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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

The model and motivations

The influence of fluctuating temperature on bacteria
Bacterial pathogen Serratia marcesens evolved in fluctuating
temperature (daily variation between 24◦C and 38◦C, mean 31◦C),
outperforms the strain that evolved in constant environments
(31◦C):

Figure from: Fluctuation temperature leads to evolution of thermal generalism and preadaptation to

novel environments, Ketola et al. 2013
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

The model and motivations

A model of a phenotypically structured population in a
time-periodic environment

∂
∂t n − ε

2∆n = n
(
R(t, x)− κρ

)
,

n(t = 0, ·) = n0(·),

ρ(t) =
∫
Rd n(t, x) dx ,

with R , T - periodic with respect to the first variable.

x ∈ Rd : phenotypical
trait
n(t, x): density of trait x
ε2 ∝ variance of the
mutations

R(t, x): growth rate
ρ(t): size of the
population
κ: intensity of the
competition

Some related works: Lorenzi–Chisholm–Desvillettes–Hughes 2015,
M.–Perthame–Souganidis 2015
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

The model and motivations

Assumptions
Notation:

R(x) =
1
T

∫ T

0
R(t, x)dt.

Assumptions:
R is bounded, T -periodic with respect to t, smooth with
respect to x , and takes negative values for large |x |.

There exists a unique xm ∈ Rd such that

max
x∈Rd

R(x) = R(xm) > 0.

0 ≤ n0(x) ≤ eC1−C2|x |.

ε is small.
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

The main results

Long time behavior of the population’s phenotypical
distribution

Proposition (Figueroa Iglesias and M., 2018 )

As t →∞, n(t, x) converges to the unique periodic solution of{
∂
∂t nε − ε

2∆nε = nε
(
R( t, x)− κρε

)
,

ρε(t) =
∫
Rd nε(t, x)dx , nε(0, ·) = nε(T , ·).

Our objective is to describe such periodic solution for ε small.
The Hopf-Cole transformation:

nε(t, x) =
1

(2πε)
d
2
exp
(uε(t, x)

ε

)
.

An expected asymptotic expansion:

uε(t, x) = u + εv + ε2w + O(ε3).
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

The main results

The main result
Theorem (Figueroa Iglesias and M., 2018 )

(i) As ε→ 0, nε(t, x)− ρ̃(t) δ(x − xm)−−⇀0,

with ρ̃ the unique T -periodic solution to

d ρ̃
dt

(t) = ρ̃(t) (R(t, xm)− ρ̃(t)).

(i) As ε→ 0, uε converges locally uniformly to the unique viscosity
solution of {

−|∇u|2(x) = R(x)− ρ,
maxx∈Rd u(x) = 0.

For x ∈ R, this solution is indeed smooth and classical and can be
computed explicitly.
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

The main results

Next order terms and the approximation of the moments of
the population’s distribution

One can also compute (at least formally) the next order term v
leading to the following approximation of the population’s
distribution:

nε(t, x) ≈ 1

(2πε)
d
2
exp
(u(x)

ε
+ v(t, x)

)
.

Going further in the approximations ⇒ analytical formula for the
moments of the population’s distribution with an error of order
ε2, in terms of the derivatives of u and v at the point xm (using the
Laplace’s method for integration).
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

The main results

Some notations
Average size of the population over a period of time:

ρp =
1
T

∫ T

0
ρε(t)dt

Mean phenotypic trait of the population:

µp(t) =
1

ρε(t)

∫
Rd

x nε(t, x)dx

Phenotypic variance of the population’s distribution:

vp(t) =
1

ρε(t)

∫
Rd

(x − µp)2nε(t, x)dx

Mean fitness of the population in an environment with constant
temperature τ :

Fp(τ) =

∫
Rd

a(τ, x)
1
T

∫ T

0

nε(t, x)

ρε(t)
dtdx
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

Some examples

Example 1: when the fluctuations act on the optimal trait

R(t, x) = r − g(x − c sin(bt))2.

We can estimate the size of the population, the mean phenotypic
trait and the mean variance of the population’s distribution :

ρp ≈ r − gc2

2
− ε√g , µp(t) ≈ 2εc

b
√

g sin
(
b(t − π

2b
)
)
, σ2

p ≈
ε
√

g
.

One can also estimate the mean fitness of this population in an
environment with constant temperature t = π

b and compare it with
the mean fitness of a population evolved in constant environment in
the same conditions :

F̃c(π/b) ≈ F̃p(π/b) ≈ r − ε√g .
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

Some examples

Example 1: when the fluctuations act on the optimal trait
Numerical computation of the phenotypic distribution density, with

R(t, x) = r − g(x − c sin(bt))2,

r = 2, c = g = 1, b = 2π, ε = 0.5.

-3 -2 -1 0 1 2 3

Phenotypic trait (x)
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n (t=0.5, x)

n (t=0.7, x)

n (t=1, x)
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

Some examples

Example 1: when the fluctuations act on the optimal trait

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (t)
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Optimal Trait

approx

Left: comparison between the analytical and the numerical
approximations of the moments of the population’s density.
Right: comparison between the mean phenotypic trait (numerical
and analytical approximations) and the optimal trait.
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Some examples

Example 2: when the fluctuations act on the pressure of the
selection

R(t, x) = r − g(t)x2,

with g a 1-periodic positive function.

Define

g =

∫ 1

0
g(s)ds.

We estimate again the size of the population, the mean phenotypic
trait and the mean variance of the population’s distribution :

ρp ≈ r − ε
√

g , µp ≈ 0, σ2
p ≈

ε√
g
.

and the mean fitness in an environment with constant
temperature t = 1

2

F̃c(1/2) ≈ r−ε
√

g(1/2) < F̃p(1/2) ≈ r−εg(1/2)√
g

, if g > g(
1
2

).
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A Hamilton-Jacobi approach for models from evolutionary biology III: the case of a time-periodic environment

Some examples

Example 2: when the fluctuations act on the pressure of the
selection

Numerical computation of the phenotypic distribution density, with

R(t, x) = r − (cos(bt) + 1.5)x2,

r = 2, b = 2π, ε = 0.5.
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Some examples

Example 2: when the fluctuations act on the pressure of the
selection

comparison between the analytical and the numerical
approximations of the moments of the population’s density:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (t)
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Some examples

Thank you for your attention !

15 / 15


	The model and motivations
	The main results
	Some examples

