Macdonald polynomials and chromatic quasisymmetric functions

Andy Wilson
Portland State University

October 24, 2018

Outline

Macdonalds
and
chromatics
Andy Wilson

- Chromatic functions $X_{D}(x ; t)$

Outline

- Chromatic functions $X_{D}(x ; t)$
- Unicellular LLT polynomials $\operatorname{LL} T_{D}(x ; t)$

Outline

- Chromatic functions $X_{D}(x ; t)$
- Unicellular LLT polynomials $L L T_{D}(x ; t)$

■ Integral form Macdonald polynomials $J_{\mu}(x ; q, t)$

Outline

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

- Chromatic functions $X_{D}(x ; t)$
- Unicellular LLT polynomials $L L T_{D}(x ; t)$

■ Integral form Macdonald polynomials $J_{\mu}(x ; q, t)$
■ Loose ends

Chromatic functions

Dyck paths

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

- A Dyck path of order n is a path that from $(0,0)$ to (n, n) using steps
- $(0,1)$ and
- $(1,0)$
that stays weakly above the line $y=x$ (the diagonal).

Dyck paths

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

- A Dyck path of order n is a path that from $(0,0)$ to (n, n) using steps
- $(0,1)$ and
- $(1,0)$
that stays weakly above the line $y=x$ (the diagonal).

Dyck paths

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

- A Dyck path of order n is a path that from $(0,0)$ to (n, n) using steps
- $(0,1)$ and
- $(1,0)$
that stays weakly above the line $y=x$ (the diagonal).

$■$ We write \mathcal{D}_{n} for the set of Dyck paths of order n.

Dyck paths

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

- A Dyck path of order n is a path that from $(0,0)$ to (n, n) using steps
- $(0,1)$ and
- $(1,0)$
that stays weakly above the line $y=x$ (the diagonal).

■ We write \mathcal{D}_{n} for the set of Dyck paths of order n.
■ $\left|\mathcal{D}_{n}\right|=\frac{1}{2 n+1}\binom{2 n}{n}$, the nth Catalan number.

Dyck paths and graphs

■ There is a natural graph associated with a Dyck path:

- "arcs that fit under the path"

Dyck paths and graphs

Macdonalds
and
chromatics
Andy Wilson
■ There is a natural graph associated with a Dyck path:
Chromatics
LLTs
Macdonalds
Loose ends

- "arcs that fit under the path"

Dyck paths and graphs

■ There is a natural graph associated with a Dyck path:

- "arcs that fit under the path"

(1) $(2)-(3)-(4)-(5)$

Dyck paths and graphs

■ There is a natural graph associated with a Dyck path:

- "arcs that fit under the path"

(1) $\quad(2)-(3)-(4)-(5)$
- In fact, this is a bijection from \mathcal{D}_{n} to incomparability graphs of natural unit interval orders.

The chromatic function of a Dyck path

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ We start with a Dyck path $D \in \mathcal{D}_{n}$.

The chromatic function of a Dyck path

Macdonalds
and
chromatics
Andy Wilson

■ We start with a Dyck path $D \in \mathcal{D}_{n}$.
■ For $1 \leq i<j \leq n$, we say $i \rightarrow j$ if $i \sim j$ in the graph.

- Below we have $1 \rightarrow 2,2 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 4$, and $4 \rightarrow 5$.

The chromatic function of a Dyck path

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ We start with a Dyck path $D \in \mathcal{D}_{n}$.
■ For $1 \leq i<j \leq n$, we say $i \rightarrow j$ if $i \sim j$ in the graph.

- Below we have $1 \rightarrow 2,2 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 4$, and $4 \rightarrow 5$.

■ We place labels $\sigma_{1}, \ldots, \sigma_{n} \in \mathbb{Z}_{+}$along the diagonal of D.

				3
			2	
		3		
	1			
2				

The chromatic function of a Dyck path

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ We start with a Dyck path $D \in \mathcal{D}_{n}$.
■ For $1 \leq i<j \leq n$, we say $i \rightarrow j$ if $i \sim j$ in the graph.

- Below we have $1 \rightarrow 2,2 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 4$, and $4 \rightarrow 5$.
$■$ We place labels $\sigma_{1}, \ldots, \sigma_{n} \in \mathbb{Z}_{+}$along the diagonal of D.
- A labeling σ is proper if $i \rightarrow j \Rightarrow \sigma_{i} \neq \sigma_{j}$.

				3
			2	
		3		
	1			
2				

The chromatic function of a Dyck path

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ We start with a Dyck path $D \in \mathcal{D}_{n}$.
■ For $1 \leq i<j \leq n$, we say $i \rightarrow j$ if $i \sim j$ in the graph.

- Below we have $1 \rightarrow 2,2 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 4$, and $4 \rightarrow 5$.
$■$ We place labels $\sigma_{1}, \ldots, \sigma_{n} \in \mathbb{Z}_{+}$along the diagonal of D.
- A labeling σ is proper if $i \rightarrow j \Rightarrow \sigma_{i} \neq \sigma_{j}$.

$$
\operatorname{coinv}_{D}(\sigma):=\#\left\{1 \leq i<j \leq n: i \rightarrow j, \sigma_{i}<\sigma_{j}\right\}
$$

				3
			2	
		3		
	1			
2				

The chromatic function of a Dyck path

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

■ We start with a Dyck path $D \in \mathcal{D}_{n}$.
■ For $1 \leq i<j \leq n$, we say $i \rightarrow j$ if $i \sim j$ in the graph.

- Below we have $1 \rightarrow 2,2 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 4$, and $4 \rightarrow 5$.
$■$ We place labels $\sigma_{1}, \ldots, \sigma_{n} \in \mathbb{Z}_{+}$along the diagonal of D.
- A labeling σ is proper if $i \rightarrow j \Rightarrow \sigma_{i} \neq \sigma_{j}$.

$$
\begin{aligned}
\operatorname{coinv}_{D}(\sigma) & :=\#\left\{1 \leq i<j \leq n: i \rightarrow j, \sigma_{i}<\sigma_{j}\right\} \\
X_{D}(x ; t) & :=\sum_{\sigma \text { proper }} t^{\operatorname{coinv}_{D}(\sigma)_{x}}{ }^{\sigma}
\end{aligned}
$$

				3
			2	
		3		
	1			
2				

The chromatic function of a Dyck path

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

■ We start with a Dyck path $D \in \mathcal{D}_{n}$.
■ For $1 \leq i<j \leq n$, we say $i \rightarrow j$ if $i \sim j$ in the graph.

