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Lousy lessons learned 
Study design and parameter estimability for spatial and 

temporal ecological models using data cloning 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Parameter estimability

Non-indentifiability
Parameter can not be 

estimated, no matter how 
many data

Non-estimability
Parameter can not be 

estimated, given the data you 
have
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Introduction               

non-identifiable



• Maximum Likelihood Estimates (MLEs) using MCMC in a Bayesian 
framework by overwhelming the prior 

• Global MLEs when your likelihood surface may be flat or multi-modal 
• Estimability of parameters in your model

Data cloning
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Introduction: Data cloning                          



1. Create a K cloned data set 

2. Using MCMC, generate 
draws from your posterior, 
based on some (proper) prior 
and the likelihood of the 
cloned data vector 

3. Compute means and sample 
variances from the marginal 
posteriors from the MCMC 
output 

Given enough clones…. 

4. The MLE is the mean of the 
posterior, and the variance is 
K times the MCMC sample 
variance
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How does data cloning work?

sample varianceparameter variance
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> install.packages(“dclone”)

Introduction: Data cloning                           

D : data
k : number of clones

M : model

D : data
k : number of clones

M : model

Dk = D, D, . . . , D� �� �
k times

Pr(M|Dk) � Pr(Dk|M)Pr(M)

Lele et al. 2007 Ecology Letters
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Variance in posterior should decrease at a rate of 1/K
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Lele et al. 2010 J. Amer. Stat. Assoc.
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Variance in posterior should decrease at a rate of 1/K 
Posterior mean should be invariant to the choice of prior
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Outline                          

Case study: sea lice on juvenile salmon

1. How does one address problems of parameter 
non-estimability? 

2. How does one avoid such problems to begin 
with?
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spill-over

spill-back



Data:  
Spatial surveys of sea louse abundance
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location of  
salmon farms 

wild salmon 
migration route
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What is the relative 
contribution of farm 

and ambient sources 
of sea lice?
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wild salmon 
migration route
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Constants 
D, g, mn, mp, qn 

Infection and development of parasites 
on wild salmon 

infection ! host migration + development + 
survival (sc, sh)

Wild data 
ci, hi, mi

Estimated 
parameters 
f, k, lc, lh, lm, sc, 

sh

Three hypotheses: 

Advection, diffusion of 
parasites from farms

f

Background sources of 
parasites

k
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1. No effect of farms 
2. Point source of sea lice at 

location of farm 
3. Both background and farm 

sources of sea lice
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Krkošek et al. 2005 Proc Roy Soc B: Biol. Sci.
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H(z) = βsc
� z�λc

z�λc�λh
L(x)dx

M(z) = βshsc
� z�λc�λh

z�λc�λh�λm
L(x)dx

C(z) = β
� z

z�λc
L(x)dx

L(x) = k + f f(x)

b transmission coefficient (unknown)
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The math
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Epizootics of wild fish induced by farm fish
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The continuing decline of ocean fisheries and rise of global fish

consumption has driven aquaculture growth by 10% annually over

the last decade. The association of fish farms with disease emer-

gence in sympatric wild fish stocks remains one of the most

controversial and unresolved threats aquaculture poses to coastal

ecosystems and fisheries. We report a comprehensive analysis of

the spread and impact of farm-origin parasites on the survival of

wild fish populations. We mathematically coupled extensive data

sets of native parasitic sea lice (Lepeophtheirus salmonis) trans-

mission and pathogenicity on migratory wild juvenile pink (On-

corhynchus gorbuscha) and chum (Oncorhynchus keta) salmon.

Farm-origin lice induced 9–95% mortality in several sympatric wild

juvenile pink and chum salmon populations. The epizootics arise

through a mechanism that is new to our understanding of emerg-

ing infectious diseases: fish farms undermine a functional role of

host migration in protecting juvenile hosts from parasites associ-

ated with adult hosts. Although the migratory life cycles of Pacific

salmon naturally separate adults from juveniles, fish farms provide

L. salmonis novel access to juvenile hosts, in this case raising

infection rates for at least the first !2.5 months of the salmon’s

marine life (!80 km of the migration route). Spatial segregation

between juveniles and adults is common among temperate marine

fishes, and as aquaculture continues its rapid growth, this disease

mechanism may challenge the sustainability of coastal ecosystems

and economies.
aquaculture ! emerging infectious disease ! migration ! salmon ! sea lice
O cean fisheries and ecosystems are in decline (1, 2). The

collapse and low resilience of exploited fish stocks (3) and

declines in the abundance of global fishery landings (4) illustrate

the challenges facing the sustainability of ocean fisheries (4, 5).

