Macdonalds and chromatics
Chromatics

LLTs

Loose ends

Macdonald polynomials and chromatic quasisymmetric functions

Andy Wilson

Portland State University

October 24, 2018

Macdonalds and chromatics Andy Wilson

Chromatic LLTs Macdonalc

Loose ends

• Chromatic functions $X_D(x; t)$

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

Chromatic functions X_D(x; t)
 Unicellular LLT polynomials LLT_D(x; t)

Macdonalds and chromatics Andy Wilson

LLTs Macdonalds

- Chromatic functions $X_D(x; t)$
- Unicellular LLT polynomials $LLT_D(x; t)$
- Integral form Macdonald polynomials $J_{\mu}(x; q, t)$

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonald:

Loose ends

- Chromatic functions $X_D(x; t)$
- Unicellular LLT polynomials $LLT_D(x; t)$
- Integral form Macdonald polynomials $J_{\mu}(x; q, t)$
- Loose ends

Macdonalds and chromatics Andy Wilson

Chromatics LLTs

Macdonalds

Loose ends

Chromatic functions

Macdonalds and chromatics

- A Dyck path of order n is a path that from (0,0) to (n, n) using steps
 - (0,1) and
 - **(1,0)**

that stays weakly above the line y = x (the *diagonal*).

Chromatics LLTs

Macdonalds

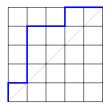
Loose ends

Macdonalds and chromatics

Chromatics

- A Dyck path of order n is a path that from (0,0) to (n, n) using steps
 - (0,1) and
 - **(1,0)**

that stays weakly above the line y = x (the *diagonal*).

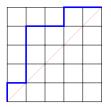


Macdonalds and chromatics

Chromatics

- A Dyck path of order n is a path that from (0,0) to (n, n) using steps
 - (0,1) and
 - (1,0)

that stays weakly above the line y = x (the *diagonal*).



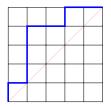
• We write \mathcal{D}_n for the set of Dyck paths of order n.

Macdonalds and chromatics

Chromatics

- A Dyck path of order n is a path that from (0,0) to (n, n) using steps
 - (0,1) and
 - **(1,0)**

that stays weakly above the line y = x (the *diagonal*).



We write D_n for the set of Dyck paths of order n.
 |D_n| = 1/(2n), the nth Catalan number.

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

Loose ends

There is a natural graph associated with a Dyck path:
"arcs that fit under the path"

Macdonalds and chromatics Andy Wilson

Chromatics

Macdonalds

Loose ends

There is a natural graph associated with a Dyck path:
"arcs that fit under the path"

				(5)
			(4)	
		(3)		
	(2)			
(1)	Í			

Macdonalds and chromatics Andy Wilson

Chromatics

Macdonalds

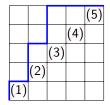
Loose ends

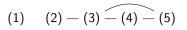
There is a natural graph associated with a Dyck path:
"arcs that fit under the path"

				(5)
			(4)	
		(3)		
	(2)			
(1)				

(1) (2) - (3) - (4) - (5)

Chromatics LLTs Macdonalds Loose ends There is a natural graph associated with a Dyck path:
"arcs that fit under the path"



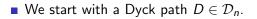


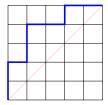
In fact, this is a bijection from \mathcal{D}_n to incomparability graphs of natural unit interval orders.

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

Loose ends





Macdonalds and chromatics

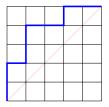
Chromatics

Macdonalds

Loose ends

We start with a Dyck path D ∈ D_n.
For 1 ≤ i ≤ j ≤ n, we say i → j if i ~ j in the graph.

Below we have $1 \rightarrow 2$, $2 \rightarrow 3$, $2 \rightarrow 4$, $3 \rightarrow 4$, and $4 \rightarrow 5$.



Macdonalds and chromatics Andy Wilson

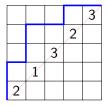
Chromatics

Loose ends

• We start with a Dyck path $D \in \mathcal{D}_n$.

- For $1 \le i < j \le n$, we say $i \to j$ if $i \sim j$ in the graph.
 - $\blacksquare \text{ Below we have } 1 \rightarrow 2, 2 \rightarrow 3, 2 \rightarrow 4, 3 \rightarrow 4, \text{ and } 4 \rightarrow 5.$

• We place labels
$$\sigma_1, \ldots, \sigma_n \in \mathbb{Z}_+$$
 along the diagonal of D .



Macdonalds and chromatics Andy Wilson

Chromatics

LLTs

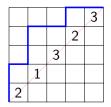
Loose ends

• We start with a Dyck path $D \in \mathcal{D}_n$.

- For $1 \le i < j \le n$, we say $i \to j$ if $i \sim j$ in the graph.
 - $\blacksquare \text{ Below we have } 1 \rightarrow 2, \, 2 \rightarrow 3, \, 2 \rightarrow 4, \, 3 \rightarrow 4, \, \text{and} \, 4 \rightarrow 5.$

• We place labels
$$\sigma_1, \ldots, \sigma_n \in \mathbb{Z}_+$$
 along the diagonal of D .

• A labeling σ is proper if $i \to j \Rightarrow \sigma_i \neq \sigma_j$.



Macdonalds and chromatics Andy Wilson

Chromatics

Macdonalds

Loose ends

• We start with a Dyck path $D \in \mathcal{D}_n$.

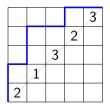
• For $1 \le i < j \le n$, we say $i \to j$ if $i \sim j$ in the graph.

 \blacksquare Below we have $1 \rightarrow 2, \, 2 \rightarrow 3, \, 2 \rightarrow 4, \, 3 \rightarrow 4, \, \text{and} \, 4 \rightarrow 5.$

• We place labels
$$\sigma_1, \ldots, \sigma_n \in \mathbb{Z}_+$$
 along the diagonal of D .

• A labeling
$$\sigma$$
 is proper if $i \to j \Rightarrow \sigma_i \neq \sigma_j$.

 $\operatorname{coinv}_D(\sigma) := \#\{1 \le i < j \le n : i \to j, \sigma_i < \sigma_j\}$



Macdonalds and chromatics Andy Wilson

Chromatics

Macdonalds

Loose ends

• We start with a Dyck path $D \in \mathcal{D}_n$.

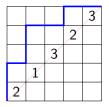
For $1 \le i < j \le n$, we say $i \to j$ if $i \sim j$ in the graph.

 $\blacksquare \ \mbox{Below we have $1 \rightarrow 2$, $2 \rightarrow 3$, $2 \rightarrow 4$, $3 \rightarrow 4$, and $4 \rightarrow 5$.}$

• We place labels
$$\sigma_1, \ldots, \sigma_n \in \mathbb{Z}_+$$
 along the diagonal of D .

• A labeling
$$\sigma$$
 is proper if $i \to j \Rightarrow \sigma_i \neq \sigma_j$.

$$egin{aligned} \mathsf{coinv}_D(\sigma) &:= \#\{1 \leq i < j \leq n : i o j, \sigma_i < \sigma_j\} \ X_D(x;t) &:= \sum_{\sigma ext{ proper}} t^{\mathsf{coinv}_D(\sigma)} x^\sigma \end{aligned}$$



Macdonalds and chromatics Andy Wilson

Chromatics

Macdonalds

Loose ends

• We start with a Dyck path $D \in \mathcal{D}_n$.