- Below we have $1 \rightarrow 2,2 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 4$, and $4 \rightarrow 5$.
$■$ We place labels $\sigma_{1}, \ldots, \sigma_{n} \in \mathbb{Z}_{+}$along the diagonal of D.
- A labeling σ is proper if $i \rightarrow j \Rightarrow \sigma_{i} \neq \sigma_{j}$.

$$
\begin{aligned}
\operatorname{coinv}_{D}(\sigma) & :=\#\left\{1 \leq i<j \leq n: i \rightarrow j, \sigma_{i}<\sigma_{j}\right\} \\
X_{D}(x ; t) & :=\sum_{\sigma \text { proper }} t^{\operatorname{coinv}_{D}(\sigma)_{x}}{ }^{\sigma}
\end{aligned}
$$

			t	3
	t		2	
	t	3		
	1			
2				

The chromatic function of a Dyck path

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

■ We start with a Dyck path $D \in \mathcal{D}_{n}$.
■ For $1 \leq i<j \leq n$, we say $i \rightarrow j$ if $i \sim j$ in the graph.

- Below we have $1 \rightarrow 2,2 \rightarrow 3,2 \rightarrow 4,3 \rightarrow 4$, and $4 \rightarrow 5$.
$■$ We place labels $\sigma_{1}, \ldots, \sigma_{n} \in \mathbb{Z}_{+}$along the diagonal of D.
- A labeling σ is proper if $i \rightarrow j \Rightarrow \sigma_{i} \neq \sigma_{j}$.

$$
\begin{aligned}
\operatorname{coinv}_{D}(\sigma) & :=\#\left\{1 \leq i<j \leq n: i \rightarrow j, \sigma_{i}<\sigma_{j}\right\} \\
X_{D}(x ; t) & :=\sum_{\sigma \text { proper }} t^{\operatorname{coinv}_{D}(\sigma)_{x}}{ }^{\sigma}
\end{aligned}
$$

			t	3
	t		2	
	t	3		
	1			
2				

$\rightarrow t^{3} x_{1} x_{2}^{2} x_{3}^{2}$

A word about notation

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs

Macdonalds

Loose ends

- $X_{D}(x ; t)$ are the chromatic quasisymmetric functions of certain graphs [SW16].

A word about notation

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

■ $X_{D}(x ; t)$ are the chromatic quasisymmetric functions of certain graphs [SW16].

- However, these particular $X_{D}(x ; t)$ are always symmetric.

A word about notation

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

■ $X_{D}(x ; t)$ are the chromatic quasisymmetric functions of certain graphs [SW16].
■ However, these particular $X_{D}(x ; t)$ are always symmetric.

- We can recover chromatic polynomials by setting

$$
x=(1, \ldots, 1,0, \ldots), t=1
$$

A word about notation

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

- $X_{D}(x ; t)$ are the chromatic quasisymmetric functions of certain graphs [SW16].
■ However, these particular $X_{D}(x ; t)$ are always symmetric.
■ We can recover chromatic polynomials by setting

$$
x=(1, \ldots, 1,0, \ldots), t=1
$$

■ I will just call the X_{D} chromatic functions of Dyck paths.

A word about notation

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

- $X_{D}(x ; t)$ are the chromatic quasisymmetric functions of certain graphs [SW16].
■ However, these particular $X_{D}(x ; t)$ are always symmetric.
■ We can recover chromatic polynomials by setting

$$
x=(1, \ldots, 1,0, \ldots), t=1
$$

■ I will just call the X_{D} chromatic functions of Dyck paths.
■ A brief aside on "symmetric functions..."

A crash course in symmetric functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

■ $\Lambda=$ the ring of symmetric functions.

- These are power series f in variables x_{1}, x_{2}, \ldots that are invariant under the action

$$
\sigma f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots\right)
$$

for any permutation $\sigma \in \mathfrak{S}_{n}$ for every n.

A crash course in symmetric functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ $\Lambda=$ the ring of symmetric functions.
■ These are power series f in variables x_{1}, x_{2}, \ldots that are invariant under the action

$$
\sigma f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots\right)
$$

for any permutation $\sigma \in \mathfrak{S}_{n}$ for every n.
$■ \Lambda$ is often considered in terms of its (many) linear bases.
■ monomial basis m_{λ}

- power sum basis p_{λ}

■ homogeneous basis h_{λ}
■ elementary basis e_{λ}
■ Schur basis s_{λ}
where each λ ranges over all integer partitions.

A crash course in symmetric functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ $\Lambda=$ the ring of symmetric functions.
■ These are power series f in variables x_{1}, x_{2}, \ldots that are invariant under the action

$$
\sigma f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots\right)
$$

for any permutation $\sigma \in \mathfrak{S}_{n}$ for every n.
$\square \Lambda$ is often considered in terms of its (many) linear bases.
■ monomial basis m_{λ}

- power sum basis p_{λ}

■ homogeneous basis h_{λ}
■ elementary basis e_{λ}

- Schur basis s_{λ}
where each λ ranges over all integer partitions.
- Let's define a few of these.

Classical symmetric function bases

Macdonalds
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

For a partition $\lambda=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}>0$,

$$
\begin{aligned}
m_{\lambda} & =\sum_{i_{1} \neq i_{k}} x_{i_{1}}^{\lambda_{1}} \ldots x_{i_{k}}^{\lambda_{k}} \\
p_{n} & =\sum_{i} x_{i}^{n}
\end{aligned}
$$

$$
p_{\lambda}=p_{\lambda_{1}} \ldots p_{\lambda_{k}}
$$

$$
h_{n}=\sum_{i_{1} \leq \ldots \leq i_{n}} x_{i_{1}} \ldots x_{i_{n}}
$$

$$
h_{\lambda}=h_{\lambda_{1}} \ldots h_{\lambda_{k}}
$$

$$
e_{n}=\sum_{i_{1}<\ldots<i_{k}} x_{i_{1}} \ldots x_{i_{n}}
$$

$$
e_{\lambda}=e_{\lambda_{1}} \ldots e_{\lambda_{k}}
$$

Classical symmetric function bases

Macdonalds
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

For a partition $\lambda=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}>0$,

$$
\begin{aligned}
m_{\lambda} & =\sum_{i_{1} \neq i_{k}} x_{i_{1}}^{\lambda_{1}} \ldots x_{i_{k}}^{\lambda_{k}} \\
p_{n} & =\sum_{i} x_{i}^{n}
\end{aligned}
$$

$$
p_{\lambda}=p_{\lambda_{1}} \ldots p_{\lambda_{k}}
$$

$$
h_{n}=\sum_{i_{1} \leq \ldots \leq i_{n}} x_{i_{1}} \ldots x_{i_{n}}
$$

$$
h_{\lambda}=h_{\lambda_{1}} \ldots h_{\lambda_{k}}
$$

$$
e_{n}=\sum_{i_{1}<\ldots<i_{k}} x_{i_{1}} \ldots x_{i_{n}}
$$

$$
e_{\lambda}=e_{\lambda_{1}} \ldots e_{\lambda_{k}}
$$

Many more

Schur functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Schur functions are the unique basis s_{μ} satisfying

$$
\begin{aligned}
s_{\mu} & \in \operatorname{span}\left\{m_{\lambda}: \lambda \leq \mu\right\} \\
\left.s_{\mu}\right|_{m_{\mu}} & =1 \\
\left\langle s_{\lambda}, s_{\mu}\right\rangle & =0 \text { if } \lambda \neq \mu
\end{aligned}
$$

for
■ < an extension of the dominance order, and
■ $\langle-,-\rangle$ the Hall inner product.

