

A Bayesian sequential learning framework to parameterise continuum models of melanoma invasion into human skin

Alexander P Browning Parvathi Haridas Matthew J Simpson

Melanoma Invasion¹

¹Zaidi, Day & Merlino (2008)

Melanoma Invasion²

Model Melanoma, c(x, t); Skin, s(x, t), and; Protease, $p(x, t)^3$:

$$\begin{split} \frac{\partial c}{\partial t} &= D \frac{\partial}{\partial x} \left[\left(1 - \frac{s}{K} \right) \frac{\partial c}{\partial x} \right] + \lambda c \left(1 - \frac{c + s}{K} \right), \\ \frac{\partial s}{\partial t} &= -l s p, \\ \frac{\partial p}{\partial t} &= m c - n p. \end{split}$$

Never connected to data!

³Landman and Pettett (1998) and others

Typically, degradation of protease is relatively fast, therefore we model only Melanoma, C(x, t) and Skin, S(x, t):

$$\begin{split} \frac{\partial C}{\partial t} &= D \frac{\partial}{\partial x} \left[\left(1 - \frac{S}{K} \right) \frac{\partial C}{\partial x} \right] + \lambda C \left(1 - \frac{C + S}{K} \right), \\ \frac{\partial S}{\partial t} &= -\delta SC, \end{split}$$

▶ Model has three free parameters: $\Theta = \langle \lambda, D, \delta \rangle$

- ▶ Model has three free parameters: $\Theta = \langle \lambda, D, \delta \rangle$
- ▶ Set model output, $M_3(t; \Theta)$, as the invasion depth, and assume normally distributed noise

- ▶ Model has three free parameters: $\Theta = \langle \lambda, D, \delta \rangle$
- ▶ Set model output, $M_3(t; \Theta)$, as the invasion depth, and assume normally distributed noise
- ▶ Using a Bayesian approach to parameter estimation, with a uniform prior, we obtain a probability density function:

Multimodal, difficult to pull point estimates

- Multimodal, difficult to pull point estimates
- From previous experimental studies, we know that $\lambda \approx 0.04$ /h and $D \approx 200-1000~\mu\text{m}^2/\text{h}$.

Experimental Data⁴

Type 1: Proliferation assay

Type 2: Barrier assay

Type 3: Invasion assay

⁴Treloar & Simpson (2013)

Experimental Data⁴

Type 1: Proliferation assay

Type 2: Barrier assay

Type 3: Invasion assay

- Proliferation
- ► (Motility)

- Proliferation
 - Motility

- Proliferation
- Motility
- Invasion

⁴Treloar & Simpson (2013)

Experimental Data⁴

⁴Treloar & Simpson (2013)

Edge Detection

Proliferation rate, λ ; Diffusivity, D, and; Skin degredation, δ .

Model 3. Invasion assay

$$\begin{split} &\frac{\partial \mathcal{C}}{\partial t} = D \frac{\partial}{\partial x} \left[(1 - S) \frac{\partial \mathcal{C}}{\partial x} \right] + \lambda \mathcal{C} \left[1 - \mathcal{C} - S \right], \\ &\frac{\partial S}{\partial t} = -\delta \mathcal{C} S, \end{split}$$

Proliferation rate, λ ; Diffusivity, D, and; Skin degredation, δ .

Model 3. Invasion assay

$$\begin{split} &\frac{\partial \mathcal{C}}{\partial t} = D \frac{\partial}{\partial x} \left[\left(1 - \mathcal{S} \right) \frac{\partial \mathcal{C}}{\partial x} \right] + \lambda \mathcal{C} \left[1 - \mathcal{C} - \mathcal{S} \right], \\ &\frac{\partial \mathcal{S}}{\partial t} = -\delta \mathcal{C} \mathcal{S}, \end{split}$$

Model 2. Barrier assay

$$\frac{\partial C}{\partial t} = \frac{D}{r} \left[r \frac{\partial C}{\partial r} \right] + \lambda C [1 - C]$$

Proliferation rate, λ ; Diffusivity, D, and; Skin degredation, δ .