• For $1 \le i < j \le n$, we say $i \to j$ if $i \sim j$ in the graph.

 \blacksquare Below we have 1 \rightarrow 2, 2 \rightarrow 3, 2 \rightarrow 4, 3 \rightarrow 4, and 4 \rightarrow 5.

• We place labels
$$\sigma_1, \ldots, \sigma_n \in \mathbb{Z}_+$$
 along the diagonal of D .

• A labeling
$$\sigma$$
 is proper if $i \to j \Rightarrow \sigma_i \neq \sigma_j$.

$$\begin{aligned} \operatorname{coinv}_D(\sigma) &:= \# \{ 1 \leq i < j \leq n : i \to j, \sigma_i < \sigma_j \} \\ X_D(x; t) &:= \sum_{\sigma \text{ proper}} t^{\operatorname{coinv}_D(\sigma)} x^\sigma \end{aligned}$$

			t	3
	t		2	
	t	3		
	1			
2				

Macdonalds and chromatics Andy Wilson

Chromatics

Macdonalds

Loose ends

• We start with a Dyck path $D \in \mathcal{D}_n$.

• For $1 \le i < j \le n$, we say $i \to j$ if $i \sim j$ in the graph.

 $\blacksquare \ \mbox{Below we have $1 \rightarrow 2$, $2 \rightarrow 3$, $2 \rightarrow 4$, $3 \rightarrow 4$, and $4 \rightarrow 5$.}$

• We place labels
$$\sigma_1, \ldots, \sigma_n \in \mathbb{Z}_+$$
 along the diagonal of D .

• A labeling
$$\sigma$$
 is proper if $i \to j \Rightarrow \sigma_i \neq \sigma_j$.

$$\begin{aligned} \operatorname{coinv}_D(\sigma) &:= \# \{ 1 \leq i < j \leq n : i \to j, \sigma_i < \sigma_j \} \\ X_D(x; t) &:= \sum_{\sigma \text{ proper}} t^{\operatorname{coinv}_D(\sigma)} x^\sigma \end{aligned}$$

			t	3
	t		2	
	t	3		
	1			
2				

$$\rightarrow t^3 x_1 x_2^2 x_3^2$$

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs

Macdonalds

Loose ends

 X_D(x; t) are the chromatic quasisymmetric functions of certain graphs [SW16].

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs

Macdonalds

Loose ends

- X_D(x; t) are the chromatic quasisymmetric functions of certain graphs [SW16].
- However, these particular $X_D(x; t)$ are always symmetric.

Macdonalds and chromatics Andy Wilson

Chromatics

LLIS

Macdonalds

Loose ends

- X_D(x; t) are the chromatic quasisymmetric functions of certain graphs [SW16].
- However, these particular $X_D(x; t)$ are always symmetric.
- We can recover chromatic polynomials by setting

$$x = (1, \ldots, 1, 0, \ldots), t = 1.$$

Macdonalds and chromatics Andy Wilson

Chromatics

Macdonald

Loose ends

- X_D(x; t) are the chromatic quasisymmetric functions of certain graphs [SW16].
- However, these particular $X_D(x; t)$ are always symmetric.
- We can recover chromatic polynomials by setting

$$x = (1, \ldots, 1, 0, \ldots), t = 1.$$

■ I will just call the X_D chromatic functions of Dyck paths.

Macdonalds and chromatics Andy Wilson

Chromatics

Macdonalds

Loose ends

- X_D(x; t) are the chromatic quasisymmetric functions of certain graphs [SW16].
- However, these particular $X_D(x; t)$ are always symmetric.
- We can recover chromatic polynomials by setting

$$x = (1, \ldots, 1, 0, \ldots), t = 1.$$

- I will just call the X_D chromatic functions of Dyck paths.
- A brief aside on "symmetric functions..."

A crash course in symmetric functions

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

- Λ = the ring of symmetric functions.
 - These are power series *f* in variables *x*₁, *x*₂,... that are invariant under the action

$$\sigma f(x_1, x_2, \ldots) = f(x_{\sigma(1)}, x_{\sigma(2)}, \ldots)$$

for any permutation $\sigma \in \mathfrak{S}_n$ for every n.

A crash course in symmetric functions

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

- Λ = the ring of symmetric functions.
 - These are power series *f* in variables *x*₁, *x*₂,... that are invariant under the action

$$\sigma f(x_1, x_2, \ldots) = f(x_{\sigma(1)}, x_{\sigma(2)}, \ldots)$$

for any permutation $\sigma \in \mathfrak{S}_n$ for every n.

- Λ is often considered in terms of its (many) linear bases.
 - monomial basis m_{λ}
 - power sum basis p_λ
 - homogeneous basis h_{λ}
 - elementary basis e_{λ}
 - Schur basis s_{λ}

where each λ ranges over all integer partitions.

A crash course in symmetric functions

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

- Λ = the ring of symmetric functions.
 - These are power series *f* in variables *x*₁, *x*₂,... that are invariant under the action

$$\sigma f(x_1, x_2, \ldots) = f(x_{\sigma(1)}, x_{\sigma(2)}, \ldots)$$

for any permutation $\sigma \in \mathfrak{S}_n$ for every n.

- Λ is often considered in terms of its (many) linear bases.
 - monomial basis m_{λ}
 - power sum basis p_{λ}
 - homogeneous basis h_{λ}
 - elementary basis e_{λ}
 - Schur basis s_{λ}

where each λ ranges over all integer partitions.

Let's define a few of these.

Classical symmetric function bases

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

For a partition
$$\lambda = \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k > 0$$
,

$$m_{\lambda} = \sum_{i_1 \neq i_k} x_{i_1}^{\lambda_1} \dots x_{i_k}^{\lambda_k}$$
$$p_n = \sum_i x_i^n$$

$$p_{\lambda} = p_{\lambda_1} \dots p_{\lambda_k}$$
$$h_n = \sum_{i_1 \le \dots \le i_n} x_{i_1} \dots x_{i_n}$$
$$h_{\lambda} = h_{\lambda_1} \dots h_{\lambda_k}$$
$$e_n = \sum_{i_1 < \dots < i_k} x_{i_1} \dots x_{i_n}$$

$$e_{\lambda} = e_{\lambda_1} \dots e_{\lambda_k}$$

Classical symmetric function bases

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

For a partition
$$\lambda=\lambda_1\geq\lambda_2\geq\ldots\geq\lambda_k>0,$$

 $m_\lambda=\sum x_{i_1}^{\lambda_1}\ldots x_{i_k}^{\lambda_k}$

$$m_{\lambda} = \sum_{i_1 \neq i_k} x_{i_1}^{\lambda_1} \dots$$
$$p_n = \sum_i x_i^n$$

$$p_{\lambda} = p_{\lambda_1} \dots p_{\lambda_k}$$

$$h_n = \sum_{i_1 \le \dots \le i_n} x_{i_1} \dots x_{i_n}$$

$$h_{\lambda} = h_{\lambda_1} \dots h_{\lambda_k}$$

$$e_n = \sum_{i_1 < \dots < i_k} x_{i_1} \dots x_{i_n}$$

$$e_{\lambda} = e_{\lambda_1} \dots e_{\lambda_k}$$

Many more

Schur functions

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends Schur functions are the unique basis s_{μ} satisfying $s_{\mu} \in \text{span}\{m_{\lambda} : \lambda \leq \mu\}$ $s_{\mu}|_{m_{\mu}} = 1$ $\langle s_{\lambda}, s_{\mu} \rangle = 0 \text{ if } \lambda \neq \mu$

for

< an extension of the *dominance order*, and
 ⟨-, -⟩ the *Hall inner product*.

