Pablo A. Ferrari, Buenos Aires

Soliton decomposition of the Box Ball System in $\ensuremath{\mathbb{Z}}$

with

Chi Nguyen, Leonardo Rolla, Minmin Wang (arXiv:1806.02798) Davide Gabrielli (In preparation)

Banff, August 2018

Box at each $x \in \mathbb{Z}$.

Ball configuration $\eta \in \{0,1\}^{\mathbb{Z}}$ $\eta(x) = 0 \leftrightarrow \text{ empty box}, \qquad \eta(x) = 1 \leftrightarrow \text{ ball at } x$ Carrier visits boxes from left to right.

Carrier picks balls from occupied boxes.

Carrier deposits one ball, if carried, at empty boxes.

 $T\eta$: configuration after the carrier visited all boxes.

Ball-Box-System by Takahashi-Satsuma (1990)

Motivation: Korteweg & de Vries equation

Figure from Rendiconti di Matematica, Serie VII, 11, p.351-376, 1991

Interacting soliton solutions for KdV.

Summary

- 0) Soliton identification and conservation.
- 1) Asymptotic speed of solitons.
- 2) Soliton decomposition of ball configurations.
- 3) Evolution is a *hierarchical translation* of soliton components.
- 4) Measures with independent soliton components are invariant for T.
- 5) Explicit soliton decomposition for iid Bernoulli, Ising models and other ball distributions.

Soliton: a solitary wave that propagates with little loss of energy and retains its shape and speed after colliding with another such wave

Conserved solitons. Motivation.

isolated k-soliton: set of k successive ones followed by k zeroes.

Isolated k-solitons travel at speed k and conserve shape and distances:

k-solitons and distances are conserved after interacting with m-solitons:

Conserved solitons. Motivation.

isolated k-soliton: set of k successive ones followed by k zeroes.

Isolated k-solitons travel at speed k and conserve shape and distances:

k-solitons and distances are conserved after interacting with m-solitons:

111000	101	11000	
	. 10		
	0010		
1	1101000	111000	
	10111000	111	000
			111000

Conserved solitons. Motivation.

9011001100.11001100110010101010.10
110011001100.1100.11001010101010101010
1100 1100 1100 1100. 1100 1100 10 10 10
1100110011001100.1100110011001010101010
110011001100.1100.110010011010100.1010.10
110011001100.11001100101011001010.10

Walk representation

$$\xi(z) - \xi(z - 1) = 2\eta(z) - 1$$

Records: $\{z : \xi(z) < \xi(y) \text{ for all } y < z\}.$

Excursion: configuration between two successive records

Infinite volume dynamics

$$T\eta(x) := (1 - \eta(x))\mathbf{1}\{x \text{ is not a record}\}$$

 $\mathcal{X}_{\lambda} :=$ configurations with density of particles $\lambda \in [0,1]$

If $\lambda < 1/2$ and $\eta \in \mathcal{X}_{\lambda}$ then $T\eta \in \mathcal{X}_{\lambda}$.

Call runs the segments induced by broken lines in the walk

Explore runs from left to right. If a run has length $k \leq$ length of the next run, then its k boxes and the first k boxes of the next run form a k-soliton. Remove these sites and start again exploring from the left.

Call runs the segments induced by broken lines in the walk

Explore runs from left to right. If a run has length $k \leq$ length of the next run, then its k boxes and the first k boxes of the next run form a k-soliton. Remove these sites and start again exploring from the left.

Call runs the segments induced by broken lines in the walk

Explore runs from left to right. If a run has length $k \leq$ length of the next run, then its k boxes and the first k boxes of the next run form a k-soliton. Remove these sites and start again exploring from the left.

head of k-soliton γ := position of ones $h(\gamma) = \{h_1, \dots, h_k\},\$ tail of k-soliton γ := zeroes $t(\gamma) = \{t_1, \dots, t_k\}.$

Infinite configurations:

Apply TS algorithm to each excursion, pretending it is isolated.

k-soliton conservation under T

Proposition. For any $\eta \in \mathcal{X}$:

 η has k-soliton γ with tail $t(\gamma) = a$ if and only if $T\eta$ has k-soliton γ' with head $h(\gamma') = a$.

We can follow solitons along time!

k-soliton conservation under T

Theorem (FNRW). Let μ be a shift-ergodic *T*-invariant measure. $\rho_k :=$ mean number of k-solitons per excursion.

