Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Singularities of Hessenberg Varieties

Erik Insko Florida Gulf Coast University

October 23, 2018

Based on joint works with Martha Precup and Alexander Yong.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Where is FGCU?

Bruhat Graphs

Semisimple Hessenberg varieties

Geometry of the Full Flag Variety

The Bruhat decomposition of $GL_n(\mathbb{C})$ is:

$$GL_n(\mathbb{C}) = \bigsqcup_{w \in \mathfrak{S}_n} BwB$$

where $w \in \mathfrak{S}_n$ is identified with the corresponding permutation matrix. This implies:

$$GL_n(\mathbb{C})/B = \bigsqcup_{w \in \mathfrak{S}_n} BwB/B$$

 $C_w := BwB/B$ is the Schubert cell.

Regular nilpotent Hessenberg varieties
00

- A Hessenberg function is a function $h: [n] \to [n]$ satisfying $h(i) \ge i$ for all $1 \le i \le n$ and $h(i+1) \ge h(i)$ for all $1 \le i < n$.
- We often represent h as a tuple $(h(1), h(2), \ldots, n)$.
- To a Hessenberg function h we associate a subspace of gl_n(C) (the vector space of n × n complex matrices) defined as

$$H(h) := \{ (a_{i,j})_{i,j \in [n]} \in \mathfrak{gl}_n(\mathbb{C}) \mid a_{i,j} = 0 \text{ if } i > h(j) \}, \quad (1)$$

which we call the **Hessenberg subspace** H(h).

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Visualize the **Hessenberg subspace** H(h) as a configuration of boxes on a square grid of size $n \times n$ whose shaded boxes correspond to the $a_{i,j}$ which are allowed to be non-zero (see Figure 1).

Figure: The picture of H(h) for h = (3, 3, 4, 5, 6, 6).

Background 0000000	Regular nilpotent Hessenberg varieties	Bruhat Graphs 000	Semisimple Hessenberg varieties

Definition

Let $A \colon \mathbb{C}^n \to \mathbb{C}^n$ be a linear operator and $h \colon [n] \to [n]$ a Hessenberg function. The **Hessenberg variety** associated to A and h is defined to be

$$\operatorname{Hess}(A,h) = \{ gB \in \operatorname{GL}_n(\mathbb{C})/B \mid g^{-1}Ag \in H(h) \}.$$
 (2)

- nilpotent $\operatorname{Hess}(N, h)$ tend to be more singular, and not very symmetric
- semisimple Hess(S, h) tend to be smoother, with more group actions

Bruhat Graphs

Semisimple Hessenberg varieties

Examples

• When N is a nilpotent matrix and h = (1, 2, 3, ..., n), then Hess(N, h) is a Springer fiber.

Bruhat Graphs

Semisimple Hessenberg varieties

Examples

- When N is a nilpotent matrix and h = (1, 2, 3, ..., n), then Hess(N, h) is a Springer fiber.
- When N_r is a regular nilpotent matrix and h = (2, 3, 4, ..., n), then $\text{Hess}(N_r, h)$ is the Peterson variety.

Bruhat Graphs

Semisimple Hessenberg varieties

Examples

- When N is a nilpotent matrix and h = (1, 2, 3, ..., n), then Hess(N, h) is a Springer fiber.
- When N_r is a regular nilpotent matrix and h = (2, 3, 4, ..., n), then $\text{Hess}(N_r, h)$ is the Peterson variety.
- When S_r is a regular semisimple matrix (diagonal with distinct eigenvalues) and h = (2, 3, 4, ..., n, n), then $\text{Hess}(S_r, h)$ is the toric variety associated to the Weyl chambers.

Bruhat Graphs

Semisimple Hessenberg varieties

Examples

- When N is a nilpotent matrix and h = (1, 2, 3, ..., n), then Hess(N, h) is a Springer fiber.
- When N_r is a regular nilpotent matrix and h = (2, 3, 4, ..., n), then $\text{Hess}(N_r, h)$ is the Peterson variety.
- When S_r is a regular semisimple matrix (diagonal with distinct eigenvalues) and h = (2, 3, 4, ..., n, n), then $\text{Hess}(S_r, h)$ is the toric variety associated to the Weyl chambers.
- For any Hessenberg function and regular semisimple element S_r, there an S_n-action on H*(Hess(S_r, h)) called the dot action.