	•	. •	- N. S.	
Р	osi	-1/	/11	/
	051			y

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdonal • You are handed a symmetric function *f*.

Positivity

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdonalo • You are handed a symmetric function *f*.

• Maybe *f* is defined by its monomial basis expansion.

• This is sometimes called a *combinatorial definition*.

Positivity

Macdonalds and chromatics Andy Wilson

Chromatics

- LLTs Macdon
- Loose ends

- You are handed a symmetric function *f*.
- Maybe *f* is defined by its monomial basis expansion.
 - This is sometimes called a *combinatorial definition*.
- Often this expansion is *positive*.
 - i.e. coefficients in \mathbb{N} or $\mathbb{N}[q]$ or $\mathbb{N}[q, t]$ or

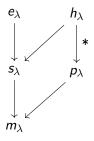
Positivity

Macdonalds and chromatics Andy Wilson

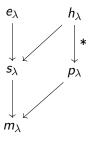
Chromatics

- LLTs Macdona
- Loose ends

- You are handed a symmetric function *f*.
- Maybe *f* is defined by its monomial basis expansion.
 - This is sometimes called a *combinatorial definition*.
- Often this expansion is *positive*.
 - i.e. coefficients in \mathbb{N} or $\mathbb{N}[q]$ or $\mathbb{N}[q, t]$ or
- Is f positive in other bases?

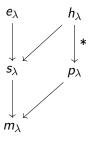


Chromatics LLTs Macdonalds Loose ends



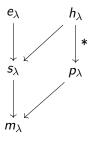
• Schur positive \Rightarrow Frobenius image of a symmetric group representation.

Chromatics LLTs Macdonalds Loose ends



- Schur positive \Rightarrow Frobenius image of a symmetric group representation.
- e/h positive \Rightarrow this representation is especially nice.

Chromatics LLTs Macdonalds Loose ends



- Schur positive \Rightarrow Frobenius image of a symmetric group representation.
- e/h positive \Rightarrow this representation is especially nice.
- e/h positivity rare "in nature."

	Plethysm
Macdonalds and chromatics	
Andy Wilson	
Chromatics	
LTs	
Macdonalds	
_oose ends	

Macdonalds and chromatics

Chromatics LLTs Macdonalds

Loose ends

Not so bad!

Macdonalds and chromatics

Chromatics LLTs

Macdonalds

Loose ends

- Not so bad!
- For $A = \pm a_1 \pm a_2 \pm \ldots$, each a_i a monic monomial,

$$p_k[A] := \pm a_1^k \pm a_2^k \dots$$

and extend to form a homomorphism on Λ .

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

Loose ends

- Not so bad!
- For $A = \pm a_1 \pm a_2 \pm \ldots$, each a_i a monic monomial,

$$p_k[A] := \pm a_1^k \pm a_2^k \dots$$

and extend to form a homomorphism on Λ.For example,

$$p_k[(t-1)x] = p_k[(t-1)(x_1 + x_2 + \dots)]$$

= $p_k[tx_1 + tx_2 + \dots - (x_1 + x_2 + \dots)]$
= $t^k x_1^k + t^k x_2^k + \dots - x_1^k - x_2^k - \dots$
= $(t^k - 1)(x_1^k + x_2^k + \dots)$
= $(t^k - 1)p_k$.

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

oose ends

Not so bad!

• For $A = \pm a_1 \pm a_2 \pm \ldots$, each a_i a monic monomial,

$$p_k[A] := \pm a_1^k \pm a_2^k \dots$$

and extend to form a homomorphism on Λ.For example,

$$p_{k}[(t-1)x] = p_{k}[(t-1)(x_{1}+x_{2}+\ldots)]$$

= $p_{k}[tx_{1}+tx_{2}+\ldots-(x_{1}+x_{2}+\ldots)]$
= $t^{k}x_{1}^{k}+t^{k}x_{2}^{k}+\ldots-x_{1}^{k}-x_{2}^{k}-\ldots$
= $(t^{k}-1)(x_{1}^{k}+x_{2}^{k}+\ldots)$
= $(t^{k}-1)p_{k}.$

End of crash course.

Macdonalds			
and			
chromatics			

Chromatics LLTs Macdonalds

Loose ends

Macdonalds and chromatics

Chromatics LLTs Macdonalds Much is known about these functions. They are ... symmetric [SW16].

Macdonalds and chromatics

Chromatics LLTs Macdonalds

Loose ends

- symmetric [SW16].
- positive in Schur basis [SW16, Gas99].

Macdonalds and chromatics

Chromatics

Macdonald

Loose ends

Much is known about these functions. They are ... symmetric [SW16].

- positive in Schur basis [SW16, Gas99].
- positive (after ω) in p_{λ}/z_{λ} basis [Ath15].

Macdonalds and chromatics

Chromatics

LLTs

Macdonalds

Loose ends

- symmetric [SW16].
- positive in Schur basis [SW16, Gas99].
- positive (after ω) in p_{λ}/z_{λ} basis [Ath15].
- characters of certain Hessenberg varieties [BC15, GP16].

Macdonalds and chromatics

Chromatics

Macdonalds

Loose ends

- symmetric [SW16].
- positive in Schur basis [SW16, Gas99].
- positive (after ω) in p_{λ}/z_{λ} basis [Ath15].
- characters of certain Hessenberg varieties [BC15, GP16].
- conjecturally *e* positive [SW16, Sta95].

Macdonalds and chromatics

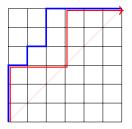
Chromatics

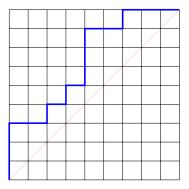
LLTs

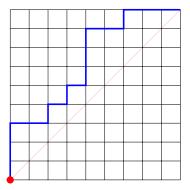
Macdonalds

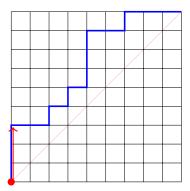
Loose ends

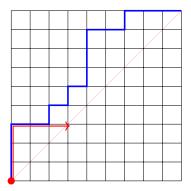
- symmetric [SW16].
- positive in Schur basis [SW16, Gas99].
- positive (after ω) in p_{λ}/z_{λ} basis [Ath15].
- characters of certain Hessenberg varieties [BC15, GP16].
- conjecturally *e* positive [SW16, Sta95].
- proven *e* positive for "one-bounce" paths [HP17].

