Singularities of Hessenberg Varieties

Erik Insko
Florida Gulf Coast University

October 23, 2018

Based on joint works with Martha Precup and Alexander Yong.

Where is FGCU?

Geometry of the Full Flag Variety

The Bruhat decomposition of $G L_{n}(\mathbb{C})$ is:

$$
G L_{n}(\mathbb{C})=\bigsqcup_{w \in \mathfrak{S}_{n}} B w B
$$

where $w \in \mathfrak{S}_{n}$ is identified with the corresponding permutation matrix. This implies:

$$
G L_{n}(\mathbb{C}) / B=\bigsqcup_{w \in \mathfrak{S}_{n}} B w B / B
$$

$C_{w}:=B w B / B$ is the Schubert cell.

- A Hessenberg function is a function $h:[n] \rightarrow[n]$ satisfying $h(i) \geq i$ for all $1 \leq i \leq n$ and $h(i+1) \geq h(i)$ for all $1 \leq i<n$.
- We often represent h as a tuple $(h(1), h(2), \ldots, n)$.
- To a Hessenberg function h we associate a subspace of $\mathfrak{g l}_{n}(\mathbb{C})$ (the vector space of $n \times n$ complex matrices) defined as

$$
\begin{equation*}
H(h):=\left\{\left(a_{i, j}\right)_{i, j \in[n]} \in \mathfrak{g l}_{n}(\mathbb{C}) \mid a_{i, j}=0 \text { if } i>h(j)\right\} \tag{1}
\end{equation*}
$$

which we call the Hessenberg subspace $H(h)$.

Visualize the Hessenberg subspace $H(h)$ as a configuration of boxes on a square grid of size $n \times n$ whose shaded boxes correspond to the $a_{i, j}$ which are allowed to be non-zero (see Figure 1).

Figure: The picture of $H(h)$ for $h=(3,3,4,5,6,6)$.

Definition

Let $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a linear operator and $h:[n] \rightarrow[n]$ a Hessenberg function. The Hessenberg variety associated to A and h is defined to be

$$
\begin{equation*}
\operatorname{Hess}(A, h)=\left\{g B \in \mathrm{GL}_{n}(\mathbb{C}) / B \mid g^{-1} A g \in H(h)\right\} \tag{2}
\end{equation*}
$$

- nilpotent $\operatorname{Hess}(N, h)$ tend to be more singular, and not very symmetric
- semisimple $\operatorname{Hess}(S, h)$ tend to be smoother, with more group actions

Examples

- When N is a nilpotent matrix and $h=(1,2,3, \ldots, n)$, then $\operatorname{Hess}(N, h)$ is a Springer fiber.

Examples

- When N is a nilpotent matrix and $h=(1,2,3, \ldots, n)$, then $\operatorname{Hess}(N, h)$ is a Springer fiber.
- When N_{r} is a regular nilpotent matrix and $h=(2,3,4, \ldots, n)$, then $\operatorname{Hess}\left(N_{r}, h\right)$ is the Peterson variety.

Examples

- When N is a nilpotent matrix and $h=(1,2,3, \ldots, n)$, then $\operatorname{Hess}(N, h)$ is a Springer fiber.
- When N_{r} is a regular nilpotent matrix and $h=(2,3,4, \ldots, n)$, then $\operatorname{Hess}\left(N_{r}, h\right)$ is the Peterson variety.
- When S_{r} is a regular semisimple matrix (diagonal with distinct eigenvalues) and $h=(2,3,4, \ldots, n, n)$, then $\operatorname{Hess}\left(S_{r}, h\right)$ is the toric variety associated to the Weyl chambers.

Examples

- When N is a nilpotent matrix and $h=(1,2,3, \ldots, n)$, then $\operatorname{Hess}(N, h)$ is a Springer fiber.
- When N_{r} is a regular nilpotent matrix and $h=(2,3,4, \ldots, n)$, then $\operatorname{Hess}\left(N_{r}, h\right)$ is the Peterson variety.
- When S_{r} is a regular semisimple matrix (diagonal with distinct eigenvalues) and $h=(2,3,4, \ldots, n, n)$, then $\operatorname{Hess}\left(S_{r}, h\right)$ is the toric variety associated to the Weyl chambers.
- For any Hessenberg function and regular semisimple element S_{r}, there an \mathfrak{S}_{n}-action on $H^{*}\left(\operatorname{Hess}\left(S_{r}, h\right)\right)$ called the dot action.