Semisimple Hessenberg varieties

Hessenberg-Schubert cells

Let $C_w \cap \text{Hess}(A, h)$ denote the intersection of a Schubert cell with the Hessenberg variety.

Theorem (Tymoczko 06, Precup 12)

The Hessenberg-Schubert cells form a paving by affines of Hess(A, h).

Bruhat Graphs

Semisimple Hessenberg varieties

The singular locus of the Peterson variety

Kostant 1996 notes that the Peterson variety is singular and not normal.

Semisimple Hessenberg varieties

The singular locus of the Peterson variety

Kostant 1996 notes that the Peterson variety is singular and not normal.

Theorem (I.-Yong 2012)

Let N be regular nilpotent and h = (2, 3, ..., n, n) so Hess(N, h) is the Peterson variety. A point $gB \in (C_w \cap \text{Hess}(N, h))$ is singular if the torus-fixed point wB is singular in Hess(N, h). Moreover, there are only 3 nonsingular torus-fixed points in Hess(N, h).

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Theorem (I.-Yong 2012)

The Peterson variety is a local complete intersection.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Theorem (I.-Yong 2012)

The Peterson variety is a local complete intersection.

Theorem (Abe, DeDieu, Galetto, Harada 2018)

If N is regular nilpotent, then $\operatorname{Hess}(N, h)$ is a local complete intersection.

Bruhat Graphs

Semisimple Hessenberg varieties

The Bruhat Graph

Let s_i denote the simple transposition in \mathfrak{S}_n exchanging i and i + 1. The length of $w \in \mathfrak{S}_n$, denoted $\ell(w)$, is the minimum number of simple transpositions in any reduced word

$$w = s_{i_1} s_{i_2} \cdots s_{i_k}.$$

and $\ell(u) \leq \ell(w)$. The Bruhat graph of \mathfrak{S}_n is a directed graph with vertex set \mathfrak{S}_n and (labeled) edges:

for all $u, w \in \mathfrak{S}_n$ such that w = su for the transposition s which exchanges i and j and $\ell(u) \leq \ell(w)$.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Example: Bruhat Graphs for \mathfrak{S}_2 and \mathfrak{S}_3

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Example: Bruhat Graph for \mathfrak{S}_4

Motivating questions posed by Tymoczko in 2006.

• Let X be any linear operator. If the Hessenberg space is in banded form (such as the standard Hessenberg space), is Hess(X, h) pure-dimensional?

Motivating questions posed by Tymoczko in 2006.

- Let X be any linear operator. If the Hessenberg space is in banded form (such as the standard Hessenberg space), is Hess(X, h) pure-dimensional?
- Are all semisimple Hessenberg varieties smooth?

Hess. fun.	Jordan Blocks of S	Singular	Irreduc.	Pure-Dim?
(2,3,4,4)	(3,1)	Yes	No	Yes
(2,4,4,4)	(3,1)	Yes	No	No
(3,4,4,4)	(3,1)	Yes	No	Yes
(2,3,4,4)	(2,2)	Yes	No	No
(2,4,4,4)	(2,2)	Yes	No	No
(3,4,4,4)	(2,2)	Yes	Yes	Yes
(2,3,4,4)	(2,1,1)	Yes	No	No
(2,4,4,4)	(2,1,1)	Yes	No	Yes
(3,4,4,4)	(2,1,1)	Yes	Yes	Yes

Hess. fun.	Jordan Blocks of S	Singular	Irreduc.	Pure-Dim?
(2,3,4,4)	(3,1)	Yes	No	Yes
(2,4,4,4)	(3,1)	Yes	No	No
(3,4,4,4)	(3,1)	Yes	No	Yes
(2,3,4,4)	(2,2)	Yes	No	No
(2,4,4,4)	(2,2)	Yes	No	No
(3,4,4,4)	(2,2)	Yes	Yes	Yes
(2,3,4,4)	(2,1,1)	Yes	No	No
(2,4,4,4)	(2,1,1)	Yes	No	Yes
(3,4,4,4)	(2,1,1)	Yes	Yes	Yes

Take Aways:

• $\operatorname{Hess}(S, h)$ are not smooth in general.