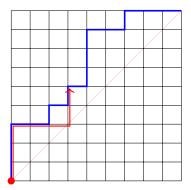


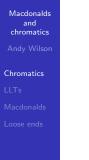


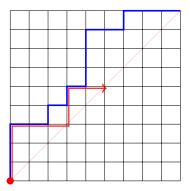


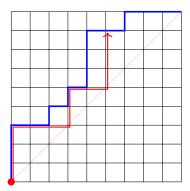


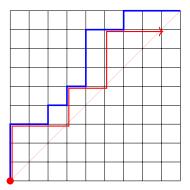


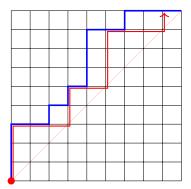


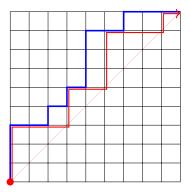


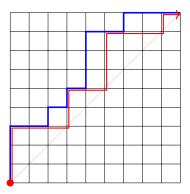




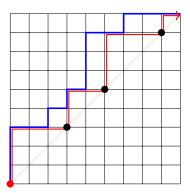




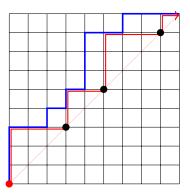




• This is the *bounce path* (Haglund).



• This is the *bounce path* (Haglund).



- This is the *bounce path* (Haglund).
- The *bounce length* is 3.

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

Theorem [KOP02]

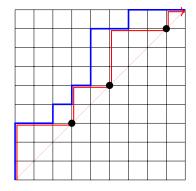
The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

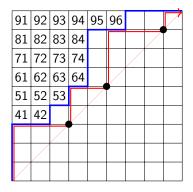


Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.



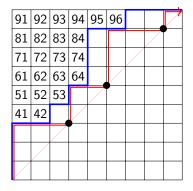
Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

• *ab* above path $\Rightarrow t_a - t_b \in I$

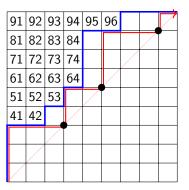


Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.



• *ab* above path \Rightarrow $t_a - t_b \in I$

Height is max. k such that

$$\sum_{i=1}^k \left(t_{a_i} - t_{b_i} \right) \in I$$

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

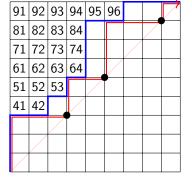
Theorem [KOP02]

The bounce length of a Dyck path is equal to the height of its Hessenberg ideal.

- *ab* above path $\Rightarrow t_a t_b \in I$
- Height is max. k such that

$$\sum_{i=1}^k \left(t_{a_i} - t_{b_i} \right) \in I$$

 Abelian means height = 1 [HP17].



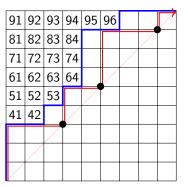
Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

- *ab* above path $\Rightarrow t_a t_b \in I$
- Height is max. k such that

$$\sum_{i=1}^k \left(t_{a_i} - t_{b_i} \right) \in I$$

- Abelian means height = 1 [HP17].
- Take cells above bounce peaks.



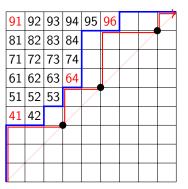
Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

- *ab* above path $\Rightarrow t_a t_b \in I$
- Height is max. k such that

$$\sum_{i=1}^k \left(t_{a_i} - t_{b_i} \right) \in I$$

- Abelian means height = 1 [HP17].
- Take cells above bounce peaks.



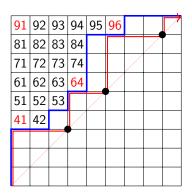
Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

- *ab* above path $\Rightarrow t_a t_b \in I$
- Height is max. k such that

$$\sum_{i=1}^k \left(t_{a_i} - t_{b_i} \right) \in I$$

- Abelian means height = 1 [HP17].
- Take cells above bounce peaks.
- Lower series looks like



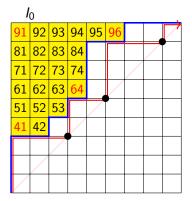
Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

- *ab* above path $\Rightarrow t_a t_b \in I$
- Height is max. k such that

$$\sum_{i=1}^k \left(t_{a_i} - t_{b_i} \right) \in I$$

- Abelian means height = 1 [HP17].
- Take cells above bounce peaks.
- Lower series looks like



Macdonalds and chromatics Andy Wilson

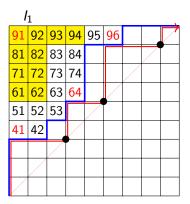
Chromatics LLTs Macdonalds

Theorem [KOP02]

- *ab* above path $\Rightarrow t_a t_b \in I$
- Height is max. k such that

$$\sum_{i=1}^k \left(t_{a_i} - t_{b_i} \right) \in I$$

- Abelian means height = 1 [HP17].
- Take cells above bounce peaks.
 - Lower series looks like



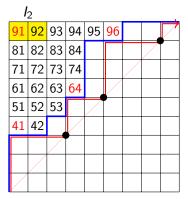
Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

- *ab* above path $\Rightarrow t_a t_b \in I$
- Height is max. k such that

$$\sum_{i=1}^k \left(t_{a_i} - t_{b_i} \right) \in I$$

- Abelian means height = 1 [HP17].
- Take cells above bounce peaks.
- Lower series looks like



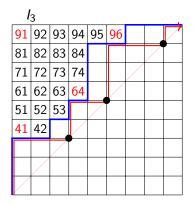
Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

- *ab* above path $\Rightarrow t_a t_b \in I$
- Height is max. k such that

$$\sum_{i=1}^k \left(t_{a_i} - t_{b_i} \right) \in I$$

- Abelian means height = 1 [HP17].
- Take cells above bounce peaks.
- Lower series looks like



Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdona

Loose ends

LLT polynomials

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdona

Loose ends

What if we remove the properness condition?

$$LLT_D(x;t) := \sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_D(\sigma)}$$

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdonalds

Loose ends

What if we remove the properness condition?

$$LLT_D(x;t) := \sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_D(\sigma)}$$

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdonalds

Loose ends

What if we remove the properness condition?

$$LLT_D(x;t) := \sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_D(\sigma)}$$

• At t = 1, we just get h_n for any Dyck path of size n.

For general *t*, we recover the *unicellular LLT polynomials*.

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdonalds

Loose ends

What if we remove the properness condition?

$$LLT_D(x;t) := \sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_D(\sigma)}$$

- For general *t*, we recover the *unicellular LLT polynomials*.
- Much harder to handle:

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdonalds

Loose ends

What if we remove the properness condition?

$$LLT_D(x;t) := \sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_D(\sigma)}$$

- For general *t*, we recover the *unicellular LLT polynomials*.
- Much harder to handle:
 - Connected to Hecke algebra bases [GH07].

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdonald

Loose ends

What if we remove the properness condition?

$$LLT_D(x;t) := \sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_D(\sigma)}$$

- For general *t*, we recover the *unicellular LLT polynomials*.
- Much harder to handle:
 - Connected to Hecke algebra bases [GH07].
 - This gives Schur positivity but not Schur expansion.

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdonalds

Loose ends

What if we remove the properness condition?

$$LLT_D(x;t) := \sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_D(\sigma)}$$

- For general *t*, we recover the *unicellular LLT polynomials*.
- Much harder to handle:
 - Connected to Hecke algebra bases [GH07].
 - This gives Schur positivity but not Schur expansion.
 - Not *e* positive as stated, but *e* positive after $t \rightarrow t + 1$ (conjecturally, due to Alexandersson, F. Bergeron, others).