Hessenberg-Schubert cells

Let $C_{w} \cap \operatorname{Hess}(A, h)$ denote the intersection of a Schubert cell with the Hessenberg variety.

Theorem (Tymoczko 06, Precup 12)
The Hessenberg-Schubert cells form a paving by affines of Hess (A, h).

The singular locus of the Peterson variety

Kostant 1996 notes that the Peterson variety is singular and not normal.

The singular locus of the Peterson variety

Kostant 1996 notes that the Peterson variety is singular and not normal.
Theorem (I.-Yong 2012)
Let N be regular nilpotent and $h=(2,3, \ldots, n, n)$ so $\operatorname{Hess}(N, h)$ is the Peterson variety. A point $g B \in\left(C_{w} \cap \operatorname{Hess}(N, h)\right)$ is singular if the torus-fixed point $w B$ is singular in $\operatorname{Hess}(N, h)$. Moreover, there are only 3 nonsingular torus-fixed points in $\operatorname{Hess}(N, h)$.

Theorem (I.-Yong 2012)

The Peterson variety is a local complete intersection.

Theorem (I.-Yong 2012)
The Peterson variety is a local complete intersection.
Theorem (Abe, DeDieu, Galetto, Harada 2018)
If N is regular nilpotent, then $\operatorname{Hess}(N, h)$ is a local complete intersection.

The Bruhat Graph

Let s_{i} denote the simple transposition in \mathfrak{S}_{n} exchanging i and $i+1$. The length of $w \in \mathfrak{S}_{n}$, denoted $\ell(w)$, is the minimum number of simple transpositions in any reduced word

$$
w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}
$$

and $\ell(u) \leq \ell(w)$.
The Bruhat graph of \mathfrak{S}_{n} is a directed graph with vertex set \mathfrak{S}_{n} and (labeled) edges:

for all $u, w \in \mathfrak{S}_{n}$ such that $w=s u$ for the transposition s which exchanges i and j and $\ell(u) \leq \ell(w)$.

Bruhat Graphs

Example: Bruhat Graphs for \mathfrak{S}_{2} and \mathfrak{S}_{3}

Example: Bruhat Graph for \mathfrak{S}_{4}

Motivating questions posed by Tymoczko in 2006.

- Let X be any linear operator. If the Hessenberg space is in banded form (such as the standard Hessenberg space), is $\operatorname{Hess}(X, h)$ pure-dimensional?

Motivating questions posed by Tymoczko in 2006.

- Let X be any linear operator. If the Hessenberg space is in banded form (such as the standard Hessenberg space), is $\operatorname{Hess}(X, h)$ pure-dimensional?
- Are all semisimple Hessenberg varieties smooth?

Properties of semisimple Hessenberg varieties

Hess. fun.	Jordan Blocks of S	Singular	Irreduc.	Pure-Dim?
$(2,3,4,4)$	$(3,1)$	Yes	No	Yes
$(2,4,4,4)$	$(3,1)$	Yes	No	No
$(3,4,4,4)$	$(3,1)$	Yes	No	Yes
$(2,3,4,4)$	$(2,2)$	Yes	No	No
$(2,4,4,4)$	$(2,2)$	Yes	No	No
$(3,4,4,4)$	$(2,2)$	Yes	Yes	Yes
$(2,3,4,4)$	$(2,1,1)$	Yes	No	No
$(2,4,4,4)$	$(2,1,1)$	Yes	No	Yes
$(3,4,4,4)$	$(2,1,1)$	Yes	Yes	Yes

Properties of semisimple Hessenberg varieties

Hess. fun.	Jordan Blocks of S	Singular	Irreduc.	Pure-Dim?
$(2,3,4,4)$	$(3,1)$	Yes	No	Yes
$(2,4,4,4)$	$(3,1)$	Yes	No	No
$(3,4,4,4)$	$(3,1)$	Yes	No	Yes
$(2,3,4,4)$	$(2,2)$	Yes	No	No
$(2,4,4,4)$	$(2,2)$	Yes	No	No
$(3,4,4,4)$	$(2,2)$	Yes	Yes	Yes
$(2,3,4,4)$	$(2,1,1)$	Yes	No	No
$(2,4,4,4)$	$(2,1,1)$	Yes	No	Yes
$(3,4,4,4)$	$(2,1,1)$	Yes	Yes	Yes

Take Aways:

- $\operatorname{Hess}(S, h)$ are not smooth in general.