Positivity

Macdonalds
and chromatics

Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

- You are handed a symmetric function f.

Positivity

Macdonalds
and
chromatics
Andy Wilson

■ You are handed a symmetric function f.
■ Maybe f is defined by its monomial basis expansion.

- This is sometimes called a combinatorial definition.

Positivity

Macdonalds
and
chromatics
Andy Wilson

■ You are handed a symmetric function f.
■ Maybe f is defined by its monomial basis expansion.

- This is sometimes called a combinatorial definition.
- Often this expansion is positive.
- i.e. coefficients in \mathbb{N} or $\mathbb{N}[q]$ or $\mathbb{N}[q, t]$ or \ldots.

Positivity

Macdonalds
and
chromatics
Andy Wilson

■ You are handed a symmetric function f.

- Maybe f is defined by its monomial basis expansion.
- This is sometimes called a combinatorial definition.
- Often this expansion is positive.
- i.e. coefficients in \mathbb{N} or $\mathbb{N}[q]$ or $\mathbb{N}[q, t]$ or \ldots.

■ Is f positive in other bases?

Positivity graph

Macdonalds

and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Positivity graph

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ Schur positive \Rightarrow Frobenius image of a symmetric group representation.

Positivity graph

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

■ Schur positive \Rightarrow Frobenius image of a symmetric group representation.
■ e / h positive \Rightarrow this representation is especially nice.

Positivity graph

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

■ Schur positive \Rightarrow Frobenius image of a symmetric group representation.

- e/h positive \Rightarrow this representation is especially nice.
- e/h positivity rare "in nature."

Plethysm

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Plethysm

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ Not so bad!

Plethysm

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

- Not so bad!

■ For $A= \pm a_{1} \pm a_{2} \pm \ldots$, each a_{i} a monic monomial,

$$
p_{k}[A]:= \pm a_{1}^{k} \pm a_{2}^{k} \ldots
$$

and extend to form a homomorphism on Λ.

Plethysm

Macdonalds

LLTs

Macdonalds
Loose ends

■ Not so bad!
$■$ For $A= \pm a_{1} \pm a_{2} \pm \ldots$, each a_{i} a monic monomial,

$$
p_{k}[A]:= \pm a_{1}^{k} \pm a_{2}^{k} \ldots
$$

and extend to form a homomorphism on Λ.

- For example,

$$
\begin{aligned}
p_{k}[(t-1) x] & =p_{k}\left[(t-1)\left(x_{1}+x_{2}+\ldots\right)\right] \\
& =p_{k}\left[t x_{1}+t x_{2}+\ldots-\left(x_{1}+x_{2}+\ldots\right)\right] \\
& =t^{k} x_{1}^{k}+t^{k} x_{2}^{k}+\ldots-x_{1}^{k}-x_{2}^{k}-\ldots \\
& =\left(t^{k}-1\right)\left(x_{1}^{k}+x_{2}^{k}+\ldots\right) \\
& =\left(t^{k}-1\right) p_{k} .
\end{aligned}
$$

Plethysm

Macdonalds

■ Not so bad!
■ For $A= \pm a_{1} \pm a_{2} \pm \ldots$, each a_{i} a monic monomial,

$$
p_{k}[A]:= \pm a_{1}^{k} \pm a_{2}^{k} \ldots
$$

and extend to form a homomorphism on Λ.

- For example,

$$
\begin{aligned}
p_{k}[(t-1) x] & =p_{k}\left[(t-1)\left(x_{1}+x_{2}+\ldots\right)\right] \\
& =p_{k}\left[t x_{1}+t x_{2}+\ldots-\left(x_{1}+x_{2}+\ldots\right)\right] \\
& =t^{k} x_{1}^{k}+t^{k} x_{2}^{k}+\ldots-x_{1}^{k}-x_{2}^{k}-\ldots \\
& =\left(t^{k}-1\right)\left(x_{1}^{k}+x_{2}^{k}+\ldots\right) \\
& =\left(t^{k}-1\right) p_{k} .
\end{aligned}
$$

■ End of crash course.

Back to chromatic functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Much is known about these functions. They are ...

Back to chromatic functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Much is known about these functions. They are ...
■ symmetric [SW16].

Back to chromatic functions

Macdonalds
and
chromatics
Andy Wilson
Much is known about these functions. They are ...

- symmetric [SW16].
- positive in Schur basis [SW16, Gas99].

Chromatics
LLTs
Macdonalds
Loose ends

Back to chromatic functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Much is known about these functions. They are ...

- symmetric [SW16].
- positive in Schur basis [SW16, Gas99].
- positive $(\operatorname{after} \omega)$ in $p_{\lambda} / z_{\lambda}$ basis [Ath15].

Back to chromatic functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Much is known about these functions. They are ...
■ symmetric [SW16].

- positive in Schur basis [SW16, Gas99].
- positive (after ω) in $p_{\lambda} / z_{\lambda}$ basis [Ath15].
- characters of certain Hessenberg varieties [BC15, GP16].

Back to chromatic functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Much is known about these functions. They are ...
■ symmetric [SW16].

- positive in Schur basis [SW16, Gas99].
- positive (after ω) in $p_{\lambda} / z_{\lambda}$ basis [Ath15].
- characters of certain Hessenberg varieties [BC15, GP16].
- conjecturally e positive [SW16, Sta95].

Back to chromatic functions

Macdonalds and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Much is known about these functions. They are ...

- symmetric [SW16].
- positive in Schur basis [SW16, Gas99].

■ positive (after ω) in $p_{\lambda} / z_{\lambda}$ basis [Ath15].

- characters of certain Hessenberg varieties [BC15, GP16].
- conjecturally e positive [SW16, Sta95].

■ proven e positive for "one-bounce" paths [HP17].

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

Loose ends

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ This is the bounce path (Haglund).

Bouncing

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ This is the bounce path (Haglund).

Bouncing

■ This is the bounce path (Haglund).

- The bounce length is 3 .