Macdonalds and chromatics Andy Wilson

Chromatics

Macdonalds

LLTs

Loose ends

What if we remove the properness condition?

$$LLT_D(x;t) := \sum_{\sigma} x^{\sigma} t^{\operatorname{coinv}_D(\sigma)}$$

- For general *t*, we recover the *unicellular LLT polynomials*.
- Much harder to handle:
 - Connected to Hecke algebra bases [GH07].
 - This gives Schur positivity but not Schur expansion.
 - Not *e* positive as stated, but *e* positive after $t \rightarrow t + 1$ (conjecturally, due to Alexandersson, F. Bergeron, others).
 - Fundamental to symmetric function theory!

Macdonalds and chromatics

Chromatics

Loose ends

$$LLT_D(x; t) = (t - 1)^n X_D[x/(t - 1); t]$$

Macdonalds and chromatics Andy Wilson

Chromatics LLTs

Macdonalds

Loose ends

Observation

$$LLT_D(x; t) = (t - 1)^n X_D[x/(t - 1); t]$$

Proof uses superization argument [HHL05].

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

Loose ends

$$LLT_D(x; t) = (t - 1)^n X_D[x/(t - 1); t]$$

- Proof uses superization argument [HHL05].
- Plethysm plays nicest with power sums.

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

$$LLT_D(x; t) = (t - 1)^n X_D[x/(t - 1); t]$$

- Proof uses superization argument [HHL05].
- Plethysm plays nicest with power sums.
- We can transform the power sum expansion of *X_D* into an expansion for *LLT_D*.

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

$$LLT_D(x; t) = (t - 1)^n X_D[x/(t - 1); t]$$

- Proof uses superization argument [HHL05].
- Plethysm plays nicest with power sums.
- We can transform the power sum expansion of *X_D* into an expansion for *LLT_D*.
- Scary formula incoming

Macdonalds and chromatics Andy Wilson

Chromatics

LLTs Macdona

Loose ends

Corollary

$$\omega LLT_D(x;t) = \sum_{\lambda \vdash n} \frac{(t-1)^{n-\ell(\lambda)} p_{\lambda}}{z_{\lambda}} \sum_{\sigma \in \widetilde{\mathcal{N}}_{\lambda}(D)} t^{\mathsf{inv}_D(\sigma)}$$

Macdonalds and chromatics Andy Wilson

Corollary

Chromatics

LLTs Macdonalds

Loose ends

 $\omega LLT_D(x;t) = \sum_{\lambda \vdash n} \frac{(t-1)^{n-\ell(\lambda)} p_{\lambda}}{z_{\lambda}} \sum_{\sigma \in \widetilde{\mathcal{N}}_{\lambda}(D)} t$

• $\widetilde{\mathcal{N}}_{\lambda}(D)$ contains all permutations $\sigma \in \mathfrak{S}_n$ such that, when σ is broken into segments of lengths $\lambda_1, \lambda_2, \ldots$,

• the leftmost entry in each segment is smallest, and

• within each segment, $\sigma_i < \sigma_{i+1} \Rightarrow \sigma_i \not\rightarrow \sigma_{i+1}$.

Macdonalds and chromatics Andy Wilson

Chromatics

Macdonalds

Loose ends

Corollary

$$\omega LLT_D(x;t) = \sum_{\lambda \vdash n} \frac{(t-1)^{n-\ell(\lambda)} p_{\lambda}}{z_{\lambda}} \sum_{\sigma \in \widetilde{\mathcal{N}}_{\lambda}(D)} t^{\mathsf{inv}_D(\sigma)}$$

• $\mathcal{N}_{\lambda}(D)$ contains all permutations $\sigma \in \mathfrak{S}_n$ such that, when σ is broken into segments of lengths $\lambda_1, \lambda_2, \ldots$,

- the leftmost entry in each segment is smallest, and
- within each segment, $\sigma_i < \sigma_{i+1} \Rightarrow \sigma_i \not\rightarrow \sigma_{i+1}$.

• $\operatorname{inv}_D(\sigma) = \operatorname{area}(D) - \operatorname{coinv}_D(\sigma)$

Macdonalds and chromatics Andy Wilson

Chromatics LLTs

Macdonalds

Loose ends

Corollary

$$\omega LLT_D(x;t) = \sum_{\lambda \vdash n} \frac{(t-1)^{n-\ell(\lambda)} p_{\lambda}}{z_{\lambda}} \sum_{\sigma \in \widetilde{\mathcal{N}}_{\lambda}(D)} t^{\mathsf{inv}_D(\sigma)}$$

• $\mathcal{N}_{\lambda}(D)$ contains all permutations $\sigma \in \mathfrak{S}_n$ such that, when σ is broken into segments of lengths $\lambda_1, \lambda_2, \ldots$,

- the leftmost entry in each segment is smallest, and
- within each segment, $\sigma_i < \sigma_{i+1} \Rightarrow \sigma_i \not\rightarrow \sigma_{i+1}$.
- $\operatorname{inv}_D(\sigma) = \operatorname{area}(D) \operatorname{coinv}_D(\sigma)$
- Can this relationship be pushed further?

Macdonalds and chromatics Andy Wilson

Macdonalds

Loose ends

Macdonald polynomials

Macdonald polynomials

Macdonalds and chromatics Andy Wilson Chromatics

LLTs

Macdonalds

Loose ends

• Macdonald showed that a unique basis $P_{\mu} \in \Lambda_{\mathbb{Q}(q,t)}$ existed with the properties:

 $egin{aligned} & P_{\mu} \in ext{span}\{m_{\lambda}: \lambda \leq \mu\} \ & P_{\mu}|_{m_{\mu}} = 1 \ & \langle P_{\lambda}, P_{\mu}
angle_{q,t} = 0 ext{ if } \lambda
eq \mu \end{aligned}$

generalizing Schur functions to a q, t-inner product.

Macdonald polynomials

Macdonalds and chromatics Andy Wilson Chromatics

Macdonalds

Loose ends

• Macdonald showed that a unique basis $P_{\mu} \in \Lambda_{\mathbb{Q}(q,t)}$ existed with the properties:

$$egin{aligned} & P_{\mu} \in \mathsf{span}\{m_{\lambda}: \lambda \leq \mu\} \ & P_{\mu}|_{m_{\mu}} = 1 \ & \langle P_{\lambda}, P_{\mu}
angle_{q,t} = 0 ext{ if } \lambda
eq \mu \end{aligned}$$

generalizing Schur functions to a q, t-inner product.

He obtained the *integral forms* J_µ by "clearing denominators."

Macdonald polynomials

Macdonalds and chromatics Andy Wilson Chromatics

Macdonalds

• Macdonald showed that a unique basis $P_{\mu} \in \Lambda_{\mathbb{Q}(q,t)}$ existed with the properties:

$$egin{aligned} & P_{\mu}\in ext{span}\{m_{\lambda}:\lambda\leq \mu\ & P_{\mu}|_{m_{\mu}}=1\ & \langle P_{\lambda},P_{\mu}
angle_{q,t}=0 ext{ if }\lambda
eq \mu \end{aligned}$$

generalizing Schur functions to a q, t-inner product.