 $x(\gamma^t) := position of k-soliton \gamma at time t.$

Then, there exists $v = (v_k)_{k \ge 1}$ deterministic such that

$$\lim_{t \to \infty} \frac{x(\gamma^t)}{t} = v_k, \quad \mu\text{-a.s.}$$

 \boldsymbol{v} is a solution of

$$v_k = k + \sum_{m < k} 2m\rho_m(v_k - v_m) - \sum_{m > k} 2k\rho_m(v_m - v_k).$$

and can be computed explicitly in function of $(\rho_k)_{k\geq 1}$.

Asymptotic speed of solitons

Simulation for an iid configuration with density 0.25. Deterministic red straight lines have slopes computed by the theorem. 2000 boxes \times 140 T iterations, going downwards (stretched vertically by a factor of 5)

Asymptotic speed of solitons

Simulation for an iid configuration with density 0.15. Deterministic red straight lines have slopes computed by the theorem. 2000 boxes \times 140 T iterations, going downwards (stretched vertically by a factor of 5)

Detail

Asymptotic speed of solitons

Motivation of

$$v_k = k + \sum_{m < k} 2m\rho_m(v_k - v_m) - \sum_{m > k} 2k\rho_m(v_m - v_k).$$

Isolated k-solitons have speed k

When a k-soliton encounters an m-soliton:

- it advances 2m extra units if m < k or
- it is delayed by 2 time steps if m > k.

 $\rho_m |v_k - v_m|$ is the frequency of such encounters as seen from a k-soliton.

Slots

Let η configuration with finite excursions.

Will decompose η in soliton components.

Motivation: Insert 3-soliton in 3-slot of 5-soliton:

k-slots := Places where k-solitons can be inserted.

k-slots := records plus $\{h_{\ell}(\gamma), t_{\ell}(\gamma)\}, \ell > m, m$ -solitons γ with m > k.

Slot configuration

Enumerating the *k*-slots

Soliton components

Insert 3-soliton in 3-slot number 1:

 $M_3\eta(1) = 1$ means that 3-component at coordinate 1 has 1 soliton.

 $M_k\eta(i) :=$ number of k-solitons inserted in k-slot number i

Soliton decomposition: $M\eta = (M_k\eta)_{k\geq 1}$

The map $\eta \mapsto M\eta$ (or $\xi \mapsto \zeta$).

Below: Records -2 to 2 in boldface and the excursions between them.

Above: the parts of the field ζ corresponding with excursions $\varepsilon^{-2}, \varepsilon^{-1}, \varepsilon^{0}, \varepsilon^{1}$.

Theorem (FNRW).

 $k\text{-soliton component of }\hat{T}^t\eta$ is a shift of the $k\text{-soliton component of }\eta\text{:}$

$$M_k \hat{T}^t \eta = \theta^{o_k^t(\eta,0)+kt} M_k \eta$$

$$\begin{split} \hat{T}^t \eta &= T^t \eta \text{ as seen from Record } 0\\ \theta^x &= \text{translation by } x\\ o^t_k(\eta,0) &:= \sum_{m>k} 2(m-k)J^t_m(\eta)\\ J^t_m(\eta) &:= \text{Flow of } m\text{-solitons thru Record } 0 \end{split}$$

.111111100000001111100000.111000.10
11111110000000111110000111001000

Ball configuration

.11111110000001111100000.111000.	10
----------------------------------	----

1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•

Ball configuration

```
......11111110000000111110000111001000.....
```

•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•

Ball configuration

•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•		•	•			•		•	•			•		•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•		•	•		•	•	•	•			•		•	•		•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Ball configuration

•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	 •	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	1	•	•	•	 •		•	•	•	•	 •		•	•	•	•	•	•	•	•	•		•		•	•	•	
																			•			•	•	•	 •						 •			•			•	•	•	•								
																							. :	1	 																							
																													1																			

Ball configuration

•	•	•	•	•	•	•		•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•		•	•	•			•		•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	•																		•			•					1	•							•	•	•	•	•	•	•	•	•	•	•	•							
																																					•	•	•	•	•	•	•										
	•	•																	•			•							•	•		1			•	•	•	•	•	•	•	•	•	•	•			•	•				