Model 3. Invasion assay

$$\begin{split} &\frac{\partial \mathcal{C}}{\partial t} = D \frac{\partial}{\partial x} \left[\left(1 - \mathcal{S} \right) \frac{\partial \mathcal{C}}{\partial x} \right] + \lambda \mathcal{C} \left[1 - \mathcal{C} - \mathcal{S} \right], \\ &\frac{\partial \mathcal{S}}{\partial t} = -\delta \mathcal{C} \mathcal{S}, \end{split}$$

Model 2. Barrier assay

$$\frac{\partial C}{\partial t} = \frac{D}{r} \left[r \frac{\partial C}{\partial r} \right] + \lambda C [1 - C]$$

Model 1. Proliferation assay

$$\frac{\mathrm{d}C}{\mathrm{d}t} = \lambda C[1 - C]$$

Proliferation rate, λ ; Diffusivity, D, and; Skin degredation, δ .

Model 3. Invasion assay

$$\begin{split} &\frac{\partial \mathcal{C}}{\partial t} = D \frac{\partial}{\partial x} \left[\left(1 - \mathcal{S} \right) \frac{\partial \mathcal{C}}{\partial x} \right] + \lambda \mathcal{C} \left[1 - \mathcal{C} - \mathcal{S} \right], \\ &\frac{\partial \mathcal{S}}{\partial t} = -\delta \mathcal{C} \mathcal{S}, \end{split}$$

Model 2. Barrier assay

$$\frac{\partial C}{\partial t} = \frac{D}{r} \left[r \frac{\partial C}{\partial r} \right] + \lambda C [1 - C]$$

Model 1. Proliferation assay

$$\frac{\mathrm{d}C}{\mathrm{d}t} = \lambda C[1 - C]$$

Initial conditions

We calculate these based on an assumption of an average cell diameter of $20\mu m$.

Model 1. Proliferation assay

ightharpoonup C(0) is the average non-dimensional density at t=0.

Initial conditions

We calculate these based on an assumption of an average cell diameter of $20\mu m$.

Model 1. Proliferation assay

ightharpoonup C(0) is the average non-dimensional density at t=0.

Model 2. Barrier assay

ightharpoonup C(0,r) is the scaled density, calculated from the processed image.

Initial conditions

We calculate these based on an assumption of an average cell diameter of $20\mu m$.

Model 1. Proliferation assay

ightharpoonup C(0) is the average non-dimensional density at t=0.

Model 2. Barrier assay

ightharpoonup C(0,r) is the scaled density, calculated from the processed image.

Model 3. Invasion assay

- ▶ C(0, r) = 0.78 for -20 < x < 0 and 0 otherwise (cells on the surface of the dermis).
- ▶ S(0,r) = 1 for x < 0 and 0 otherwise (skin cells beneath the surface).

We denote $M_k(t; \Theta)$ as a summarised model observation from model k = 1, 2, 3, at time t, using parameter combination $\Theta = \langle \lambda, D, \delta \rangle$.

We denote $M_k(t; \Theta)$ as a summarised model observation from model k = 1, 2, 3, at time t, using parameter combination $\Theta = \langle \lambda, D, \delta \rangle$.

Model 1. The density:

$$M_1(t; \mathbf{\Theta}) = C(t).$$

We denote $M_k(t; \Theta)$ as a summarised model observation from model k = 1, 2, 3, at time t, using parameter combination $\Theta = \langle \lambda, D, \delta \rangle$.

Model 1. The density:

$$M_1(t; \mathbf{\Theta}) = C(t).$$

Model 2. The radius of the leading edge:

$$M_2(t; \mathbf{\Theta}) = \{r : C(r, t) = 0.01C(0, t)\}.$$

We denote $M_k(t; \Theta)$ as a summarised model observation from model k = 1, 2, 3, at time t, using parameter combination $\Theta = \langle \lambda, D, \delta \rangle$.

Model 1. The density:

$$M_1(t; \mathbf{\Theta}) = C(t).$$

Model 2. The radius of the leading edge:

$$M_2(t; \mathbf{\Theta}) = \{r : C(r, t) = 0.01C(0, t)\}.$$

Model 3. The depth of the front of melanoma cells:

$$M_3(t; \Theta) = \min\{x : C(x, t) = 0\}.$$

▶ We denote prior knowledge about parameters $p(\Theta)$. Here, we take $p(\Theta)$ to be a uniform distribution.

- We denote prior knowledge about parameters $p(\Theta)$. Here, we take $p(\Theta)$ to be a uniform distribution.
- ▶ Denote sequence of experimental observations from experiment type k as \mathbf{X}_k .

- We denote prior knowledge about parameters $p(\Theta)$. Here, we take $p(\Theta)$ to be a uniform distribution.
- Denote sequence of experimental observations from experiment type k as X_k.
- Assume experimental data is normally distributed about a model prediction.