- He obtained the *integral forms* J_µ by "clearing denominators."
- A combinatorial formula for J_μ was found in [HHL05] involving proper fillings.

A sample integral Macdonald polynomial


```
Loose ends
```

$$\begin{split} J_{2,1} &= \left(-2qt^4 + 5qt^3 - t^4 - 3qt^2 \right. \\ &+ t^3 - qt + 3t^2 + q - 5t + 2\right) m_{1,1,1} \\ &+ \left(-qt^4 + 2qt^3 - qt^2 + t^2 - 2t + 1\right) m_{2,1} \end{split}$$

A sample integral Macdonald polynomial

Loose ends

$$\begin{split} J_{2,1} &= \left(-2qt^4 + 5qt^3 - t^4 - 3qt^2 \right. \\ &+ t^3 - qt + 3t^2 + q - 5t + 2\right) m_{1,1,1} \\ &+ \left(-qt^4 + 2qt^3 - qt^2 + t^2 - 2t + 1\right) m_{2,1} \end{split}$$

Not *m* positive.

A sample integral Macdonald polynomial

Macdonalds and chromatics Andy Wilson Chromatics LLTs Macdonalds

 $egin{aligned} J_{2,1} &= \left(-2qt^4 + 5qt^3 - t^4 - 3qt^2
ight. \ &+ t^3 - qt + 3t^2 + q - 5t + 2
ight) m_{1,1,1} \ &+ \left(-qt^4 + 2qt^3 - qt^2 + t^2 - 2t + 1
ight) m_{2,1} \end{aligned}$

Not *m* positive.

What could a "combinatorial" formula look like?

Maybe something like this

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

Theorem [HHL08]

$$\begin{split} J_{\mu'}(x;q,t) &= \sum_{\substack{\sigma: \mu \to \mathbb{Z}_{>0} \\ \sigma \text{ non-attacking}}} x^{\sigma} q^{\operatorname{maj}(\sigma,\mu)} t^{n(\mu')-\operatorname{inv}(\sigma,\mu)} \\ &\times \prod_{\substack{u \in \mu \\ \sigma(u) = \sigma(\operatorname{down}_{\mu}(u))}} \left(1 - q^{\operatorname{leg}_{\mu}(u)+1} t^{\operatorname{arm}_{\mu}(u)+1}\right) \\ &\times \prod_{\substack{u \in \mu \\ \sigma(u) \neq \sigma(\operatorname{down}_{\mu}(u))}} \left(1 - t\right). \end{split}$$

Partitions to Dyck paths

Macdonalds

Loose ends

- Given a partition μ , we form a Dyck path D_{μ} as illustrated.
 - # squares above *i* inside D = # cells after *i* in reading order before we return to *i*'s column in μ.

1	2	
3	4	5

				5
			4	
		3		
	2			
1				

Partitions to Dyck paths

Macdonalds and chromatics Andy Wilson

Chromati

Macdonalds

Loose ends

- Given a partition μ , we form a Dyck path D_{μ} as illustrated.
 - # squares above *i* inside D = # cells after *i* in reading order before we return to *i*'s column in μ.
- D^+ is D with its corners turned inside out.

1	2	
3	4	5

				5
			4	
		3		
	2			
1				

Partitions to Dyck paths

Macdonalds and chromatics Andy Wilson

Chromati

Macdonalds

Loose ends

- Given a partition μ , we form a Dyck path D_{μ} as illustrated.
 - # squares above *i* inside D = # cells after *i* in reading order before we return to *i*'s column in μ.
- D^+ is D with its corners turned inside out.

1	2	
3	4	5

				5
			4	
		3		
	2			
1				

A spanning result

Macdonalds and chromatics Andy Wilson

Chromatic

LLTs

Macdonalds

Loose ends

Theorem [HW17]

$$J_{\mu'}(x; q, t) \in {
m span}\left\{X_D(x; t): D_\mu \subseteq D \subseteq D_\mu^+
ight\}$$

A spanning result

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

Theorem [HW17]

$$J_{\mu'}(x;q,t)\in ext{span}\left\{X_D(x;t):D_\mu\subseteq D\subseteq D_\mu^+
ight\}$$

The coefficients are in $\mathbb{Z}[q, t, t^{-1}]$ but we can show that each term is in $\mathbb{Z}[q, t]$ in e.g. the Schur basis.

Macdonalds and chromatics Andy Wilson Chromatics LLTs Macdonalds

Loose ends

Say $\mu = (3, 2)$, so $\mu' = (2, 2, 1)$.

σ_1	σ_2	
σ_3	σ_4	σ_5

				σ_5
			σ_4	
		σ_3		
	σ_2			
σ_1				

$$tJ_{(2,2,1)}(x;q,t) = (1-qt^2)(1-qt)X_{D_1}(x;t)$$

Macdonalds and chromatics Andy Wilson Chromatics LLTs Macdonalds

Loose ends

Say
$$\mu = (3, 2)$$
, so $\mu' = (2, 2, 1)$.

 $\begin{array}{c|c} \sigma_1 & \sigma_2 \\ \hline \sigma_3 & \sigma_4 & \sigma_5 \end{array}$

				σ_5
			σ_4	
		σ_3		
	σ_2			
σ_1				

$$egin{aligned} t J_{(2,2,1)}(x;q,t) &= \left(1-qt^2
ight) \left(1-qt
ight) X_{D_1}(x;t) \ &- \left(1-qt
ight) \left(1-qt
ight) X_{D_2}(x;t) \end{aligned}$$

Macdonalds and chromatics Andy Wilson Chromatics LLTs Macdonalds

_oose ends

Say $\mu = (3, 2)$, so $\mu' = (2, 2, 1)$.

				σ_{5}
			σ_4	
		σ_3		
	σ_2			
σ_1				

$$\begin{array}{c|c} \sigma_1 & \sigma_2 \\ \hline \sigma_3 & \sigma_4 & \sigma_5 \end{array}$$

$$egin{aligned} t J_{(2,2,1)}(x;q,t) &= \left(1-qt^2
ight) \left(1-qt
ight) X_{D_1}(x;t) \ &- \left(1-qt
ight) \left(1-qt
ight) X_{D_2}(x;t) \ &- \left(1-qt^2
ight) \left(1-q
ight) X_{D_3}(x;t) \end{aligned}$$

Macdonalds and chromatics Andy Wilson Chromatics LLTs Macdonalds

_oose ends

Say $\mu = (3, 2)$, so $\mu' = (2, 2, 1)$.

 $\begin{array}{c|c} \sigma_1 & \sigma_2 \\ \hline \sigma_3 & \sigma_4 & \sigma_5 \end{array}$

				σ_{5}
			σ_4	
		σ_3		
	σ_2			
σ_1				

$$egin{aligned} t J_{(2,2,1)}(x;q,t) &= \left(1-qt^2
ight) \left(1-qt
ight) X_{D_1}(x;t) \ &- \left(1-qt
ight) \left(1-qt
ight) X_{D_2}(x;t) \ &- \left(1-qt^2
ight) \left(1-q
ight) X_{D_3}(x;t) \ &+ \left(1-qt
ight) \left(1-q
ight) X_{D_4}(x;t) \end{aligned}$$

Macdonalds and chromatics Andy Wilson

LLTs

Macdonalds

Loose ends

• We can use the theorem to move expansions of X_D to expansions of J_{μ} .