A bounce characterization of height

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

A bounce characterization of height

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

A bounce characterization of height

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

91	92	93	94	95	96			
81	82	83	84					
71	72	73	74					
61	62	63	64					
51	52	53						
41	42							

A bounce characterization of height

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

$$
\square a b \text { above path } \Rightarrow t_{a}-t_{b} \in I
$$

91	92	93	94	95	96			
81	82	83	84					
71	72	73	74					
61	62	63	64					
51	52	53						
41	42							

A bounce characterization of height

Macdonalds

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

- ab above path $\Rightarrow t_{a}-t_{b} \in I$

91	92	93	94	95	96			
81	82	83	84					
71	72	73	74					
61	62	63	64					
51	52	53						
41	42							

$$
\sum_{i=1}^{k}\left(t_{a_{i}}-t_{b_{i}}\right) \in I
$$

A bounce characterization of height

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

$$
\square a b \text { above path } \Rightarrow t_{a}-t_{b} \in I
$$

91	92	93	94	95	96			
81	82	83	84					
71	72	73	74					
61	62	63	64					
51	52	53						
41	42							

$$
\sum_{i=1}^{k}\left(t_{a_{i}}-t_{b_{i}}\right) \in l
$$

- Abelian means height $=1$ [HP17].

A bounce characterization of height

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

■ ab above path $\Rightarrow t_{a}-t_{b} \in I$

91	92	93	94	95	96			
81	82	83	84					
71	72	73	74					
61	62	63	64					
51	52	53						
41	42							

■ Height is max. k such that

$$
\sum_{i=1}^{k}\left(t_{a_{i}}-t_{b_{i}}\right) \in l
$$

- Abelian means height $=1$ [HP17].
- Take cells above bounce peaks.

A bounce characterization of height

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

■ ab above path $\Rightarrow t_{a}-t_{b} \in I$

91	92	93	94	95	96			\square
81	82	83	84					
71	72	73	74					
61	62	63	64					
51	52	53						
41	42							

■ Height is max. k such that

$$
\sum_{i=1}^{k}\left(t_{a_{i}}-t_{b_{i}}\right) \in l
$$

- Abelian means height $=1$ [HP17].
- Take cells above bounce peaks.

A bounce characterization of height

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

■ ab above path $\Rightarrow t_{a}-t_{b} \in I$

91	92	93	94	95	96			\square
81	82	83	84					
71	72	73	74					
61	62	63	64					
51	52	53						
41	42							

■ Height is max. k such that

$$
\sum_{i=1}^{k}\left(t_{a_{i}}-t_{b_{i}}\right) \in l
$$

- Abelian means height $=1$ [HP17].
- Take cells above bounce peaks.

■ Lower series looks like

A bounce characterization of height

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

■ ab above path $\Rightarrow t_{a}-t_{b} \in I$
\square Height is max. k such that

$$
\sum_{i=1}^{k}\left(t_{a_{i}}-t_{b_{i}}\right) \in I
$$

- Abelian means height $=1$ [HP17].
- Take cells above bounce peaks.

■ Lower series looks like

A bounce characterization of height

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

■ $a b$ above path $\Rightarrow t_{a}-t_{b} \in I$
■ Height is max. k such that

$$
\sum_{i=1}^{k}\left(t_{a_{i}}-t_{b_{i}}\right) \in I
$$

- Abelian means height $=1$ [HP17].
- Take cells above bounce peaks.

■ Lower series looks like

A bounce characterization of height

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

■ $a b$ above path $\Rightarrow t_{a}-t_{b} \in I$
\square Height is max. k such that

$$
\sum_{i=1}^{k}\left(t_{a_{i}}-t_{b_{i}}\right) \in I
$$

- Abelian means height $=1$ [HP17].
- Take cells above bounce peaks.

■ Lower series looks like

A bounce characterization of height

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

■ $a b$ above path $\Rightarrow t_{a}-t_{b} \in I$
\square Height is max. k such that

$$
\sum_{i=1}^{k}\left(t_{a_{i}}-t_{b_{i}}\right) \in I
$$

- Abelian means height $=1$ [HP17].
- Take cells above bounce peaks.

■ Lower series looks like

Unicellular LLT polynomials

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ What if we remove the properness condition?

$$
L L T_{D}(x ; t):=\sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_{D}(\sigma)}
$$

Unicellular LLT polynomials

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ What if we remove the properness condition?

$$
L L T_{D}(x ; t):=\sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_{D}(\sigma)}
$$

■ At $t=1$, we just get h_{n} for any Dyck path of size n.

Unicellular LLT polynomials

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ What if we remove the properness condition?

$$
L L T_{D}(x ; t):=\sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_{D}(\sigma)}
$$

■ At $t=1$, we just get h_{n} for any Dyck path of size n.
■ For general t, we recover the unicellular LLT polynomials.

Unicellular LLT polynomials

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ What if we remove the properness condition?

$$
L L T_{D}(x ; t):=\sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_{D}(\sigma)}
$$

■ At $t=1$, we just get h_{n} for any Dyck path of size n.
■ For general t, we recover the unicellular LLT polynomials.
■ Much harder to handle:

Unicellular LLT polynomials

Macdonalds and
chromatics

■ What if we remove the properness condition?

$$
L L T_{D}(x ; t):=\sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_{D}(\sigma)}
$$

■ At $t=1$, we just get h_{n} for any Dyck path of size n.

- For general t, we recover the unicellular LLT polynomials.
- Much harder to handle:
- Connected to Hecke algebra bases [GH07].

Unicellular LLT polynomials

Macdonalds
and
chromatics

■ What if we remove the properness condition?

$$
L L T_{D}(x ; t):=\sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_{D}(\sigma)}
$$

■ At $t=1$, we just get h_{n} for any Dyck path of size n.

- For general t, we recover the unicellular LLT polynomials.

■ Much harder to handle:

- Connected to Hecke algebra bases [GH07].
- This gives Schur positivity but not Schur expansion.

Unicellular LLT polynomials

Macdonalds
and
chromatics

■ What if we remove the properness condition?

$$
L L T_{D}(x ; t):=\sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_{D}(\sigma)}
$$

■ At $t=1$, we just get h_{n} for any Dyck path of size n.

- For general t, we recover the unicellular LLT polynomials.

■ Much harder to handle:

- Connected to Hecke algebra bases [GH07].
- This gives Schur positivity but not Schur expansion.
- Not e positive as stated, but e positive after $t \rightarrow t+1$ (conjecturally, due to Alexandersson, F. Bergeron, others).

Unicellular LLT polynomials

■ What if we remove the properness condition?

$$
L L T_{D}(x ; t):=\sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_{D}(\sigma)}
$$

■ At $t=1$, we just get h_{n} for any Dyck path of size n.

- For general t, we recover the unicellular LLT polynomials.

■ Much harder to handle:

- Connected to Hecke algebra bases [GH07].
- This gives Schur positivity but not Schur expansion.

■ Not e positive as stated, but e positive after $t \rightarrow t+1$ (conjecturally, due to Alexandersson, F. Bergeron, others).

- Fundamental to symmetric function theory!

Plethystic relationship

Macdonalds
and
chromatics
Andy Wilson

Observation

Chromatics
LLTs
Macdonalds
Loose ends

$$
L L T_{D}(x ; t)=(t-1)^{n} X_{D}[x /(t-1) ; t]
$$

Plethystic relationship

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Observation

$$
L L T_{D}(x ; t)=(t-1)^{n} X_{D}[x /(t-1) ; t]
$$

■ Proof uses superization argument [HHLO5].

