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Suppose ρ̄(x) = 1
Z
e−V (x) is a probability density on Rd, but Z is unknown.

How can we distribute points x1, . . . xN ∈ Rd so that

µN =
1

N

N∑
i=1

δxi ≈ ρ̄(x) dx ?



Stein Variational Gradient Descent was proposed in context of machine

learning and Bayesian posterior approximation, as a deterministic algorithm for

distributing the points x1, . . . , xN :

d

dt
xi(t) = − 1

N

N∑
`=1

∇K(xi − x`) −
1

N

N∑
`=1

K(xi − x`)∇V (x`), i = 1, . . . , N

ρ̄(x) = 1
Z
e−V (x).

K(x) : Rd → R is a smooth, positive-definite kernel (e.g. a Gaussian).

Q. Liu and D. Wang, NIPS 2016, Q. Liu, NIPS 2017.
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The first term in the ODE is −∇iE(x), where E is the interaction energy

E(x) =
1

N

∑
i<j

K(xi − xj).



Let {xi(t)}Ni=1 ⊂ Rd solve

d
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Z
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K(x) : Rd → R is a smooth, positive-definite kernel (e.g. Gaussian).

The first term in the ODE is −∇iE(x), where E is the interaction energy

E(x) =
1

N

∑
i<j

K(xi − xj).

The second term in the ODE is an average of −∇V

−
∫
K(xi − y)∇V (y)dµN(y)



Compare this to overdamped Langevin dynamics:

dXi(t) =
√

2dBi(t)−∇V (Xi)dt

for which ρ̄(x) ∼ e−V is an invariant distribution. Fokker-Planck equation for the

density of a particle:

∂tq = ∆q +∇ · (q∇V ) (∗)

(*) corresponds to the gradient flow for relative entropy (KL-divergence)

q 7→ Ent(q | ρ̄) =

∫
Rd

q(x) ln

(
q(x)

ρ̄(x)

)
dx ≥ 0.

with respect to Wasserstein-2 metric.

SVGD also has formal structure of gradient flow, but with respect to a different

metric, involving a RKHS with kernel K.
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Formal derivation of SVGD:

Suppose ∂tq +∇ · (qb) = 0 for some b(t, x) ∈ V . Then

d

dt
Ent(q | ρ̄) = −

∫
q(∇ · b− b · ∇V ) dx

So, choose b to optimize

sup
b∈V

∫
q(∇ · b− b · ∇V ) dx

If V is an RKHS with kernel K, then the optimal b is

b = ∇K ∗ q +K ∗ (q∇V )
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Questions about SVGD: Behavior as N →∞? Behavior of system as t→∞?

The scaling limit as N →∞ involves a nonlocal, nonlinear pde

∂tq = ∇ · (q (∇K ∗ q +K ∗ (∇V q)))

First result: Assuming suitable control V , DV , and D2V as |x| → ∞ (e.g.

polynomial growth) and regularity of q0(x), this PDE has a unique, global classical

solution with q(0, x) = q0(x).



d

dt
xi(t) = − 1

N

N∑
`=1

∇K(xi − x`) −
1

N

N∑
`=1

K(xi − x`)∇V (x`),

µNt =
1

N

N∑
i=1

δxi(t)

Second result: Convergence of µNt to the PDE solution as N →∞. Let q(t, x)

satisfy

∂tq = ∇ · (q (∇K ∗ q +K ∗ (∇V q))) , q(0, x) = q0(x)

Then

sup
t∈[0,T ]

Wp(µ
N
t , q(t, ·)) ≤ CWp(µ

N
0 , q0(·))



Third result: Convergence of the PDE solution as t→∞.

∂tq = ∇ · (q (∇K ∗ q +K ∗ (∇V q)))

= ∇ ·
(
qK ∗

(
q∇ log

(
q

ρ̄

)))
Assume the kernel K is Gaussian and that Ent(q0 | ρ̄) <∞. Then

q(t, x)→ ρ̄ =
1

Z
e−V (x)

weakly as t→∞.

Ent(q | ρ̄) is a Lyapunov function, but we lack a Poincaré or log-Sobolev type

inequality to get a rate of convergence.

d

dt
Ent(q | ρ̄) = −

∫ ∫ (
q∇ log

q

ρ̄

)
(x) K(x− y)

(
q∇ log

q

ρ̄

)
(y) dx dy



Unresolved Issues

1. Large time behavior of the particle system. The finite particle system doesn’t

have gradient structure, and there may be multiple stationary solutions.

d

dt
xi(t) = − 1

N

N∑
`=1

∇K(xi − x`) −
1

N

N∑
`=1

K(xi − x`)∇V (x`)

2. Rates of convergence for the non-local, nonlinear PDE as t→∞. Formally,

when K = δ0, equation takes the form

∂tq = ∇ · (q∇q) +∇ ·
(
q2∇V

)



A related work: The “Blob Method” for the Fokker-Planck equation

∂tq = ∆q +∇ · (q∇V )

is based on the regulariztion

Entε(q | ρ̄) =

∫
Rd

q(x) ln

(
ηε ∗ q(x)

ρ̄(x)

)
dx

For this functional, Wasserstein-2 gradient flow perserves atomic measures, but ρ̄ is

not invariant. Evolution is described by

∂tq = ∇ ·
(
q

(
∇ηε ∗

(
q

ηε ∗ q

)
+
∇ηε ∗ q
ηεq

))
+∇ · (q∇V )

J. Carrillo, K. Craig, S. Patacchini Francesco (2017).



This is the end!
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