- Macdonalds and chromatics Andy Wilson
- LLTs
- Macdonalds
- Loose ends

- We can use the theorem to move expansions of X_D to expansions of J_µ.
- These expansions still have cancellation but are simpler than previous results.

- Macdonalds and chromatics Andy Wilson
- LLTs
- Macdonalds
- Loose ends

- We can use the theorem to move expansions of X_D to expansions of J_µ.
- These expansions still have cancellation but are simpler than previous results.
- Can they be simplified further?

Macdonalds and chromatics Andy Wilson Chromatics

Macdonalds

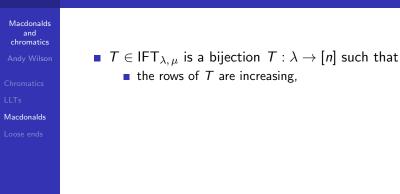
- We can use the theorem to move expansions of X_D to expansions of J_µ.
 - These expansions still have cancellation but are simpler than previous results.
 - Can they be simplified further?
 - Let's see the Schur expansion formula.

LLTs

Macdonalds

Loose ends

• $T \in IFT_{\lambda,\mu}$ is a bijection $T : \lambda \rightarrow [n]$ such that



Chromatic

LLIS

Macdonalds

- $T \in \mathsf{IFT}_{\lambda,\mu}$ is a bijection $T : \lambda \to [n]$ such that
 - the rows of T are increasing,
 - if v is immediately right of u in T then $u \not\rightarrow v$ in D_{μ} , and

Chromatics

LLTs

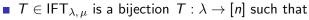
Macdonalds

- $T \in \mathsf{IFT}_{\lambda,\mu}$ is a bijection $T : \lambda \to [n]$ such that
 - the rows of T are increasing,
 - if v is immediately right of u in T then $u \not\rightarrow v$ in D_{μ} , and
 - if v is immediately below u and u < v then $u \rightarrow v$ in D_{μ}^+ .

Macdonalds and chromatics Andy Wilson

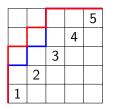
Chromatic

Macdonalds



- the rows of T are increasing,
- if v is immediately right of u in T then $u \not\rightarrow v$ in D_{μ} , and
- if v is immediately below u and u < v then $u \rightarrow v$ in D_{μ}^+ .

An example for
$$\mu = (3,2)$$
, $\lambda = (2,2,1)$:



3	
2	5
1	4

Corollary [HW17]

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

$$\left|J_{\mu'}(x;q,t)
ight|_{s_{\lambda}} = \sum_{T\in\mathsf{IFT}_{\lambda,\,\mu}}\mathsf{wt}(T)$$

■ Each wt(T) ∈ Z[q, t] is a product involving arms, legs, and inversions.

Corollary [HW17]

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

$$J_{\mu'}(x; q, t) \big|_{s_{\lambda}} = \sum_{T \in \mathsf{IFT}_{\lambda, \mu}} \mathsf{wt}(T)$$

- Each wt(T) $\in \mathbb{Z}[q, t]$ is a product involving arms, legs, and inversions.
 - As an example, to get $J_{3,1}|_{s_{2,2}}$ we consider

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

_oose ends

Corollary [HW17]

$$J_{\mu'}(x;q,t)\big|_{s_{\lambda}} = \sum_{T \in \mathsf{IFT}_{\lambda,\mu}} \mathsf{wt}(T)$$

- Each wt(T) $\in \mathbb{Z}[q, t]$ is a product involving arms, legs, and inversions.
 - As an example, to get $J_{3,1}|_{s_{2,2}}$ we consider

Respective weights are $q(1-t)^2$, $qt(1-t)(1-q^2t)$, $-t(1-q)(1-q^2t)$, and $-q^2t^2(1-q)(1-t)$.

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

_oose ends

Corollary [HW17]

$$J_{\mu'}(x; q, t) \big|_{s_{\lambda}} = \sum_{T \in \mathsf{IFT}_{\lambda, \mu}} \mathsf{wt}(T)$$

- Each wt(T) $\in \mathbb{Z}[q, t]$ is a product involving arms, legs, and inversions.
 - As an example, to get $J_{3,1}|_{s_{2,2}}$ we consider

- Respective weights are $q(1-t)^2$, $qt(1-t)(1-q^2t)$, $-t(1-q)(1-q^2t)$, and $-q^2t^2(1-q)(1-t)$.
- Summing these weights and multiplying by $(1-t)^2$, we get $J_{3,1}(x; q, t)|_{s_{2,2}} = (1-t)^2(q-t)(1-qt)(1+qt).$

Other corollaries

Macdonalds and chromatics Andy Wilson

LLTs Macdonalds

Loose ends

• We get similar expansions for p basis.

Other corollaries

Macdonalds and chromatics Andy Wilson Chromatics

Macdonalds

- We get similar expansions for p basis.
- All formulas specialize to integral form Jack polynomials.

Other corollaries

- Macdonalds and chromatics Andy Wilson Chromatics
- Macdonalds
- Loose ends

- We get similar expansions for *p* basis.
- All formulas specialize to integral form Jack polynomials.
- Don't know how to manage cancellation yet.

Macdonalds and chromatics Andy Wilson

Chromatio

Macdonalds

Loose ends

Macdonalds and chromatics Andy Wilson

Macdonalds

Loose ends

 $\Lambda_{\mathbb{Q}(q,t)} \to \mathbb{Q}(q,t)[x_1,\ldots,x_n]$

Macdonalds and chromatics Andy Wilson Chromatics

LLTs

Macdonalds

Loose ends

 $egin{aligned} &\Lambda_{\mathbb{Q}(q,t)} o \mathbb{Q}(q,t)[x_1,\ldots,x_n] \ &J_{\mu}(x;q,t) o \mathcal{E}_{\gamma}(x;q,t) \ \ (\gamma \in \mathbb{N}^n) \end{aligned}$

Macdonalds and chromatics Andy Wilson Chromatics

Macdonalds

Loose ends

$$egin{aligned} &\Lambda_{\mathbb{Q}(q,t)} o \mathbb{Q}(q,t)[x_1,\ldots,x_n] \ &J_{\mu}(x;q,t) o \mathcal{E}_{\gamma}(x;q,t) \ \ (\gamma \in \mathbb{N}^n) \end{aligned}$$

• $\mathcal{E}_{\mu}(x; q, t)$ also have a combinatorial formula [HHL08].

Macdonalds and chromatics Andy Wilson Chromatics LLTs

Macdonalds

Loose ends

$$egin{aligned} &\Lambda_{\mathbb{Q}(q,t)} o \mathbb{Q}(q,t)[x_1,\ldots,x_n] \ &J_{\mu}(x;q,t) o \mathcal{E}_{\gamma}(x;q,t) \ \ (\gamma \in \mathbb{N}^n) \end{aligned}$$

*E*_μ(*x*; *q*, *t*) also have a combinatorial formula [HHL08].
We can write *E*_γ as a sum of certain *nonsymmetric chromatic functions*.