Hess. fun.	Jordan Blocks of S	Singular	Irreduc.	Pure-Dim?
(2,3,4,4)	(3,1)	Yes	No	Yes
(2,4,4,4)	(3,1)	Yes	No	No
(3,4,4,4)	(3,1)	Yes	No	Yes
(2,3,4,4)	(2,2)	Yes	No	No
(2,4,4,4)	(2,2)	Yes	No	No
(3,4,4,4)	(2,2)	Yes	Yes	Yes
(2,3,4,4)	(2,1,1)	Yes	No	No
(2,4,4,4)	(2,1,1)	Yes	No	Yes
(3,4,4,4)	(2,1,1)	Yes	Yes	Yes

Take Aways:

- $\operatorname{Hess}(S, h)$ are not smooth in general.
- Hess(S, h) is not pure-dimensional for h = (2, 3, 4, 4).

Hess. fun.	Jordan Blocks of S	Singular	Irreduc.	Pure-Dim?
(2,3,4,4)	(3,1)	Yes	No	Yes
(2,4,4,4)	(3,1)	Yes	No	No
(3,4,4,4)	(3,1)	Yes	No	Yes
(2,3,4,4)	(2,2)	Yes	No	No
(2,4,4,4)	(2,2)	Yes	No	No
(3,4,4,4)	(2,2)	Yes	Yes	Yes
(2,3,4,4)	(2,1,1)	Yes	No	No
(2,4,4,4)	(2,1,1)	Yes	No	Yes
(3,4,4,4)	(2,1,1)	Yes	Yes	Yes

Take Aways:

- $\operatorname{Hess}(S, h)$ are not smooth in general.
- Hess(S, h) is not pure-dimensional for h = (2, 3, 4, 4).
- Hess(S, h) can have singular irreducible components.

The Geometry of Semisimple Hessenberg Varieties

Recalling the Bruhat decomposition,

$$\mathrm{GL}/B = \bigsqcup_{w \in \mathfrak{S}_n} C_w \Rightarrow \mathrm{Hess}(S,h) = \bigsqcup_{w \in \mathfrak{S}_n} (C_w \cap \mathrm{Hess}(S,h)).$$

We call $C_w \cap \text{Hess}(S, h)$ a Hessenberg-Schubert cell.

•
$$C_w \cap \operatorname{Hess}(S,h) \cong \mathbb{C}^d$$

The Geometry of Semisimple Hessenberg Varieties

Recalling the Bruhat decomposition,

$$\mathrm{GL}/B = \bigsqcup_{w \in \mathfrak{S}_n} C_w \Rightarrow \mathrm{Hess}(S,h) = \bigsqcup_{w \in \mathfrak{S}_n} (C_w \cap \mathrm{Hess}(S,h)).$$

We call $C_w \cap \text{Hess}(S, h)$ a Hessenberg-Schubert cell.

•
$$C_w \cap \operatorname{Hess}(S,h) \cong \mathbb{C}^d$$

• $\overline{C_w \cap \operatorname{Hess}(S,h)} = ?$

The Geometry of Semisimple Hessenberg Varieties

Recalling the Bruhat decomposition,

$$\mathrm{GL}/B = \bigsqcup_{w \in \mathfrak{S}_n} C_w \Rightarrow \mathrm{Hess}(S,h) = \bigsqcup_{w \in \mathfrak{S}_n} (C_w \cap \mathrm{Hess}(S,h)).$$

We call $C_w \cap \text{Hess}(S, h)$ a Hessenberg-Schubert cell.

