Reaction-diffusion equations in periodic media. Influence of the geometry of the domain

Romain Ducasse

Joint work with Luca Rossi

CAMS, EHESS

Homogeneous reaction-diffusion equation

$$\partial_t u = d\Delta u + f(u), \quad x \in \mathbb{R}^N, \ t > 0$$

Reaction terms f :

 \longrightarrow Long-time behavior determined by the sign of $\int_0^1 f$

$$\partial_t u = d\Delta u + f(u), \quad x \in \mathbb{R}^N, \ t > 0$$

Theorem (Kolmogorov, Petrovski, Piskunov (1937), Kanel' (1964), Aronson, Weinberger (1978))

There is $c^* \in \mathbb{R}$ such that there exist traveling fronts with speed c^* in the direction $e \in \mathbb{S}^{N-1}$. Moreover, c^* has the sign of $\int_0^1 f$.

 $\longrightarrow c^*$: minimal speed.

$$\partial_t u = d\Delta u + f(u), \quad x \in \mathbb{R}^N, \ t > 0$$

Definition (Invasion)

Invasion occurs for the initial datum u_0 if

$$u(t,x) \xrightarrow[t \to +\infty]{} 1$$
, locally uniformly in x .

In the sequel, we always consider initial data that are **compactly supported**, **non-zero**, **non-negative**.

$$\partial_t u = d\Delta u + f(u), \quad x \in \mathbb{R}^N, \ t > 0$$

Definition (Invasion)

Invasion occurs for the initial datum u_0 if

 $u(t,x) \xrightarrow[t \to +\infty]{} 1$, locally uniformly in x.

Definition (Speed of invasion)

Invasion occurs with the speed $w \in \mathbb{R}$ in the direction $e \in \mathbb{S}^{N-1}$ if

$$u(t,cte) \underset{t \to +\infty}{\longrightarrow} \begin{cases} 1 & \text{if } c \in [0,w) \\ 0 & \text{if } c > w \end{cases}$$

Observation

If f is of the combustion or bistable type and if $u_0 \leq \theta$, then

$$u(t,x) \xrightarrow[t \to +\infty]{} 0$$

Invasion can not hold for every initial data !

Romain Ducasse

Definition (Invasion for large initial data)

We say that **invasion occurs for large enough initial data** provided that, for every $\eta \in (\theta, 1)$, there is R > 0 such that invasion occurs for initial data u_0 satisfying

$$u_0 \ge \eta \mathbb{1}_{B_R}$$

Romain Ducasse

Theorem (Aronson, Weinberger (1978))

Invasion occurs for large enough initial data provided

$$\int_{0}^{1} f > 0$$

Moreover, $w = c^*$.

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \nu \cdot \nabla u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Periodicity assumption :

$$\Omega + k = \Omega, \quad \forall k \in \mathbb{Z}^N,$$

Existence of fronts

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \nu \cdot \nabla u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

 \rightarrow No fronts here. Instead : pulsating traveling fronts (introduced by Shigesada, Kawasaki, Teramoto (1986)).

$$u(t,x) := \phi(x \cdot e - ct, x)$$

Theorem (Berestycki, Hamel (2002))

There is $c^* : \mathbb{S}^{N-1} \to \mathbb{R}^+$ such that there exist pulsating traveling fronts with speed $c^*(e)$ in the direction $e \in \mathbb{S}^{N-1}$ if f is monostable or combustion.

 $\longrightarrow c^*$: minimal speed.

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \nu \cdot \nabla u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Question

In this heterogeneous framework, when do we have invasion?

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \nu \cdot \nabla u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Question

In this heterogeneous framework, when do we have invasion?

Theorem (D., Rossi (2017))

Existence of fronts with positive speed in every direction

Invasion occurs for large enough initial data

 \rightarrow Generalizes a theorem by Weinberger (2002)

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \nu \cdot \nabla u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Question

In this heterogeneous framework, when do we have invasion?

Theorem (D., Rossi (2017))

Existence of fronts with positive speed in every direction

Invasion occurs for large enough initial data

 \rightarrow Generalizes a theorem by Weinberger (2002)

Corollary (D., Rossi (2017))

If f is of the combustion or monostable type, then invasion occurs for large enough initial data.

Romain Ducasse

Influence of the geometry of Ω : invasion

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \partial_\nu u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Question

What about the bistable case? (Existence of fronts not known in general)

Influence of the geometry of Ω : invasion

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \partial_\nu u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Question

What about the bistable case? (Existence of fronts not known in general)

The geometry of Ω plays a role!

Influence of the geometry of Ω : invasion

$$\begin{cases} \partial_t u = \Delta u + f(u), & x \in \Omega, \ t > 0\\ \partial_\nu u = 0, & x \in \partial\Omega, \ t > 0 \end{cases}$$

Star-shaped small obstacles \implies Invasion occurs for large enough initial data

Influence of the geometry of Ω : invasion

$$\begin{cases} \partial_t u = \Delta u + f(u), & x \in \Omega, \ t > 0\\ \partial_\nu u = 0, & x \in \partial\Omega, \ t > 0 \end{cases}$$

There are domains where invasion is blocked :

Follows from a theorem by Berestycki, Hamel and Matano. Reason : Bistable is not "bi"-stable here !