Macdonalds and chromatics Andy Wilson

LLTs

Macdonalds

Loose ends

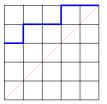
• Start with a *partial Dyck path* from (0, k) to (n, n).

Macdonalds and chromatics Andy Wilson

LLTs

Loose ends

• Start with a *partial Dyck path* from (0, k) to (n, n).



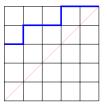
Macdonalds and chromatics Andy Wilson

LLTs

Macdonalds

Loose ends

Start with a *partial Dyck path* from (0, k) to (n, n).
Fill in the first k labels with k, k - 1, ..., 1.



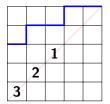
Macdonalds and chromatics Andy Wilson

LLTs

Macdonalds

Loose ends

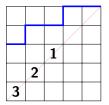
Start with a *partial Dyck path* from (0, k) to (n, n).
Fill in the first k labels with k, k - 1, ..., 1.



Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends • Start with a *partial Dyck path* from (0, k) to (n, n).

- Fill in the first k labels with \mathbf{k} , $\mathbf{k} \mathbf{1}$, ..., $\mathbf{1}$.
- Complete proper labeling using labels 1 through k.



Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends

- Start with a *partial Dyck path* from (0, k) to (n, n).
- Fill in the first k labels with \mathbf{k} , $\mathbf{k} \mathbf{1}$, ..., $\mathbf{1}$.
- Complete proper labeling using labels 1 through k.

				2
			3	
		1		
	2			
3				

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

- Start with a *partial Dyck path* from (0, k) to (n, n).
- Fill in the first k labels with $\mathbf{k}, \mathbf{k} \mathbf{1}, \ldots, \mathbf{1}$.
- Complete proper labeling using labels 1 through k.
- Take t to the number of coinversions.

				2
			3	
		1		
	2			
3				

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

- Start with a *partial Dyck path* from (0, k) to (n, n).
- Fill in the first k labels with $\mathbf{k}, \mathbf{k} \mathbf{1}, \ldots, \mathbf{1}$.
- Complete proper labeling using labels 1 through k.
- Take t to the number of coinversions.

				2
	t	t	3	
		1		
	2			
3				

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

- Start with a *partial Dyck path* from (0, k) to (n, n).
- Fill in the first k labels with $\mathbf{k}, \mathbf{k} \mathbf{1}, \ldots, \mathbf{1}$.
- Complete proper labeling using labels 1 through k.
- Take *t* to the number of coinversions.
- Sum over all these monomials (ignoring forced labels).

				2
	t	t	3	
		1		
	2			
3				

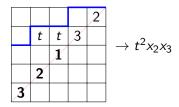
Nonsymmetric chromatic functions

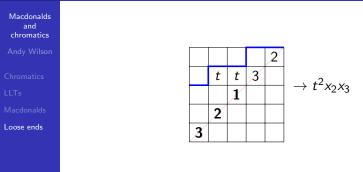
Macdonalds and chromatics Andy Wilson

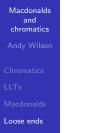
Chromatics LLTs Macdonalds

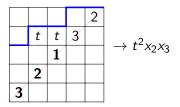
Loose ends

- Start with a *partial Dyck path* from (0, k) to (n, n).
- Fill in the first k labels with $\mathbf{k}, \mathbf{k} \mathbf{1}, \ldots, \mathbf{1}$.
- Complete proper labeling using labels 1 through k.
- Take *t* to the number of coinversions.
- Sum over all these monomials (ignoring forced labels).

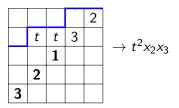




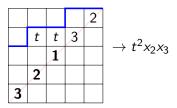




• These are similar to partial Dyck path characters [CM15].

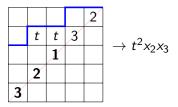


These are similar to *partial Dyck path characters* [CM15].
They seem to be *key (Demazure character) positive*.



• These are similar to partial Dyck path characters [CM15].

- They seem to be key (Demazure character) positive.
- Is there a geometric interpretation?



- These are similar to partial Dyck path characters [CM15].
- They seem to be key (Demazure character) positive.
- Is there a geometric interpretation?
- May have easier transition to other types.

	Other avenues
Macdonalds and chromatics Andy Wilson	
Chromatics	More cancellation?
LLTs	
Macdonalds	
Loose ends	

Other avenues

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds

Loose ends

- More cancellation?
- More specializations?

Other avenues

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends More cancellation?

- More specializations?
- Hanlon's Conjecture:

$$J_{\lambda}^{(\alpha)}(x) = \sum_{\substack{\sigma \in \mathsf{RS}(T_0)\\\tau \in \mathsf{CS}(T_0)}} \alpha^{f(\sigma,\tau)} \epsilon(\tau) p_{\mathsf{type}(\sigma\tau)}$$

Macdonalds and chromatics Andy Wilson

Chromati LLTs

Macdonalds

Loose ends

Thank you!

References I

Macdonalds and chromatics Andy Wilson

Loose ends

C. A. Athanasiadis.

Power sum expansion of chromatic quasisymmetric functions. *Electr. J. Combin.*, 22(2), 2015.

Paper P2.7.

P. Brosnan and T. Y. Chow.

Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties. arXiv:1511.00773, November 2015.

E. Carlsson and A. Mellit.
 A proof of the shuffle conjecture.
 arXiv:math/1508.06239, August 2015.

References II

Macdonalds and chromatics Andy Wilson

V. Gasharov.

On Stanley's chromatic symmetric function and clawfree graphs.

Discrete Math., 205:229-234, 1999.

Macdonald:

I. Grojnowski and M. Haiman.

Affine Hecke algebras and positivity of LLT and macdonald polynomials.

math.berkeley.edu/ mhaiman/ftp/llt-positivity/new-May 2007.

M. Guay-Paquet.

A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra. arXiv:1601.05498, January 2016.

References III

Macdonalds and chromatics Andy Wilson

Chromatics LLTs Macdonalds Loose ends J. Haglund, M. Haiman, and N. Loehr. A combinatorial formula for Macdonald polynomials. J. Amer. Math. Soc., 18:735–761, 2005.

J. Haglund, J. Haiman, and N. Loehr. A combinatorial formula for non-symmetric Macdonald polynomials.

Amer. J. of Math., 103:359–383, 2008.

M. Harada and M. Precup.

The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture.

arXiv:1709.06736, September 2017.

References IV

J. Haglund and A. T. Wilson.

Integral form macdonald polynomials and chromatic quasisymmetric functions.

arXiv:1701.05622, January 2017.

C. Krattenthaler, L. Orsina, and P. Papi. Enumeration of ad-nilpotent b-ideals for simple lie algebras.

Adv. in Applied Math., 28:478-522, April 2002.

R. P. Stanley.

A symmetric function generalization of the chromatic polynomial of a graph.

Advances in Math., 111(1):166–194, 1995.

References V

Macdonalds and chromatics Andy Wilson

LLTs Macdonal

Loose ends

J. Shareshian and M. L. Wachs. Chromatic quasisymmetric functions. Advances in Math., 295:497–551, 2016.