•
$$C_w \cap \operatorname{Hess}(S,h) \cong \mathbb{C}^d$$

• $\overline{C_w \cap \operatorname{Hess}(S,h)} = ?$

• What is the singular locus of Hess(S, h)?

The Geometry of Semisimple Hessenberg Varieties

Recalling the Bruhat decomposition,

$$\mathrm{GL}/B = \bigsqcup_{w \in \mathfrak{S}_n} C_w \Rightarrow \mathrm{Hess}(S,h) = \bigsqcup_{w \in \mathfrak{S}_n} (C_w \cap \mathrm{Hess}(S,h)).$$

We call $C_w \cap \text{Hess}(S, h)$ a Hessenberg-Schubert cell.

•
$$C_w \cap \operatorname{Hess}(S,h) \cong \mathbb{C}^d$$

• $\overline{C_w \cap \operatorname{Hess}(S,h)} = ?$

• What is the singular locus of Hess(S, h)?

Goal: To answer the above questions for h = (2, 3, 4, ..., n, n).

Bruhat Graphs

Semisimple Hessenberg varieties

The standard Hessenberg space

From now on we fix h = (2, 3, ..., n, n), i.e., the one defining the Peterson varieties and the toric varieties, and we vary the (conjugacy class of the) semisimple operator S.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Group Actions

Let M be the centralizer of S in $GL_n(\mathbb{C})$. M is a block-diagonal subgroup.

Example

If
$$S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
 then $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$

Bruhat Graphs

Semisimple Hessenberg varieties

Group Actions

Let M be the centralizer of S in $GL_n(\mathbb{C})$. M is a block-diagonal subgroup.

Example

If
$$S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
 then $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$

Important Fact: M acts on Hess(S, h) (and so does T).

Bruhat Graphs

Semisimple Hessenberg varieties

Group Actions

Let M be the centralizer of S in $GL_n(\mathbb{C})$. M is a block-diagonal subgroup.

Example

If
$$S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
 then $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$

Important Fact: M acts on Hess(S, h) (and so does T).

The GKM-graph of Hess(S, h):

- Vertices are indexed by \mathfrak{S}_n .
- Remove any edge from the GKM-graph of $\operatorname{GL}_n(\mathbb{C})/B$ labeled by [ij] such that $E_{ij} \notin M$ and $w^{-1}(i) > h(w^{-1}(j)) = w^{-1}(j) + 1.$

Semisimple Hessenberg varieties

The Regular Semisimple Case

Theorem: (De Mari, Procesi, Shayman 1992) Let S_r be a regular semisimple matrix. Then $\text{Hess}(S_r, h)$ is a smooth, irreducible variety. It is the toric variety associated to the Weyl chambers.

Bruhat Graphs

Semisimple Hessenberg varieties

The Regular Semisimple Case

Bruhat Graphs

Semisimple Hessenberg varieties

The Regular Semisimple Case

Bruhat Graphs

Semisimple Hessenberg varieties

The Regular Semisimple Case

Bruhat Graphs

Semisimple Hessenberg varieties

The Regular Semisimple Case

Bruhat Graphs

Semisimple Hessenberg varieties

The Regular Semisimple Case

Example: Let $S_r = \text{diag}(1, 2, 3)$. In this case, M = T.

 $\dim(C_w \cap \operatorname{Hess}(S_r, h))$ is given by the number of edges incident to w and $y \le w$

Bruhat Graphs

Semisimple Hessenberg varieties

The Regular Semisimple Case

Example: Let $S_r = \text{diag}(1, 2, 3)$. In this case, M = T.

 $\dim(C_w \cap \operatorname{Hess}(S_r, h))$ is given by the number of edges incident to w and $y \le w$

Bruhat Graphs

Semisimple Hessenberg varieties

The Regular Semisimple Case

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

The Non-regular Case

Example: Let
$$S = \text{diag}[1, 1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{bmatrix}$.

Remove all edges [ij] such that $E_{ij} \notin M$ and $w^{-1}(i) > w^{-1}(j) + 1$

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

The Non-regular Case

Example: Let
$$S = \text{diag}[1, 1, -2]$$
 so $M = \begin{vmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{vmatrix}$.

