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Melanoma Invasion

Model Melanoma, c(x, t); Skin, s(x, t), and; Protease, p(x, t)3:
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Melanoma Invasion
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Typically, degradation of protease is relatively fast, therefore we model
only Melanoma, C(x, t) and Skin, S(x, t):
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Melanoma Invasion

» Model has three free parameters: ® = (\, D, 6)

» Set model output, M3(t; ®), as the invasion depth, and assume
normally distributed noise

» Using a Bayesian approach to parameter estimation, with a uniform
prior, we obtain a probability density function:
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Melanoma Invasion

Uniform Prior

max

Posterior density

» Multimodal, difficult to pull point estimates

» From previous experimental studies, we know that A ~ 0.04 /h and
D ~ 200 — 1000 pm?/h.
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Experimental Data*

(a) 0 hours (b) 24 hours

Type 2: Barrier assay Type 1: Proliferation assay

Type 3: Invasion assay

(i) 9 days
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Edge Detection
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Models

Proliferation rate, A; Diffusivity, D, and; Skin degredation, ¢.

Model 3. Invasion assay
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Initial conditions

We calculate these based on an assumption of an average cell diameter
of 20um.

Model 1. Proliferation assay
> (C(0) is the average non-dimensional density at t = 0.

Model 2. Barrier assay
» (C(0,r) is the scaled density, calculated from the processed image.

Model 3. Invasion assay
» C(0,r) =0.78 for —20 < x < 0 and 0 otherwise (cells on the surface

of the dermis).
» S5(0,r) =1 for x < 0 and 0 otherwise (skin cells beneath the surface).
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Model Observations

We denote My (t; ®) as a summarised model observation from model
k =1,2,3, at time t, using parameter combination ® = (\, D, 6).

Model 1. The density:
Mi(t; ®) = C(t).

Model 2. The radius of the leading edge:

May(t; ®) = {r: C(r,t) =0.01C(0, t)}.

Model 3. The depth of the front of melanoma cells:

Ms(t; ®) = min{x : C(x,t) = 0}.
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Likelihood

» We denote prior knowledge about parameters p(®). Here, we take
p(®) to be a uniform distribution.

» Denote sequence of experimental observations from experiment type
k as Xy.

P> Assume experimental data is normally distributed about a model
prediction.

» Likelihood: "Probability density of experimental data, given
parameters”

Xk’@ Héb }/lka tlv(a))zi)a
i=1

» ¢ is the normal density function and Zi R s,%, where s,% is the
pooled sample variance.
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Inference

> We apply Bayes' theorem to update our knowledge of the
parameters with the likelihood:

p(©|Xy) x p(®) [ | #(yi: Mi(ti; ©),53).
NN

~
posterior prior likelihood

» Note this formula only considers data from experiment k. We call
this an uninformed posterior.



Inference

> By setting the prior for experiment k = 2,3 to be the posterior from
the previous experiment, we have an informed posterior:
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Inference

> By setting the prior for experiment k = 2,3 to be the posterior from
the previous experiment, we have an informed posterior:

p(®X) o pee1(®Xim1) ] ol Mi(ty; ©),537).
j=1

posterior for model k posterior for model k — 1

» We note this is equivalent to:

Pk(©IXk) = p(O{X;};) o p(© HH¢ yji Mi(t;; ©), I7).

i=1j=1



Results

“Uninformed”
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Results

“Informed”

(a) Model 1 (b) Model 2 (c) Model 3
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Model 3 Results

(a) p(\, D) = —0.036 (b) p(A,6) =0.110 (c) p(D,6) = —0.759
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Model Performance and Predictions
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Model Performance

Invasion assay model prediction
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