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Dyck paths

A Dyck path of order n is a path that from (0, 0) to (n, n)
using steps

(0,1) and
(1,0)

that stays weakly above the line y = x (the diagonal).

We write Dn for the set of Dyck paths of order n.

|Dn| = 1
2n+1

(2n
n

)
, the nth Catalan number.
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Dyck paths and graphs

There is a natural graph associated with a Dyck path:

“arcs that fit under the path”

(1)

(2)

(3)

(4)

(5)

(1) (2) (3) (4) (5)

In fact, this is a bijection from Dn to incomparability
graphs of natural unit interval orders.
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The chromatic function of a Dyck path

We start with a Dyck path D ∈ Dn.

For 1 ≤ i < j ≤ n, we say i → j if i ∼ j in the graph.
Below we have 1→ 2, 2→ 3, 2→ 4, 3→ 4, and 4→ 5.

We place labels σ1, . . . , σn ∈ Z+ along the diagonal of D.

A labeling σ is proper if i → j ⇒ σi 6= σj .

coinvD(σ) := #{1 ≤ i < j ≤ n : i → j , σi < σj}

XD(x ; t) :=
∑

σ proper

tcoinvD(σ)xσ

2

1

3

2

3

t

t

t

→ t3x1x
2
2x

2
3
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A word about notation

XD(x ; t) are the chromatic quasisymmetric functions of
certain graphs [SW16].

However, these particular XD(x ; t) are always symmetric.

We can recover chromatic polynomials by setting

x = (1, . . . , 1, 0, . . .), t = 1.

I will just call the XD chromatic functions of Dyck paths.

A brief aside on “symmetric functions. . . ”
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A crash course in symmetric functions

Λ = the ring of symmetric functions.

These are power series f in variables x1, x2, . . . that are
invariant under the action

σf (x1, x2, . . .) = f (xσ(1), xσ(2), . . .)

for any permutation σ ∈ Sn for every n.

Λ is often considered in terms of its (many) linear bases.

monomial basis mλ

power sum basis pλ
homogeneous basis hλ
elementary basis eλ
Schur basis sλ

where each λ ranges over all integer partitions.

Let’s define a few of these.
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Classical symmetric function bases

For a partition λ = λ1 ≥ λ2 ≥ . . . ≥ λk > 0,

mλ =
∑
i1 6=ik

xλ1i1
. . . xλkik

pn =
∑
i

xni

pλ = pλ1 . . . pλk

hn =
∑

i1≤...≤in

xi1 . . . xin

hλ = hλ1 . . . hλk

en =
∑

i1<...<ik

xi1 . . . xin

eλ = eλ1 . . . eλk

Many more . . . .
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Schur functions

Schur functions are the unique basis sµ satisfying

sµ ∈ span{mλ : λ ≤ µ}
sµ|mµ = 1

〈sλ, sµ〉 = 0 if λ 6= µ

for

< an extension of the dominance order, and

〈−,−〉 the Hall inner product.
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Positivity

You are handed a symmetric function f .

Maybe f is defined by its monomial basis expansion.

This is sometimes called a combinatorial definition.

Often this expansion is positive.

i.e. coefficients in N or N[q] or N[q, t] or . . . .

Is f positive in other bases?



Macdonalds
and

chromatics

Andy Wilson

Chromatics

LLTs

Macdonalds

Loose ends

Positivity

You are handed a symmetric function f .

Maybe f is defined by its monomial basis expansion.

This is sometimes called a combinatorial definition.

Often this expansion is positive.

i.e. coefficients in N or N[q] or N[q, t] or . . . .

Is f positive in other bases?



Macdonalds
and

chromatics

Andy Wilson

Chromatics

LLTs

Macdonalds

Loose ends

Positivity

You are handed a symmetric function f .

Maybe f is defined by its monomial basis expansion.

This is sometimes called a combinatorial definition.

Often this expansion is positive.

i.e. coefficients in N or N[q] or N[q, t] or . . . .

Is f positive in other bases?



Macdonalds
and

chromatics

Andy Wilson

Chromatics

LLTs

Macdonalds

Loose ends

Positivity

You are handed a symmetric function f .

Maybe f is defined by its monomial basis expansion.

This is sometimes called a combinatorial definition.

Often this expansion is positive.

i.e. coefficients in N or N[q] or N[q, t] or . . . .