Plethystic relationship

Macdonalds
and
chromatics
Andy Wilson

Observation

$$
L L T_{D}(x ; t)=(t-1)^{n} X_{D}[x /(t-1) ; t]
$$

■ Proof uses superization argument [HHLO5].
■ Plethysm plays nicest with power sums.

Plethystic relationship

Observation

$$
L L T_{D}(x ; t)=(t-1)^{n} X_{D}[x /(t-1) ; t]
$$

■ Proof uses superization argument [HHLO5].

- Plethysm plays nicest with power sums.
- We can transform the power sum expansion of X_{D} into an expansion for $L L T_{D}$.

Plethystic relationship

Observation

$$
L L T_{D}(x ; t)=(t-1)^{n} X_{D}[x /(t-1) ; t]
$$

■ Proof uses superization argument [HHLO5].

- Plethysm plays nicest with power sums.
- We can transform the power sum expansion of X_{D} into an expansion for $L L T_{D}$.
■ Scary formula incoming

Power sum expansion

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Corollary

$$
\omega L L T_{D}(x ; t)=\sum_{\lambda \vdash n} \frac{(t-1)^{n-\ell(\lambda)} p_{\lambda}}{z_{\lambda}} \sum_{\sigma \in \widetilde{\mathcal{N}}_{\lambda}(D)} t^{i \operatorname{inv}_{D}(\sigma)}
$$

Power sum expansion

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Corollary

$$
\omega L L T_{D}(x ; t)=\sum_{\lambda \vdash n} \frac{(t-1)^{n-\ell(\lambda)} p_{\lambda}}{z_{\lambda}} \sum_{\sigma \in \tilde{\mathcal{N}}_{\lambda}(D)} t^{i \mathrm{mv}_{D}(\sigma)}
$$

- $\widetilde{\mathcal{N}}_{\lambda}(D)$ contains all permutations $\sigma \in \mathfrak{S}_{n}$ such that, when σ is broken into segments of lengths $\lambda_{1}, \lambda_{2}, \ldots$,
- the leftmost entry in each segment is smallest, and
- within each segment, $\sigma_{i}<\sigma_{i+1} \Rightarrow \sigma_{i} \nrightarrow \sigma_{i+1}$.

Power sum expansion

Macdonalds

Corollary

$$
\omega L L T_{D}(x ; t)=\sum_{\lambda \vdash n} \frac{(t-1)^{n-\ell(\lambda)} p_{\lambda}}{z_{\lambda}} \sum_{\sigma \in \tilde{\mathcal{N}}_{\lambda}(D)} t^{i \mathrm{mv}_{D}(\sigma)}
$$

- $\widetilde{\mathcal{N}}_{\lambda}(D)$ contains all permutations $\sigma \in \mathfrak{S}_{n}$ such that, when σ is broken into segments of lengths $\lambda_{1}, \lambda_{2}, \ldots$,
- the leftmost entry in each segment is smallest, and
- within each segment, $\sigma_{i}<\sigma_{i+1} \Rightarrow \sigma_{i} \nrightarrow \sigma_{i+1}$.

■ $\operatorname{inv}_{D}(\sigma)=\operatorname{area}(D)-\operatorname{coinv}_{D}(\sigma)$

Power sum expansion

Corollary

$$
\omega L L T_{D}(x ; t)=\sum_{\lambda \vdash n} \frac{(t-1)^{n-\ell(\lambda)} p_{\lambda}}{z_{\lambda}} \sum_{\sigma \in \tilde{\mathcal{N}}_{\lambda}(D)} t^{i \operatorname{inv}_{D}(\sigma)}
$$

- $\widetilde{\mathcal{N}}_{\lambda}(D)$ contains all permutations $\sigma \in \mathfrak{S}_{n}$ such that, when σ is broken into segments of lengths $\lambda_{1}, \lambda_{2}, \ldots$,
- the leftmost entry in each segment is smallest, and
- within each segment, $\sigma_{i}<\sigma_{i+1} \Rightarrow \sigma_{i} \nrightarrow \sigma_{i+1}$.
- $\operatorname{inv}_{D}(\sigma)=\operatorname{area}(D)-\operatorname{coinv}_{D}(\sigma)$

■ Can this relationship be pushed further?

Macdonald polynomials

Macdonald polynomials

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

- Macdonald showed that a unique basis $P_{\mu} \in \Lambda_{\mathbb{Q}(q, t)}$ existed with the properties:

$$
\begin{aligned}
P_{\mu} & \in \operatorname{span}\left\{m_{\lambda}: \lambda \leq \mu\right\} \\
\left.P_{\mu}\right|_{m_{\mu}} & =1 \\
\left\langle P_{\lambda}, P_{\mu}\right\rangle_{q, t} & =0 \text { if } \lambda \neq \mu
\end{aligned}
$$

generalizing Schur functions to a q, t-inner product.

Macdonald polynomials

Macdonalds
and
chromatics

- Macdonald showed that a unique basis $P_{\mu} \in \Lambda_{\mathbb{Q}(q, t)}$ existed with the properties:

$$
\begin{aligned}
P_{\mu} & \in \operatorname{span}\left\{m_{\lambda}: \lambda \leq \mu\right\} \\
\left.P_{\mu}\right|_{m_{\mu}} & =1 \\
\left\langle P_{\lambda}, P_{\mu}\right\rangle_{q, t} & =0 \text { if } \lambda \neq \mu
\end{aligned}
$$

generalizing Schur functions to a q, t-inner product.
■ He obtained the integral forms J_{μ} by "clearing denominators."

Macdonald polynomials

Macdonalds

- Macdonald showed that a unique basis $P_{\mu} \in \Lambda_{\mathbb{Q}(q, t)}$ existed with the properties:

$$
\begin{aligned}
P_{\mu} & \in \operatorname{span}\left\{m_{\lambda}: \lambda \leq \mu\right\} \\
\left.P_{\mu}\right|_{m_{\mu}} & =1 \\
\left\langle P_{\lambda}, P_{\mu}\right\rangle_{q, t} & =0 \text { if } \lambda \neq \mu
\end{aligned}
$$

generalizing Schur functions to a q, t-inner product.
■ He obtained the integral forms J_{μ} by "clearing denominators."

- A combinatorial formula for J_{μ} was found in [HHLO5] involving proper fillings.

