr}\left(\mathcal{D}^{k} \mid \mathcal{M}\right) \operatorname{Pr}(\mathcal{M})
$$


> install.packages("dclone")

## Data cloning and estimability

Variance in posterior should decrease at a rate of $1 / K$



## Data cloning and estimability

## Variance in posterior should decrease at a rate of 1/K

Posterior mean should be invariant to the choice of prior


## Case study: sea lice on juvenile salmon

1. How does one address problems of parameter non-estimability?
2. How does one avoid such problems to begin with?


## Sea louse transmission from farmed to marine wild salmon



## Data: Spatial surveys of sea louse abundance

- location of salmon farms
$\uparrow \begin{aligned} & \text { wild salmon } \\ & \text { migration route }\end{aligned}$



## The model




# What is the relative contribution of farm and ambient sources of sea lice? 



## Three hypotheses:

1. No effect of farms
2. Point source of sea lice at location of farm
farm location
3. Both backgroun Tys.mmenn


## The math


b transmission coefficient (unknown) $l_{i}$ distance migrated during stage $i$ (days) $s_{i}$ survival of lice from stage ito $i+1$

## The math






## Model results

"Farm salmon were the primary source of lice, raising the density of infective parasite larvae


2006:
Can we apply the model to test if we can measure effects of multiple farm sources of lice (f)?


Cessation of a salmon decline with control of parasites

## Non-estimability of parameters

2006 data


$$
\begin{aligned}
& H(z)=\beta s_{c} \int_{z-\lambda_{c}-\lambda_{h}}^{z-\lambda_{c}} L(x) d x \\
& M(z)=\beta s_{h} S_{c} \int_{z-\lambda_{c}-\lambda_{h}-\lambda_{m}}^{z-\lambda_{c}-\lambda_{h}} L(x) d x
\end{aligned}
$$




Number of clones (K)


Number of clones

## Non-estimability of parameters







## What to do about nonestimability?

- Fix parameters if information is available
- Previous study
- Parameters for different host species not significantly different
- Revisit model str
- Is something
- Can additione included?




## Revisiting model structure






Date (2005/2006)

## Revisiting model structure




Temperature (C)


## 



## Revisiting our hypotheses



How did non-estimability influence our conclusions?

1. Ambient sources - k
2. Farm sources - f
3. Both - k \& $\dagger$

Relative strength of farm vs. ambient sources of lice:

f / K \begin{tabular}{l|l|l|}

\hline | Reviginal 2006 model (non-estimable) |
| :--- |
| (estimable) | \& $29-16,165$ <br>

\hline \& Published 2004 estimates \& 578 <br>
\hline
\end{tabular}

## Case study: sea lice on juvenile salmon

1. How does one address problems of parameter non-estimability?
$\checkmark$ Fixing parameters $\checkmark$ Revisiting model

$\checkmark$ Collecting more/ different data*

2. How does one avoid such problems to begin with!?

# Which sampling design should be adopted to ensure $k$ and $f$ are estimable? 



[^0]1. Original sample locations (2004)
2. Less spatial spread
3. More spatial spread

## Estimability of ambient and farm sources of sea lice



## Fits to data



## Less-spread

Original
More-spread
pattern -)
$\uparrow$

process ${ }^{\circ}$






## Parameter estimates



## Lousy lessons learned

Check parameter estimability!


In our case estimability was fixable by:
$\checkmark$ Fixing parameters
$\checkmark$ Revisiting model structure


OR avoided by investigating different spatial/temporal designs



Coauthors: Stephanie Peacock (Calgary), Subhash Lele (Alberta), Martin Krkosek (Toronto), Andrew Bateman (UVic)

Salmon Field



## Max Wyman - Term Assistant Professor - Statistics, University of Alberta

The Department of Mathematical and Statistical Sciences at the University of Alberta invites applications for a Max Wyman Term Assistant Professorship in the area of Statistics. This is a non-tenure-track, three-year fixed-term position. The position offers a stimulating research and teaching environment with a reduced teaching load.
https://www.careers.ualberta.ca/Competition/A113337476/


[^0]:    Salmon farm

    * Original data
    * Added sites (less spread)
    * Added sites (more spread)Removed sites (less spread)Removed site (more spread)

