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The influence of fluctuating temperature on bacteria

Bacterial pathogen Serratia marcesens evolved in fluctuating
temperature (daily variation between 24°C and 38°C, mean 31°C),
outperforms the strain that evolved in constant environments

(31°C):

A 055 031 °C constant m24-38 °C daily fluctuation
0.50
0.45

2

© 040

<

s 035

<4

G 030
025
0.15

24°C 31°C 38°C DTT HO, Predator Virus

Figure from: Fluctuation temperature leads to evolution of thermal generalism and preadaptation to

novel environments, Ketola et al. 2013
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A model of a phenotypically structured population in a
time-periodic environment

%n —e?An = n(R(t,X) - Iip),

n(t =0, ) = nO(')’

p(t) = fa n(t, %) dx,
with R, T- periodic with respect to the first variable.

m x € R?: phenotypical = R(t,x): growth rate

trait m p(t): size of the
m n(t,x): density of trait x population
m £2  variance of the m k: intensity of the
mutations competition

3/15



A Hamilton-Jacobi approach for models from evolutionary biology Ill: the case of a time-periodic environment

LThe model and motivations

A model of a phenotypically structured population in a
time-periodic environment

%n —e?An = n(R(t,X) - Iip),

n(t =0, ) = nO(')’

p(t) = fa n(t, %) dx,
with R, T- periodic with respect to the first variable.

m x € R?: phenotypical = R(t,x): growth rate

trait m p(t): size of the
m n(t,x): density of trait x population
m £2  variance of the m k: intensity of the
mutations competition

Some related works: Lorenzi—Chisholm—Desvillettes—Hughes 2015,
5715 M.—Perthame—Souganidis 2015
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Assumptions
Notation:

Assumptions:

m R is bounded, T-periodic with respect to t, smooth with
respect to x, and takes negative values for large |x|.

m There exists a unique x,, € R? such that

max R(x) = R(x;,) > 0.
max R(x) = Rxm)

m 0 < np(x) < eGrGlxl,

m ¢ is small.
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Long time behavior of the population’s phenotypical
distribution

Proposition (Figueroa Iglesias and M., 2018 )

As t — 00, n(t, x) converges to the unique periodic solution of

{Cf‘?tnE —e2An, = n, (R( t,x) — /ipe),
pe(t) = [ga ne(t,x)dx, n(0,-) = n(T,").
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Our objective is to describe such periodic solution for & small.
The Hopf-Cole transformation:

(5 x) — 1 y us(t, x)
E(t’ ) (271‘5)% € p( c )

An expected asymptotic expansion:

ue(t,x) = u+ev+e*w + O(e%).
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The main result

Theorem (Figueroa Iglesias and M., 2018 )
(i) As e — 0, n(t,x) — p(t) (x — xm)—0,

with p the unique T-periodic solution to

%(t) = p(t) (R(t, xm) — A(t))-
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The main result

Theorem (Figueroa Iglesias and M., 2018 )
(i) As e — 0, n(t,x) — p(t) (x — xm)—0,

with p the unique T-periodic solution to

dp

(0 = (8) (R(t. xm) = 7(2))

(i) As e — 0, u. converges locally uniformly to the unique viscosity
solution of B

—|[Vul(x) = R(x) -,

max,crd U(x) = 0.

For x € R, this solution is indeed smooth and classical and can be
computed explicitly.
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Next order terms and the approximation of the moments of
the population’s distribution

One can also compute (at least formally) the next order term v
leading to the following approximation of the population’s
distribution:

ne(t,x) ~ (uix)

exp + v(t, x)).

d
(2me)2
Going further in the approximations = analytical formula for the
moments of the population’s distribution with an error of order
€2, in terms of the derivatives of u and v at the point x, (using the

Laplace's method for integration).
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LThe main results

Some notations
Average size of the population over a period of time:

1 T
4 AXOL

Mean phenotypic trait of the population:
1
ot :/ x n:(t, x)dx
A= (0) o M)

Phenotypic variance of the population's distribution:

1 2

vp(t) = /(x—,u)n(tx)dx
A=) Jab 1) el

Mean fitness of the population in an environment with constant
temperature 7:

= .;;7-xl ne(t,x) Ix
i) = [ ey [
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Example 1: when the fluctuations act on the optimal trait

R(t,x) = r — g(x — csin(bt))>.

We can estimate the size of the population, the mean phenotypic
trait and the mean variance of the population's distribution :

gc?

2ec T €
Rr—=——c¢ t)~ — sin(bt——) 02—,
pp 2 \/ga /'LP( ) b \/g ( 2b) I P \/E
One can also estimate the mean fitness of this population in an
environment with constant temperature t = 7 and compare it with
the mean fitness of a population evolved in constant environment in
the same conditions :

/t_c(ﬁ/b) = /t_p(ﬂ/b) ~r—eJg.
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Example 1: when the fluctuations act on the optimal trait
Numerical computation of the phenotypic distribution density, with

R(t,x) = r — g(x — csin(bt))?,
=2, c=g=1 b=2w, £=0.5.

0.6
05
04
03

02

Distribution density n(t.x)
Distribution density n (T x)

0

Time (t) 0 05

Phenotypic trait (x) -3

Phenotypic trait (x)
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Example 1: when the fluctuations act on the optimal trait

Time () ) . Time (t)

Left: comparison between the analytical and the numerical
approximations of the moments of the population’s density.
Right: comparison between the mean phenotypic trait (numerical
and analytical approximations) and the optimal trait.
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We estimate again the size of the population, the mean phenotypic
trait and the mean variance of the population's distribution :

— €
pp%r—e\/g, pp ~ 0, agzﬁ.
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Example 2: when the fluctuations act on the pressure of the
selection

R(t,x) = r — g(t)x?,

with g a 1-periodic positive function. Define

2= [ sl

We estimate again the size of the population, the mean phenotypic
trait and the mean variance of the population's distribution :
— 2 g
pp%r—e\/g pp ~= 0 ol —.
’ ’ P Ve
and the mean fitness in an environment with constant
temperature t = %

Fo(1/2) ~ r—e\/g(1/2) < Fp(1/2) = r—ag%2), ifg > g(%).
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Example 2: when the fluctuations act on the pressure of the
selection

Numerical computation of the phenotypic distribution density, with

R(t,x) = r — (cos(bt) + 1.5)x2,
r=2, b=2w, e£=0.5.

0.9

n.0=05,%)
n (=07,

——n (=19

08

07

06

05

0.4

Distribution density n (t.x)

03

Distribution density n (T.x)

02

01

Time (t) 0 05

Phenotypic trait (x) -3 -2 -1 0 1 2 3
Phenotypic trait (x)
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Example 2: when the fluctuations act on the pressure of the
selection

comparison between the analytical and the numerical
approximations of the moments of the population’s density:

o 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Time (1)
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Thank you for your attention !
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