A sample integral Macdonald polynomial

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds

$$
\begin{aligned}
J_{2,1} & =\left(-2 q t^{4}+5 q t^{3}-t^{4}-3 q t^{2}\right. \\
& \left.+t^{3}-q t+3 t^{2}+q-5 t+2\right) m_{1,1,1} \\
& +\left(-q t^{4}+2 q t^{3}-q t^{2}+t^{2}-2 t+1\right) m_{2,1}
\end{aligned}
$$

A sample integral Macdonald polynomial

Macdonalds
and
chromatics
Andy Wilson

$$
\begin{aligned}
J_{2,1} & =\left(-2 q t^{4}+5 q t^{3}-t^{4}-3 q t^{2}\right. \\
& \left.+t^{3}-q t+3 t^{2}+q-5 t+2\right) m_{1,1,1} \\
& +\left(-q t^{4}+2 q t^{3}-q t^{2}+t^{2}-2 t+1\right) m_{2,1}
\end{aligned}
$$

■ Not m positive.

A sample integral Macdonald polynomial

$$
\begin{aligned}
J_{2,1} & =\left(-2 q t^{4}+5 q t^{3}-t^{4}-3 q t^{2}\right. \\
& \left.+t^{3}-q t+3 t^{2}+q-5 t+2\right) m_{1,1,1} \\
& +\left(-q t^{4}+2 q t^{3}-q t^{2}+t^{2}-2 t+1\right) m_{2,1}
\end{aligned}
$$

■ Not m positive.
■ What could a "combinatorial" formula look like?

Maybe something like this

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Theorem [HHL08]

$$
\begin{aligned}
& J_{\mu^{\prime}}(x ; q, t)=\sum_{\substack{\sigma: \mu \rightarrow \mathbb{Z}_{>0} \\
\sigma \text { non-attacking }}} x^{\sigma} q^{\operatorname{maj}(\sigma, \mu)} t^{n\left(\mu^{\prime}\right)-\operatorname{inv}(\sigma, \mu)} \\
& \times \prod_{\substack{u \in \mu \\
\sigma\left(\operatorname{down}_{\mu}(u)\right)}}\left(1-q^{\operatorname{leg}_{\mu}(u)+1} t^{\operatorname{arm}(u)+1}\right) \\
& \times \prod_{\substack{u \in \mu \\
\sigma(u) \neq \sigma\left(\operatorname{down}_{\mu}(u)\right)}}(1-t)
\end{aligned}
$$

Partitions to Dyck paths

■ Given a partition μ, we form a Dyck path D_{μ} as illustrated.

■ \# squares above i inside $D=\#$ cells after i in reading order before we return to i 's column in μ.

1	2	
3	4	5

Partitions to Dyck paths

■ Given a partition μ, we form a Dyck path D_{μ} as illustrated.

■ \# squares above i inside $D=\#$ cells after i in reading order before we return to i 's column in μ.
■ D^{+}is D with its corners turned inside out.

1	2
3	4

				5
			4	
		3		
	2			
1				

Partitions to Dyck paths

■ Given a partition μ, we form a Dyck path D_{μ} as illustrated.

■ \# squares above i inside $D=\#$ cells after i in reading order before we return to i 's column in μ.
■ D^{+}is D with its corners turned inside out.

1	2	
3	4	5

				5
			4	
		3		
	2			
1				

A spanning result

Macdonalds
and
chromatics
Andy Wilson

Theorem [HW17]

Macdonalds
Loose ends

$$
J_{\mu^{\prime}}(x ; q, t) \in \operatorname{span}\left\{X_{D}(x ; t): D_{\mu} \subseteq D \subseteq D_{\mu}^{+}\right\}
$$

A spanning result

Macdonalds
and
chromatics
Andy Wilson

Theorem [HW17]

$$
J_{\mu^{\prime}}(x ; q, t) \in \operatorname{span}\left\{X_{D}(x ; t): D_{\mu} \subseteq D \subseteq D_{\mu}^{+}\right\}
$$

The coefficients are in $\mathbb{Z}\left[q, t, t^{-1}\right]$ but we can show that each term is in $\mathbb{Z}[q, t]$ in e.g. the Schur basis.

Example

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Say $\mu=(3,2)$, so $\mu^{\prime}=(2,2,1)$.

σ_{1}	σ_{2}	
σ_{3}	σ_{4}	σ_{5}

$$
t J_{(2,2,1)}(x ; q, t)=\left(1-q t^{2}\right)(1-q t) X_{D_{1}}(x ; t)
$$

Example

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

Say $\mu=(3,2)$, so $\mu^{\prime}=(2,2,1)$.

σ_{1}	σ_{2}	
σ_{3}	σ_{4}	σ_{5}

$$
\begin{aligned}
t J_{(2,2,1)}(x ; q, t) & =\left(1-q t^{2}\right)(1-q t) X_{D_{1}}(x ; t) \\
& -(1-q t)(1-q t) X_{D_{2}}(x ; t)
\end{aligned}
$$

Example

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

Say $\mu=(3,2)$, so $\mu^{\prime}=(2,2,1)$.

σ_{1}	σ_{2}	
σ_{3}	σ_{4}	σ_{5}

				σ_{5}
			σ_{4}	
		σ_{3}		
	σ_{2}			
σ_{1}				

$$
\begin{aligned}
t J_{(2,2,1)}(x ; q, t) & =\left(1-q t^{2}\right)(1-q t) X_{D_{1}}(x ; t) \\
& -(1-q t)(1-q t) X_{D_{2}}(x ; t) \\
& -\left(1-q t^{2}\right)(1-q) X_{D_{3}}(x ; t)
\end{aligned}
$$

Example

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs

Macdonalds
Loose ends

Say $\mu=(3,2)$, so $\mu^{\prime}=(2,2,1)$.

$$
\begin{array}{|l|l|}
\hline \sigma_{1} & \sigma_{2} \\
\hline \sigma_{3} & \sigma_{4} \\
\hline
\end{array}
$$

$$
\begin{aligned}
t J_{(2,2,1)}(x ; q, t) & =\left(1-q t^{2}\right)(1-q t) X_{D_{1}}(x ; t) \\
& -(1-q t)(1-q t) X_{D_{2}}(x ; t) \\
& -\left(1-q t^{2}\right)(1-q) X_{D_{3}}(x ; t) \\
& +(1-q t)(1-q) X_{D_{4}}(x ; t)
\end{aligned}
$$

Corollaries

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

■ We can use the theorem to move expansions of X_{D} to expansions of J_{μ}.

Corollaries

- We can use the theorem to move expansions of X_{D} to expansions of J_{μ}.
■ These expansions still have cancellation but are simpler than previous results.

Corollaries

- We can use the theorem to move expansions of X_{D} to expansions of J_{μ}.
- These expansions still have cancellation but are simpler than previous results.
■ Can they be simplified further?

Corollaries

- We can use the theorem to move expansions of X_{D} to expansions of J_{μ}.
■ These expansions still have cancellation but are simpler than previous results.
■ Can they be simplified further?
■ Let's see the Schur expansion formula.