Remove all edges [ij] such that $E_{ij} \notin M$ and $w^{-1}(i) > w^{-1}(j) + 1$

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

The Non-regular Case

Example: Let
$$S = \text{diag}[1, 1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{bmatrix}$.

Remove all edges [ij] such that $E_{ij} \notin M$ and $w^{-1}(i) > w^{-1}(j) + 1$

Both $C_{s_1s_2s_1} \cap \text{Hess}(S, h)$ and and $C_{s_1s_2} \cap \text{Hess}(S, h)$ have dimension 2

Semisimple Hessenberg varieties

Preview of Main Results

Theorem (I.-Precup)

The irreducible components of $\operatorname{Hess}(S, h)$ are of the form

 $M \cdot (\overline{C_v \cap \operatorname{Hess}(S,h)})$

for v in a certain subset of ^{M}W .

Theorem (I.-Precup)

Each irreducible component of Hess(S,h) is smooth. Therefore the singularities of Hess(S,h) occur exactly where two irreducible components intersect.

Semisimple Hessenberg varieties

Using the *M*-orbit

Fact: If g_1B and g_2B are in the same *M*-orbit of Hess(S, h), then g_1B is singular if and only if g_2B is.

Let $W_M = \langle s_i : s_i \in M \rangle$. For each $w \in \mathfrak{S}_n$ there exists a unique $v \in \mathfrak{S}_n$ and $y \in W_M$ such that

$$w = yv$$
 and $\ell(w) = \ell(y) + \ell(v)$.

We say that v is the shortest coset representative for $W_M \setminus \mathfrak{S}_n$. Denote the subset of shortest coset representatives by ${}^M W$.

Example

$$M = \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{bmatrix}$$
so $W_M = \{e, s_1\}$ and $^M W = \{e, s_2, s_2 s_1\}.$

Bruhat Graphs

Г

Semisimple Hessenberg varieties

M-orbit on Hess(S, h)

If $v \in {}^{M}W$, then

$$M \cdot C_v = \bigsqcup_{y \in W_M} C_{yv} \Rightarrow M \cdot (C_v \cap \operatorname{Hess}(S, h)) = \bigsqcup_{y \in W_M} (C_{yv} \cap \operatorname{Hess}(S, h)).$$

Example: Let
$$S = \text{diag}[1, 1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{bmatrix}$.

Bruhat Graphs

Г

Semisimple Hessenberg varieties

M-orbit on Hess(S, h)

If $v \in {}^{M}W$, then

$$M \cdot C_v = \bigsqcup_{y \in W_M} C_{yv} \Rightarrow M \cdot (C_v \cap \operatorname{Hess}(S, h)) = \bigsqcup_{y \in W_M} (C_{yv} \cap \operatorname{Hess}(S, h)).$$

Example: Let
$$S = \text{diag}[1, 1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{bmatrix}$.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Let
$$S = \operatorname{diag}[1, 1, -1, -1]$$
 so $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Let
$$S = \operatorname{diag}[1, 1, -1, -1]$$
 so $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$.

Background 000000

Bruhat Graphs

. –

Semisimple Hessenberg varieties

Let
$$S = \operatorname{diag}[1, 1, -1, -1]$$
 so $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Let
$$S = \operatorname{diag}[1, 1, -1, -1]$$
 so $M = \begin{vmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{vmatrix}$.

Bruhat Graphs

Semisimple Hessenberg varieties

Cell Closures

Given $v \in {}^{M}W$, let $\Delta_{v} = \{i : \ell(vs_{i}) = \ell(v) - 1\}$. Each v can be written uniquely as $v = x_{v}w_{v}$ for $w_{v} \in W_{v} := \langle s_{i} : i \in \Delta_{v} \rangle$.

Example

Let $M = \{e, s_1, s_3\}$ as in the previous slides. Then

Regular nilpotent Hessenberg varieties

Bruhat Graphs

~7

Semisimple Hessenberg varieties

One More Example

Let
$$S = \operatorname{diag}[1, 1, -1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{bmatrix}$.