Is f positive in other bases?



Macdonalds
and

chromatics

Andy Wilson

Chromatics

LLTs

Macdonalds

Loose ends

Positivity graph

eλ hλ

sλ pλ

mλ

*

Schur positive ⇒ Frobenius image of a symmetric group
representation.

e/h positive ⇒ this representation is especially nice.

e/h positivity rare “in nature.”
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Plethysm

Not so bad!

For A = ±a1 ± a2 ± . . ., each ai a monic monomial,

pk [A] := ±ak1 ± ak2 . . .

and extend to form a homomorphism on Λ.

For example,

pk [(t − 1)x ] = pk [(t − 1)(x1 + x2 + . . .)]

= pk [tx1 + tx2 + . . .− (x1 + x2 + . . .)]

= tkxk1 + tkxk2 + . . .− xk1 − xk2 − . . .
= (tk − 1)(xk1 + xk2 + . . .)

= (tk − 1)pk .

End of crash course.
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Back to chromatic functions

Much is known about these functions. They are . . .

symmetric [SW16].

positive in Schur basis [SW16, Gas99].

positive (after ω) in pλ/zλ basis [Ath15].

characters of certain Hessenberg varieties [BC15, GP16].

conjecturally e positive [SW16, Sta95].

proven e positive for “one-bounce” paths [HP17].
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A bounce characterization of height

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its
Hessenberg ideal.
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ab above path ⇒ ta − tb ∈ I

Height is max. k such that

k∑
i=1

(tai − tbi ) ∈ I

Abelian means height = 1
[HP17].

Take cells above bounce peaks.

Lower series looks like . . . .
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Unicellular LLT polynomials

What if we remove the properness condition?

LLTD(x ; t) :=
∑
σ

xσtcoinvD(σ)

At t = 1, we just get hn for any Dyck path of size n.

For general t, we recover the unicellular LLT polynomials.

Much harder to handle:

Connected to Hecke algebra bases [GH07].
This gives Schur positivity but not Schur expansion.
Not e positive as stated, but e positive after t → t + 1
(conjecturally, due to Alexandersson, F. Bergeron, others).
Fundamental to symmetric function theory!
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Plethystic relationship

Observation

LLTD(x ; t) = (t − 1)nXD [x/(t − 1); t]

Proof uses superization argument [HHL05].

Plethysm plays nicest with power sums.

We can transform the power sum expansion of XD into an
expansion for LLTD .

Scary formula incoming . . . .
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Power sum expansion

Corollary

ωLLTD(x ; t) =
∑
λ`n

(t − 1)n−`(λ)pλ
zλ

∑
σ∈Ñλ(D)

t invD(σ)

Ñλ(D) contains all permutations σ ∈ Sn such that, when
σ is broken into segments of lengths λ1, λ2, . . . ,

the leftmost entry in each segment is smallest, and
within each segment, σi < σi+1 ⇒ σi 6→ σi+1.

invD(σ) = area(D)− coinvD(σ)

Can this relationship be pushed further?
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Ñλ(D) contains all permutations σ ∈ Sn such that, when
σ is broken into segments of lengths λ1, λ2, . . . ,

the leftmost entry in each segment is smallest, and
within each segment, σi < σi+1 ⇒ σi 6→ σi+1.

invD(σ) = area(D)− coinvD(σ)

Can this relationship be pushed further?



Macdonalds
and

chromatics

Andy Wilson

Chromatics

LLTs

Macdonalds

Loose ends

Power sum expansion

Corollary

ωLLTD(x ; t) =
∑
λ`n

(t − 1)n−`(λ)pλ
zλ

∑
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Macdonald polynomials

Macdonald showed that a unique basis Pµ ∈ ΛQ(q,t)

existed with the properties:

Pµ ∈ span{mλ : λ ≤ µ}
Pµ|mµ = 1

〈Pλ,Pµ〉q,t = 0 if λ 6= µ

generalizing Schur functions to a q, t-inner product.

He obtained the integral forms Jµ by “clearing
denominators.”

A combinatorial formula for Jµ was found in [HHL05]
involving proper fillings.
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A sample integral Macdonald polynomial

J2,1 =
(
−2qt4 + 5qt3 − t4 − 3qt2

+ t3 − qt + 3t2 + q − 5t + 2
)
m1,1,1

+
(
−qt4 + 2qt3 − qt2 + t2 − 2t + 1

)
m2,1

Not m positive.