Integral form tableaux (IFT)

Macdonalds
and
chromatics
Andy Wilson
■ $T \in \mathrm{IFT}_{\lambda, \mu}$ is a bijection $T: \lambda \rightarrow[n]$ such that

Integral form tableaux (IFT)

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
■ $T \in \mathrm{IFT}_{\lambda, \mu}$ is a bijection $T: \lambda \rightarrow[n]$ such that - the rows of T are increasing,

Integral form tableaux (IFT)

Macdonalds
and
chromatics
Andy Wilson
■ $T \in \mathrm{IFT}_{\lambda, \mu}$ is a bijection $T: \lambda \rightarrow[n]$ such that

- the rows of T are increasing,
- if v is immediately right of u in T then $u \nrightarrow v$ in D_{μ}, and

Integral form tableaux (IFT)

■ $T \in \mathrm{IFT}_{\lambda, \mu}$ is a bijection $T: \lambda \rightarrow[n]$ such that

- the rows of T are increasing,
- if v is immediately right of u in T then $u \nrightarrow v$ in D_{μ}, and
- if v is immediately below u and $u<v$ then $u \rightarrow v$ in D_{μ}^{+}.

Integral form tableaux (IFT)

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

■ $T \in \mathrm{IFT}_{\lambda, \mu}$ is a bijection $T: \lambda \rightarrow[n]$ such that

- the rows of T are increasing,
- if v is immediately right of u in T then $u \nrightarrow v$ in D_{μ}, and
- if v is immediately below u and $u<v$ then $u \rightarrow v$ in D_{μ}^{+}.
- An example for $\mu=(3,2), \lambda=(2,2,1)$:

3	
2	5
1	4

Schur expansion

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Corollary [HW17]

$$
\left.J_{\mu^{\prime}}(x ; q, t)\right|_{s_{\lambda}}=\sum_{T \in \mathrm{IFT}}^{\lambda, \mu} ⿵ ⺆ w t(T)
$$

- Each $w t(T) \in \mathbb{Z}[q, t]$ is a product involving arms, legs, and inversions.

Schur expansion

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Corollary [HW17]

$$
\left.J_{\mu^{\prime}}(x ; q, t)\right|_{s_{\lambda}}=\sum_{T \in \mathrm{IFT}}^{\lambda, \mu} ⿵ ⺆ w t(T)
$$

- Each $w t(T) \in \mathbb{Z}[q, t]$ is a product involving arms, legs, and inversions.
- As an example, to get $\left.J_{3,1}\right|_{s_{2,2}}$ we consider

2	4
1	3

2	3
1	4

1	4
2	3

1	3
2	4

Schur expansion

Macdonalds
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

Corollary [HW17]

$$
\left.J_{\mu^{\prime}}(x ; q, t)\right|_{s_{\lambda}}=\sum_{T \in \mathrm{IFT}}^{\lambda, \mu} ⿵ ⺆ w t(T)
$$

- Each $w t(T) \in \mathbb{Z}[q, t]$ is a product involving arms, legs, and inversions.
- As an example, to get $\left.J_{3,1}\right|_{s_{2,2}}$ we consider

2	4
1	3

2	3
1	4

1	4
2	3

1	3
2	4

- Respective weights are $q(1-t)^{2}, q t(1-t)\left(1-q^{2} t\right)$, $-t(1-q)\left(1-q^{2} t\right)$, and $-q^{2} t^{2}(1-q)(1-t)$.

Schur expansion

Macdonalds

Corollary [HW17]

$$
\left.J_{\mu^{\prime}}(x ; q, t)\right|_{s_{\lambda}}=\sum_{T \in \mathrm{IFT}}^{\lambda, \mu} ⿵ ⺆ w t(T)
$$

- Each $w t(T) \in \mathbb{Z}[q, t]$ is a product involving arms, legs, and inversions.
- As an example, to get $\left.J_{3,1}\right|_{s_{2,2}}$ we consider

2	4
1	3

2	3
1	4

1	4
2	3

1	3
2	4

- Respective weights are $q(1-t)^{2}, q t(1-t)\left(1-q^{2} t\right)$, $-t(1-q)\left(1-q^{2} t\right)$, and $-q^{2} t^{2}(1-q)(1-t)$.
■ Summing these weights and multiplying by $(1-t)^{2}$, we get

$$
\left.J_{3,1}(x ; q, t)\right|_{s_{2,2}}=(1-t)^{2}(q-t)(1-q t)(1+q t)
$$

Other corollaries

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
■ We get similar expansions for p basis.

Other corollaries

- We get similar expansions for p basis.
- All formulas specialize to integral form Jack polynomials.

Other corollaries

- We get similar expansions for p basis.
- All formulas specialize to integral form Jack polynomials.
- Don't know how to manage cancellation yet.

Loose ends

A nonsymmetric version

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds

$$
\Lambda_{\mathbb{Q}(q, t)} \rightarrow \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right]
$$

A nonsymmetric version

Macdonalds
and
chromatics
Andy Wilson

$$
\begin{aligned}
\Lambda_{\mathbb{Q}(q, t)} & \rightarrow \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right] \\
J_{\mu}(x ; q, t) & \rightarrow \mathcal{E}_{\gamma}(x ; q, t) \quad\left(\gamma \in \mathbb{N}^{n}\right)
\end{aligned}
$$

A nonsymmetric version

$$
\begin{aligned}
\Lambda_{\mathbb{Q}(q, t)} & \rightarrow \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right] \\
J_{\mu}(x ; q, t) & \rightarrow \mathcal{E}_{\gamma}(x ; q, t) \quad\left(\gamma \in \mathbb{N}^{n}\right)
\end{aligned}
$$

- $\mathcal{E}_{\mu}(x ; q, t)$ also have a combinatorial formula [HHL08].

A nonsymmetric version

$$
\begin{aligned}
\Lambda_{\mathbb{Q}(q, t)} & \rightarrow \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right] \\
J_{\mu}(x ; q, t) & \rightarrow \mathcal{E}_{\gamma}(x ; q, t) \quad\left(\gamma \in \mathbb{N}^{n}\right)
\end{aligned}
$$

- $\mathcal{E}_{\mu}(x ; q, t)$ also have a combinatorial formula [HHL08].
- We can write \mathcal{E}_{γ} as a sum of certain nonsymmetric chromatic functions.

Nonsymmetric chromatic functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

- Start with a partial Dyck path from $(0, k)$ to (n, n).

Nonsymmetric chromatic functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs

Macdonalds
Loose ends

- Start with a partial Dyck path from $(0, k)$ to (n, n).

Nonsymmetric chromatic functions

Macdonalds
and
chromatics

Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

- Start with a partial Dyck path from $(0, k)$ to (n, n).

■ Fill in the first k labels with $\mathbf{k}, \mathbf{k}-\mathbf{1}, \ldots, \mathbf{1}$.

Nonsymmetric chromatic functions

Macdonalds
and
chromatics

Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

- Start with a partial Dyck path from $(0, k)$ to (n, n).