- C_v ∩ Hess(S, h) is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of Hess(S, h)are the *M*-orbits of the intersections between $\overline{C_v \cap \text{Hess}(S, h)}$ and $\overline{C_u \cap \text{Hess}(S, h)}$ for some $u, v \in {}^MW$.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

~7

Semisimple Hessenberg varieties

One More Example

Let
$$S = \operatorname{diag}[1, 1, -1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{bmatrix}$.

- C_v ∩ Hess(S, h) is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of Hess(S, h)are the *M*-orbits of the intersections between $\overline{C_v \cap \text{Hess}(S, h)}$ and $\overline{C_u \cap \text{Hess}(S, h)}$ for some $u, v \in {}^MW$.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

~7

Semisimple Hessenberg varieties

One More Example

Let
$$S = \operatorname{diag}[1, 1, -1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{bmatrix}$.

- C_v ∩ Hess(S, h) is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of Hess(S, h)are the *M*-orbits of the intersections between $\overline{C_v \cap \text{Hess}(S, h)}$ and $\overline{C_u \cap \text{Hess}(S, h)}$ for some $u, v \in {}^MW$.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

~7

Semisimple Hessenberg varieties

One More Example

Let
$$S = \operatorname{diag}[1, 1, -1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{bmatrix}$.

- $\overline{C_v \cap \text{Hess}(S,h)}$ is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of Hess(S, h)are the *M*-orbits of the intersections between $\overline{C_v \cap \text{Hess}(S, h)}$ and $\overline{C_u \cap \text{Hess}(S, h)}$ for some $u, v \in {}^MW$.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

~7

Semisimple Hessenberg varieties

One More Example

Let
$$S = \operatorname{diag}[1, 1, -1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{bmatrix}$.

- C_v ∩ Hess(S, h) is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of Hess(S, h)are the *M*-orbits of the intersections between $\overline{C_v \cap \text{Hess}(S, h)}$ and $\overline{C_u \cap \text{Hess}(S, h)}$ for some $u, v \in {}^MW$.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

~7

Semisimple Hessenberg varieties

One More Example

Let
$$S = \operatorname{diag}[1, 1, -1, -2]$$
 so $M = \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{bmatrix}$.

- C_v ∩ Hess(S, h) is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of Hess(S, h)are the *M*-orbits of the intersections between $\overline{C_v \cap \text{Hess}(S, h)}$ and $\overline{C_u \cap \text{Hess}(S, h)}$ for some $u, v \in {}^MW$.

Semisimple Hessenberg varieties

Irreducible Components

Lemma

If $v \in {}^M W$ then $\overline{C_v \cap {\rm Hess}(S,h)} \cong {\rm Hess}_v(S_v,h_v)$ where

- $\operatorname{Hess}_v(S_v,h_v)$ is a regular semisimple Hessenberg variety in a smaller rank flag variety, and
- for all $u, v \in {}^{M}W$, we get $C_u \cap \text{Hess}(S, H) \subseteq \overline{C_v \cap \text{Hess}(S, H)}$ if and only if $x_u = x_v$ and $\Delta_u \subseteq \Delta_v$.

Theorem (I.-Precup)

The irreducible components of $\operatorname{Hess}(S,h)$ are of the form

 $M \cdot (\overline{C_v \cap \operatorname{Hess}(S,h)})$

for v in a certain subset of ^{M}W .

Regular nilpotent Hessenberg varieties

ruhat Graphs

Semisimple Hessenberg varieties

Singular Locus

Theorem (I.-Precup)

Each irreducible component of Hess(S, h) is smooth. Therefore the singularities of Hess(S, h) occur exactly where two irreducible components intersect.

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Questions

- Classify singular loci of regular nilpotent Hessenberg varieties.
- Are Peterson varieties orbifolds?
- Which Hessenberg varieties are rationally smooth?

Regular nilpotent Hessenberg varieties

Bruhat Graphs

Semisimple Hessenberg varieties

Thank you!