- We denote prior knowledge about parameters $p(\Theta)$. Here, we take $p(\Theta)$ to be a uniform distribution.
- Denote sequence of experimental observations from experiment type k as X_k.
- Assume experimental data is normally distributed about a model prediction.
- Likelihood: "Probability density of experimental data, given parameters"

$$\mathcal{L}_k(\mathbf{X}_k|\mathbf{\Theta}) = \prod_{i=1}^n \phi(y_i; M_k(t_i; \mathbf{\Theta}), \Sigma_k^2),$$

• ϕ is the normal density function and $\Sigma_k^2 \approx s_k^2$, where s_k^2 is the pooled sample variance.

► We apply Bayes' theorem to update our knowledge of the parameters with the likelihood:

$$\underbrace{p(\boldsymbol{\Theta}|\mathbf{X}_k)}_{\text{posterior}} \propto \underbrace{p(\boldsymbol{\Theta})}_{\text{prior}} \underbrace{\prod_{i=1}^n \phi(y_i; M_k(t_i; \boldsymbol{\Theta}), \Sigma_k^2)}_{\text{likelihood}}.$$

► We apply Bayes' theorem to update our knowledge of the parameters with the likelihood:

$$\underbrace{p(\boldsymbol{\Theta}|\mathbf{X}_k)}_{\text{posterior}} \propto \underbrace{p(\boldsymbol{\Theta})}_{\text{prior}} \underbrace{\prod_{i=1}^n \phi(y_i; M_k(t_i; \boldsymbol{\Theta}), \Sigma_k^2)}_{\text{likelihood}}.$$

▶ Note this formula only considers data from experiment *k*. We call this an *uninformed posterior*.

▶ By setting the prior for experiment k = 2,3 to be the posterior from the previous experiment, we have an *informed posterior*:

$$\underbrace{p_k(\boldsymbol{\Theta}|\mathbf{X}_k)}_{\text{posterior for model }k} \propto \underbrace{p_{k-1}(\boldsymbol{\Theta}|\mathbf{X}_{k-1})}_{\text{posterior for model }k-1} \prod_{j=1}^n \phi(y_j; M_k(t_j; \boldsymbol{\Theta}), \Sigma_k^2).$$

▶ By setting the prior for experiment k = 2, 3 to be the posterior from the previous experiment, we have an *informed posterior*:

$$p_k(\boldsymbol{\Theta}|\mathbf{X}_k) \propto p_{k-1}(\boldsymbol{\Theta}|\mathbf{X}_{k-1}) \prod_{j=1}^n \phi(y_j; M_k(t_j; \boldsymbol{\Theta}), \Sigma_k^2).$$
 posterior for model k posterior for model $k-1$

▶ We note this is equivalent to:

$$p_k(\boldsymbol{\Theta}|\mathbf{X}_k) = p(\boldsymbol{\Theta}|\{\mathbf{X}_i\}_{i=1}^k) \propto p(\boldsymbol{\Theta}) \prod_{i=1}^k \prod_{j=1}^{n_k} \phi(y_j; M_i(t_j; \boldsymbol{\Theta}), \Sigma_i^2).$$

Results

"Uninformed"

Results

"Informed"

Model 3 Results

Figure: Bivariate marginal distributions

Model 3 Results

Figure: 95% Credible Region

Model Performance and Predictions

Model Performance and Predictions

Other Inference Work

Melanoma Study

- Haridas P, Browning AP, McGovern J, McElwain DLS, Simpson MJ (2018)
 - Three-dimensional experiments and individual based simulations show that cell proliferation drives melanoma nest formation in human skin tissue.
 - **BMC Systems Biology**
- ► Browning AP, Haridas P, Simpson MJ (to appear)

 A Bayesian sequential learning framework to parameterise continuum models of melanoma invasion into human skin.

 Bulletin of Mathematical Biology

Other Inference Work

Individual Based Models

- ► Browning AP, McCue SW, Simpson MJ (2017)

 A Bayesian computational approach to explore the optimal duration of a cell proliferation assay.

 Bulletin of Mathematical Biology
- Browning AP, McCue SW, Binny RN, Plank MJ, Shah ET, Simpson MJ (2018) Inferring parameters for a lattice-free model of cell migration and proliferation using experimental data. Journal of Theoretical Biology

Acknowledgements

- Professor Matthew Simpson and Dr Parvathi Haridas
- QUT High Performance Computing
- ► IHBI, QUT HDR Fund, University of Oxford for travel funding
- BIRS
- Friends and family

alexbrowning.me