Romain Ducasse

Periodic media

A new phenomenon : oriented invasion

$$\begin{cases} \partial_t u = \Delta u + f(u), & x \in \Omega, \ t > 0\\ \partial_\nu u = 0, & x \in \partial\Omega, \ t > 0 \end{cases}$$

Theorem (D., Rossi (2017))

There are periodic domains Ω where "invasion" occurs in some directions, and "blocking" in others.

A new phenomenon : oriented invasion

Proof : "sliding" method + Gidas-Ni-Nirenberg theorem +Moving planes+"teleporting"

Oriented invasion in a cylinder

Speed of invasion

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \nu \cdot \nabla u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Question

Can we compute the speed of invasion?

 $w: \mathbb{S}^{N-1} \to \mathbb{R}$?

Speed of invasion

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \nu \cdot \nabla u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Question

Can we compute the speed of invasion?

$$w: \mathbb{S}^{N-1} \to \mathbb{R}$$
?

Theorem (D. (2017))

If there are fronts with positive speed in every direction, there holds

$$w(e) = \min_{\xi \cdot e > 0} \frac{c^{\star}(\xi)}{\xi \cdot e}$$

Proof : follows a geometric argument by Rossi

		D	
в	omair	1	licasse
• •	omain		acabbe

Periodic media

For KPP nonlinearities :

- Freidlin and Gartner (1979) : probability theory
- Berestycki, Hamel and Nadin (2008) : PDE techniques
- Berestycki and Nadin (2016) : homogenization (see also Evans, Souganidis)

For more general nonlinearities :

- Weinberger (2002) : abstract monotone systems. Works for $f \ge 0$ and $\Omega \neq \mathbb{R}^N$.
- Rossi (2017) : regularity theory and geometric interpretation. On \mathbb{R}^N .

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \partial_\nu u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

If $\Omega = \mathbb{R}^N$, then $w \equiv c^*$, that is, invasion occurs with its maximal possible speed.

$$\begin{cases} \partial_t u = \Delta u + f(u), & x \in \Omega, \ t > 0\\ \partial_\nu u = 0, & x \in \partial\Omega, \ t > 0 \end{cases}$$

If $\Omega = \mathbb{R}^N$, then $w \equiv c^*$, that is, invasion occurs with its maximal possible speed.

Question (Berestycki, Hamel, Nadirashvili (2005))

Are there domains Ω where this is not the case, i.e., where

 $w \not\equiv c^*?$

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \partial_\nu u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

If $\Omega = \mathbb{R}^N$, then $w \equiv c^*$, that is, invasion occurs with its maximal possible speed.

Question (Berestycki, Hamel, Nadirashvili (2005))

Are there domains Ω where this is not the case, i.e., where

 $w \not\equiv c^*?$

Equivalent problem (D. (2017))

Are there domains Ω where w is not constant?

$$\left\{ \begin{array}{ll} \partial_t u &= \Delta u + f(u), \qquad x \in \Omega, \ t > 0 \\ \partial_\nu u &= 0, \qquad \qquad x \in \partial \Omega, \ t > 0 \end{array} \right.$$

Proposition (D. (2017))

$$w(e) \le 2\sqrt{\max_{u \in [0,1]} \frac{f(u)}{u}} C_{\Omega}(e),$$

where

$$C_{\Omega}(e) := \liminf_{\lambda \to +\infty} \frac{\lambda}{d_{\Omega}(0, \lambda e)} \le 1.$$

Romain Ducasse

Periodic media

16 / 18

$$\begin{cases} \partial_t u &= \Delta u + f(u), \qquad x \in \Omega, \ t > 0\\ \partial_\nu u &= 0, \qquad \qquad x \in \partial \Omega, \ t > 0 \end{cases}$$

Theorem (D. (2017))

If f is monostable or combustion, there are periodic domains Ω where

$$w \not\equiv c^{\star}$$

Symmetries of Ω and invasion

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \partial_\nu u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Question

On the contrary, when does the invasion occur at the speed of fronts?

A simple observation

If e_{min} minimizes c^* , then

$$w(e_{min}) = c^{\star}(e_{min})$$

Symmetries of Ω and invasion

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \partial_\nu u &= 0, \quad x \in \partial \Omega, \ t > 0 \end{cases}$$

Question

On the contrary, when does the invasion occur at the speed of fronts?

A simple observation

If e_{min} minimizes c^* , then

$$w(e_{min}) = c^{\star}(e_{min})$$

Theorem (Berestycki, Hamel, Nadirashvili (2005))

If f is of the KPP type and if Ω is invariant by translations in the direction e, then

$$w(e) = c^{\star}(e)$$

Romain Ducasse

Periodic media

Symmetries of Ω and invasion

$$\begin{cases} \partial_t u &= \Delta u + f(u), \quad x \in \Omega, \ t > 0\\ \partial_\nu u &= 0, \quad x \in \partial\Omega, \ t > 0 \end{cases}$$

Question

On the contrary, when does the invasion occur at the speed of fronts?

Theorem (D. (2017))

If f is of the KPP type and if there is $T \in \mathcal{O}_N$ such that

• T leaves Ω invariant, i.e., $T\Omega = \Omega$,

• There is $e \in \mathbb{S}^{N-1}$ such that Te = e and $Ker(T - I_N) = \mathbb{R}e$, then

$$w(e) = c^{\star}(e)$$

 $\Rightarrow~$ In the direction of axes of symmetry, invasion occurs at the maximal speed.

Thank you for your attention!