These effects are partly mitigated by the rise of aquaculture, in

which the farming of herbivorous fishes promises to improve

global fish supplies (6). However, the decline of ocean fisheries

and ecosystems can also be exacerbated by the industrial farming

of carnivorous fishes such as salmon (6–8). By feeding farm

salmon proteins and oils extracted from wild fish, there is a net

loss of fish supply (6). Escaped farm salmon spread domesticated

genes into wild populations (9) and have the potential to invade

and displace native wild stocks (10–12). Finally, the spread of

infectious pathogens from farm to wild salmon may also threaten

wild stocks (13). Despite decades of work, the extent and impacts

of parasite transmission from farm to wild salmon have remained

contentious and unresolved (14, 15).
Most emerging infectious diseases in wildlife arise through

complex interactions among humans, wildlife, and domesticated

animals (16). The spread of nonnative parasites from livestock to

wildlife has reduced the abundance (16–18) and resilience (19)

of some wildlife populations and has challenged the conserva-

tion of other threatened or endangered species (16, 17, 20). For

many marine fishes, aquaculture can change the dynamics of

normally benign native parasites by providing parasites novel

access to juvenile hosts. For Pacific salmon, juveniles are not

sympatric with adults (and their parasites) for their first several

months of marine life (21). However, salmon farms can under-

mine this temporal refuge from lice early in the salmon’s life

cycle. During their first months at sea, wild salmon are sympatric

with large abundances of domesticated salmon (and their par-

asites). This change in the timing and magnitude of parasite

transmission in a host’s life history may undermine a functional

role of migration in protecting juvenile fish from parasites

associated with adult fish.
The rise of salmon farming has coincided with the emergence

of native sea lice (Lepeophtheirus salmonis) infestations of

sympatric wild juvenile salmonids. Afflicted areas include Nor-

way (22), Scotland (23), Ireland (24), and Canada (25). The

infestations are concurrent with declines in affected populations,

but the causal linkages are obfuscated by the myriad factors

affecting wild fish populations, such as density dependence,

climate, fishing, and habitat degradation. Here, we present

extensive data sets and mathematical models that couple louse

transmission and pathogenicity to estimate the impact of farms

on the survival of wild juvenile pink (Oncorhynchus gorbuscha)

and chum (Oncorhynchus keta) salmon migrating through an

archipelago off the west coast of Canada. The analysis yields

quantitative insights into the mechanisms and extent of impacts

of aquaculture on disease dynamics in wild fish populations.

More generally, the results inform the development of marine

conservation and disease theory and its application in fisheries

and aquaculture management.Results
The transmission dynamics data set totaled 14,255 juvenile

salmon nonlethally assayed for copepodid, chalimus, and motile

stage lice at 1- to 3-km intervals along 40–80 km of three

different migration routes containing two to three farms each

(Fig. 1 and Fig. 4, which is published as supporting information

on the PNAS web site). From among three candidate models, the

data best supported a model that had a uniformly distributed

ambient population of infectious planktonic larvae and point

sources of planktonic larvae situated at the farms (likelihood

ratio test, P "" 0.0001; Akaike weights !1; Tables 1–3, which are

published as supporting information on the PNAS web site).

Across all data sets, this model fit the data well (Fig. 2 and Figs.

5 and 6, which are published as supporting information on the

PNAS web site). The other models contained only farm- or

ambient-origin lice. With the parameter estimates from the

best-fit model, we reconstructed the spatial distributions of

infective larvae originating from each source. Farm salmon were

the primary source of lice, raising the density of infective parasite

larvae above ambient levels for #80 km of the migration route

(Figs. 2, 5, and 6).
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“Farm salmon were the primary source of lice, 
raising the density of infective parasite larvae 
above ambient levels for 80 km of the 
migration route.” 
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Model results

Can we apply the model to test 
if we can measure effects of 
multiple farm sources of lice 
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Non-estimability of parameters
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What to do about non-
estimability?

• Fix parameters if information is 
available 
- Previous study 
- Parameters for different host 

species not significantly 
different 

• Revisit model structure 
- Is something missing? 
- Can additional data be 

included?
Temperature (C)

Stien et al. 2005 Mar. Ecol. Prog. Ser.

t h 
= 

l h/
v

t m

Case study 1. Addressing non-estimability                          
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Revisiting model structure

L(x) = k + f f(x)

• Assumed to be a constant 
source through time 

- steady-state solution to advection-
diffusion-decay equations
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Estimated 
parameters 
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parasites from farms
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Constants 
D, g, mn, mp, qn

Temporal dynamics on farms 
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Infection and development of parasites 
on wild salmon 

infection ! host migration (v) + development 
+ survival (sc, sh)

Wild data 
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Case study 1. Addressing non-estimability                          
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How did non-estimability 
influence our conclusions?

Original 2006 model (non-estimable) 29 - 16,165

Revised spatiotemporal 2006 model 
(estimable) 578

Published 2004 estimates 28 - 21,445

f / k

Krkosek et al. 2006 PNAS

Relative strength of farm vs. ambient sources of lice:



1. How does one address problems of parameter 
non-estimability?
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Outline                         

Case study: sea lice on juvenile salmon

2. How does one avoid such problems to begin 
with!?

✓Fixing parameters

Temperature (C)

✓ Revisiting model

dis
tan
ce

time

density

✓Collecting more/
different data*
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Which sampling design should be 
adopted to ensure k and f are estimable?
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1. Original sample locations (2004) 
2. Less spatial spread 
3. More spatial spread
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Case study 2. Avoiding non-estimability                          

Peacock et al. Ecology & Evolution (2017) 7:762–770



Estimability of 
ambient and farm 
sources of sea lice
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Fits to data
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Peacock et al. Ecology & Evolution (2017) 7:762–770
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Conclusions                          

✓ Fixing parameters

Temperature (C)

✓  Revisiting model structure

dis
tan
ce

time

density

✓ Collecting more/
different data*
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