Ball configuration

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	1	•	•	•	•	•	• •		•	•	 •	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	• •		•	•	 •	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	• •	• •	•	•	•	•	•	•	• •		•			•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •			•	•	•	•	•			•		 	•			•
	•			•	•	•	•	•	•	•		•			•	•	•	•	•		•	•	•	•	•		•	•	•	1	•	• •			•	•	•	•	•					 	•			
	•																																											 	•			
	•																												•			. 1	L.					•							•			

Ball configuration

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •		•	•	•	•	•	•	1	•	•		•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •		1	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
																•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •				•	•	•	•	•	•	•	•		•		•	•	•	•	•
																																. 1	L.								•	•	•						•		•
																																											•								
																													•	•			. 1								•	•	•				•	•	•	•	

Ball configuration

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	• •	•	•	•	1	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• -	L	•		•		•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•			•	•	•	•	•	•	•
																														•					•	1						•		•				•			•		
																																	•		1	•	•	•	•	•		•	•	•				•			•	•	

Ball configuration

1	1	.1	.11	.11	1
• • • • •		•••••		• • • • • • • • • •	
• • • • •	.11.	1	.111	11.	
		•••••			
		11.	.11111	1	
				11	

Independent-component invariant measures

Theorem [FNRW]

 $\zeta_k \in \mathbb{N}^{\mathbb{Z}}$ independent with shift-stationary law such that

$$\sum_{k} kE\zeta_k(0) < \infty$$

Let
$$\zeta = (\zeta_k)_{k \ge 1}$$
 and $\hat{\mu} := law$ of $M^{-1}\zeta$.

Then $\hat{\mu}$ is \hat{T} -invariant and

 $\mu := \operatorname{Palm}^{-1}(\hat{\mu})$ is shift-stationary and *T*-invariant.

k-components of iid Bernoulli are independent iid geometrics.

With Davide Gabrielli

Let
$$\lambda \in (0, \frac{1}{2})$$
 and $\alpha_k := (\lambda(1 - \lambda))^k$

Let $q_1 = \alpha_1$ and for $k \ge 2$,

$$q_k := rac{lpha_k}{\prod_{j=1}^{k-1} (1-q_j)^{2(k-j)}}$$

Theorem (FG). If $(\eta(x) : x \in \mathbb{Z})$ iid Bernoulli (λ) conditioned to have a Record at the origin, then

 $(M_k\eta(s):s\in\mathbb{Z})$ iid Geometric $(1-q_k)$ and

 $(M_k\eta: k \ge 1)$ are independent.

Other measures with independent geometric *k*-components.

Let $\alpha_k \ge 0$ such that $\sum_{k\ge 0} \alpha_k < \infty$.

Let ε be an excursion between Record 0 and Record 1 and

 $n_k(\varepsilon) :=$ number of k-solitons of ε .

weight
$$w_{\alpha}(\varepsilon) := \prod_{k=1}^{\infty} \alpha_k^{n_k(\varepsilon)}$$
 (1)

induces a measure

$$\nu_{\alpha}(\varepsilon) = \frac{w(\varepsilon)}{Z_{\alpha}} \tag{2}$$

Concatenate independent excursions to obtain a measure $\hat{\mu}_{\alpha}$ on $\hat{\mathcal{X}}$.

 $\mu := \operatorname{Palm}^{-1}(\mu)$ has independent components geometric with parameters q_i

Theorem (FG). Let $\hat{\mu}_{\alpha} :=$ independent excursions with law ν_{α} with Record 0 at the origin. Let $(\eta(x) : x \in \mathbb{Z}) \sim \hat{\mu}_{\alpha}$. Then $(M_k \eta(s) : s \in \mathbb{Z})$ iid Geometric $(1 - q_k)$ and $(M_k \eta : k \ge 1)$ are independent.

Special cases

- $\alpha_k = [\lambda(1-\lambda)]^k$, $\lambda < \frac{1}{2}$. Product measure with density λ
- $\alpha_k = e^{2J}e^{kh}$. Ising measure with pair interaction J and external field h < 0.

When the k-components of invariant measures are independent?

Let $\hat{\mu}$ on \mathcal{X}^o be invariant for \hat{T} and record-mixing(?). Then,

$$\hat{\mu}M = \bigotimes_{k \ge 1} \hat{\mu}M_k.$$

That is, if η has law $\hat{\mu}$,

 $(M_k\eta: k \ge 1)$ is a family of independent configurations.