■ Fill in the first k labels with $\mathbf{k}, \mathbf{k}-\mathbf{1}, \ldots, \mathbf{1}$.

Nonsymmetric chromatic functions

Macdonalds
and
chromatics

- Start with a partial Dyck path from $(0, k)$ to (n, n).

■ Fill in the first k labels with $\mathbf{k}, \mathbf{k}-\mathbf{1}, \ldots, \mathbf{1}$.
■ Complete proper labeling using labels 1 through k.

Nonsymmetric chromatic functions

Macdonalds
and
chromatics

- Start with a partial Dyck path from $(0, k)$ to (n, n).

■ Fill in the first k labels with $\mathbf{k}, \mathbf{k}-\mathbf{1}, \ldots, \mathbf{1}$.
■ Complete proper labeling using labels 1 through k.

				2
			3	
		$\mathbf{1}$		
	$\mathbf{2}$			
$\mathbf{3}$				

Nonsymmetric chromatic functions

- Start with a partial Dyck path from $(0, k)$ to (n, n).

■ Fill in the first k labels with $\mathbf{k}, \mathbf{k}-\mathbf{1}, \ldots, \mathbf{1}$.
■ Complete proper labeling using labels 1 through k.
■ Take t to the number of coinversions.

				2
			3	
		$\mathbf{1}$		
	$\mathbf{2}$			
$\mathbf{3}$				

Nonsymmetric chromatic functions

- Start with a partial Dyck path from $(0, k)$ to (n, n).

■ Fill in the first k labels with $\mathbf{k}, \mathbf{k}-\mathbf{1}, \ldots, \mathbf{1}$.
■ Complete proper labeling using labels 1 through k.
■ Take t to the number of coinversions.

				2
	t	t	3	
		$\mathbf{1}$		
	$\mathbf{2}$			
$\mathbf{3}$				

Nonsymmetric chromatic functions

- Start with a partial Dyck path from $(0, k)$ to (n, n).

■ Fill in the first k labels with $\mathbf{k}, \mathbf{k}-\mathbf{1}, \ldots, \mathbf{1}$.
■ Complete proper labeling using labels 1 through k.

- Take t to the number of coinversions.

■ Sum over all these monomials (ignoring forced labels).

				2
	t	t	3	
		$\mathbf{1}$		
	$\mathbf{2}$			
$\mathbf{3}$				

Nonsymmetric chromatic functions

- Start with a partial Dyck path from $(0, k)$ to (n, n).

■ Fill in the first k labels with $\mathbf{k}, \mathbf{k}-\mathbf{1}, \ldots, \mathbf{1}$.
■ Complete proper labeling using labels 1 through k.

- Take t to the number of coinversions.

■ Sum over all these monomials (ignoring forced labels).

More on nonsymmetric chromatic functions

More on nonsymmetric chromatic functions

Macdonalds and chromatics						
Andy Wilson					2	
Chromatics		t	t	3		
LLTs			1			
Macdonalds		2				
Loose ends	3					

- These are similar to partial Dyck path characters [CM15].

More on nonsymmetric chromatic functions

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends

				2
	t	t	3	
		$\mathbf{1}$		
	$\mathbf{2}$			
$\mathbf{3}$				

- These are similar to partial Dyck path characters [CM15].
- They seem to be key (Demazure character) positive.

More on nonsymmetric chromatic functions

				2
	t	t	3	
		$\mathbf{1}$		
	$\mathbf{2}$			
$\mathbf{3}$				

- These are similar to partial Dyck path characters [CM15].
- They seem to be key (Demazure character) positive.

■ Is there a geometric interpretation?

More on nonsymmetric chromatic functions

				2
	t	t	3	
		$\mathbf{1}$		
	$\mathbf{2}$			
$\mathbf{3}$				

- These are similar to partial Dyck path characters [CM15].
- They seem to be key (Demazure character) positive.
- Is there a geometric interpretation?
- May have easier transition to other types.

Other avenues

Macdonalds
and
chromatics
Andy Wilson

Chromatics

- More cancellation?

LLTs
Macdonalds
Loose ends

Other avenues

Macdonalds
and

- More cancellation?

LLTs
Macdonalds
Loose ends

Other avenues

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends

- More cancellation?

■ More specializations?

- Hanlon's Conjecture:

$$
J_{\lambda}^{(\alpha)}(x)=\sum_{\substack{\sigma \in \operatorname{RS}\left(T_{0}\right) \\ \tau \in \operatorname{CS}\left(T_{0}\right)}} \alpha^{f(\sigma, \tau)} \epsilon(\tau) p_{\text {type }(\sigma \tau)}
$$

Thank you!

References I

Macdonalds
and
chromatics
Andy Wilson

Chromatics
LLTs
Macdonalds
Loose ends
C. A. Athanasiadis.

Power sum expansion of chromatic quasisymmetric functions.
Electr. J. Combin., 22(2), 2015.
Paper P2.7.
P. Brosnan and T. Y. Chow.

Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties.
arXiv:1511.00773, November 2015.
E. Carlsson and A. Mellit.

A proof of the shuffle conjecture. arXiv:math/1508.06239, August 2015.

References II

Macdonalds and
chromatics
Andy Wilson

围 V. Gasharov.
On Stanley's chromatic symmetric function and clawfree graphs.
Discrete Math., 205:229-234, 1999.
固 I. Grojnowski and M. Haiman.
Affine Hecke algebras and positivity of LLT and macdonald polynomials.
math.berkeley.edu/ mhaiman/ftp/llt-positivity/newMay 2007.
(M. Guay-Paquet.
A second proof of the Shareshian-Wachs conjecture, by way of a new Hopf algebra. arXiv:1601.05498, January 2016.

References III

E. Haglund, M. Haiman, and N. Loehr. A combinatorial formula for Macdonald polynomials. J. Amer. Math. Soc., 18:735-761, 2005.

嗇 J. Haglund, J. Haiman, and N. Loehr.
A combinatorial formula for non-symmetric Macdonald polynomials.
Amer. J. of Math., 103:359-383, 2008.

- M. Harada and M. Precup.

The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture.
arXiv:1709.06736, September 2017.

References IV

國 J. Haglund and A. T. Wilson.
Integral form macdonald polynomials and chromatic quasisymmetric functions.
arXiv:1701.05622, January 2017.
(C. Krattenthaler, L. Orsina, and P. Papi.
Enumeration of ad-nilpotent \mathfrak{b}-ideals for simple lie algebras.
Adv. in Applied Math., 28:478-522, April 2002.
R R. P. Stanley.
A symmetric function generalization of the chromatic polynomial of a graph.
Advances in Math., 111(1):166-194, 1995.

References V

Macdonalds
and
chromatics
Andy Wilson

Chromatics

LLTs
Macdonalds
Loose ends
固 J. Shareshian and M. L. Wachs.
Chromatic quasisymmetric functions. Advances in Math., 295:497-551, 2016.