What could a “combinatorial” formula look like?
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Maybe something like this

Theorem [HHL08]

Jµ′(x ; q, t) =
∑

σ:µ→Z>0
σ non-attacking

xσqmaj(σ,µ)tn(µ
′)−inv(σ,µ)

×
∏
u∈µ

σ(u)=σ(downµ(u))

(
1− qlegµ(u)+1tarmµ(u)+1

)

×
∏
u∈µ

σ(u)6=σ(downµ(u))

(1− t) .
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Partitions to Dyck paths

Given a partition µ, we form a Dyck path Dµ as
illustrated.

# squares above i inside D = # cells after i in reading
order before we return to i ’s column in µ.

D+ is D with its corners turned inside out.

1 2

3 4 5 1

2

3

4

5
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A spanning result

Theorem [HW17]

Jµ′(x ; q, t) ∈ span
{
XD(x ; t) : Dµ ⊆ D ⊆ D+

µ

}

The coefficients are in Z[q, t, t−1] but we can show that each
term is in Z[q, t] in e.g. the Schur basis.
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Example

Say µ = (3, 2), so µ′ = (2, 2, 1).

σ1 σ2
σ3 σ4 σ5 σ1

σ2

σ3

σ4

σ5

tJ(2,2,1)(x ; q, t) =
(
1− qt2

)
(1− qt)XD1(x ; t)

− (1− qt) (1− qt)XD2(x ; t)

−
(
1− qt2

)
(1− q)XD3(x ; t)

+ (1− qt) (1− q)XD4(x ; t)
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Corollaries

We can use the theorem to move expansions of XD to
expansions of Jµ.

These expansions still have cancellation but are simpler
than previous results.

Can they be simplified further?

Let’s see the Schur expansion formula.
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Integral form tableaux (IFT)

T ∈ IFTλ, µ is a bijection T : λ→ [n] such that

the rows of T are increasing,
if v is immediately right of u in T then u 6→ v in Dµ, and
if v is immediately below u and u < v then u → v in D+

µ .

An example for µ = (3, 2), λ = (2, 2, 1):

1

2

3

4

5

1 4

2 5

3
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Schur expansion

Corollary [HW17]

Jµ′(x ; q, t)
∣∣
sλ

=
∑

T∈IFTλ, µ

wt(T )

Each wt(T ) ∈ Z[q, t] is a product involving arms, legs,
and inversions.

As an example, to get J3,1|s2,2 we consider

2 4

1 3

2 3

1 4

1 4

2 3

1 3

2 4

Respective weights are q(1− t)2, qt(1− t)(1− q2t),
−t(1− q)(1− q2t), and −q2t2(1− q)(1− t).
Summing these weights and multiplying by (1− t)2, we get

J3,1(x ; q, t)|s2,2 = (1− t)2(q − t)(1− qt)(1 + qt).
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Other corollaries

We get similar expansions for p basis.

All formulas specialize to integral form Jack polynomials.

Don’t know how to manage cancellation yet.
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A nonsymmetric version

ΛQ(q,t) → Q(q, t)[x1, . . . , xn]

Jµ(x ; q, t)→ Eγ(x ; q, t) (γ ∈ Nn)

Eµ(x ; q, t) also have a combinatorial formula [HHL08].

We can write Eγ as a sum of certain nonsymmetric
chromatic functions.
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Nonsymmetric chromatic functions

Start with a partial Dyck path from (0, k) to (n, n).

Fill in the first k labels with k, k− 1, . . . , 1.

Complete proper labeling using labels 1 through k .

Take t to the number of coinversions.

Sum over all these monomials (ignoring forced labels).

3

2

1

3

2
t t

→ t2x2x3
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More on nonsymmetric chromatic functions

3

2

1

3

2
t t

→ t2x2x3

These are similar to partial Dyck path characters [CM15].

They seem to be key (Demazure character) positive.

Is there a geometric interpretation?

May have easier transition to other types.
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Other avenues

More cancellation?

More specializations?

Hanlon’s Conjecture:

J
(α)
λ (x) =

∑
σ∈RS(T0)
τ∈CS(T0)

αf (σ,τ)ε(τ)ptype(στ)
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