Properties of semisimple Hessenberg varieties

Hess. fun.	Jordan Blocks of S	Singular	Irreduc.	Pure-Dim?
$(2,3,4,4)$	$(3,1)$	Yes	No	Yes
$(2,4,4,4)$	$(3,1)$	Yes	No	No
$(3,4,4,4)$	$(3,1)$	Yes	No	Yes
$(2,3,4,4)$	$(2,2)$	Yes	No	No
$(2,4,4,4)$	$(2,2)$	Yes	No	No
$(3,4,4,4)$	$(2,2)$	Yes	Yes	Yes
$(2,3,4,4)$	$(2,1,1)$	Yes	No	No
$(2,4,4,4)$	$(2,1,1)$	Yes	No	Yes
$(3,4,4,4)$	$(2,1,1)$	Yes	Yes	Yes

Take Aways:

- $\operatorname{Hess}(S, h)$ are not smooth in general.
- $\operatorname{Hess}(S, h)$ is not pure-dimensional for $h=(2,3,4,4)$.

Properties of semisimple Hessenberg varieties

Hess. fun.	Jordan Blocks of S	Singular	Irreduc.	Pure-Dim?
$(2,3,4,4)$	$(3,1)$	Yes	No	Yes
$(2,4,4,4)$	$(3,1)$	Yes	No	No
$(3,4,4,4)$	$(3,1)$	Yes	No	Yes
$(2,3,4,4)$	$(2,2)$	Yes	No	No
$(2,4,4,4)$	$(2,2)$	Yes	No	No
$(3,4,4,4)$	$(2,2)$	Yes	Yes	Yes
$(2,3,4,4)$	$(2,1,1)$	Yes	No	No
$(2,4,4,4)$	$(2,1,1)$	Yes	No	Yes
$(3,4,4,4)$	$(2,1,1)$	Yes	Yes	Yes

Take Aways:

- $\operatorname{Hess}(S, h)$ are not smooth in general.
- $\operatorname{Hess}(S, h)$ is not pure-dimensional for $h=(2,3,4,4)$.
- $\operatorname{Hess}(S, h)$ can have singular irreducible components.

The Geometry of Semisimple Hessenberg Varieties

Recalling the Bruhat decomposition,

$$
\mathrm{GL} / B=\bigsqcup_{w \in \mathfrak{S}_{n}} C_{w} \Rightarrow \operatorname{Hess}(S, h)=\bigsqcup_{w \in \mathfrak{S}_{n}}\left(C_{w} \cap \operatorname{Hess}(S, h)\right)
$$

We call $C_{w} \cap \operatorname{Hess}(S, h)$ a Hessenberg-Schubert cell.

- $C_{w} \cap \operatorname{Hess}(S, h) \cong \mathbb{C}^{d}$

The Geometry of Semisimple Hessenberg Varieties

Recalling the Bruhat decomposition,

$$
\mathrm{GL} / B=\bigsqcup_{w \in \mathfrak{S}_{n}} C_{w} \Rightarrow \operatorname{Hess}(S, h)=\bigsqcup_{w \in \mathfrak{S}_{n}}\left(C_{w} \cap \operatorname{Hess}(S, h)\right)
$$

We call $C_{w} \cap \operatorname{Hess}(S, h)$ a Hessenberg-Schubert cell.

- $C_{w} \cap \operatorname{Hess}(S, h) \cong \mathbb{C}^{d}$
- $\overline{C_{w} \cap \operatorname{Hess}(S, h)}=$?

The Geometry of Semisimple Hessenberg Varieties

Recalling the Bruhat decomposition,

$$
\mathrm{GL} / B=\bigsqcup_{w \in \mathfrak{S}_{n}} C_{w} \Rightarrow \operatorname{Hess}(S, h)=\bigsqcup_{w \in \mathfrak{S}_{n}}\left(C_{w} \cap \operatorname{Hess}(S, h)\right)
$$

We call $C_{w} \cap \operatorname{Hess}(S, h)$ a Hessenberg-Schubert cell.

- $C_{w} \cap \operatorname{Hess}(S, h) \cong \mathbb{C}^{d}$
- $\overline{C_{w} \cap \operatorname{Hess}(S, h)}=$?
- What is the singular locus of $\operatorname{Hess}(S, h)$?

The Geometry of Semisimple Hessenberg Varieties

Recalling the Bruhat decomposition,

$$
\mathrm{GL} / B=\bigsqcup_{w \in \mathfrak{S}_{n}} C_{w} \Rightarrow \operatorname{Hess}(S, h)=\bigsqcup_{w \in \mathfrak{S}_{n}}\left(C_{w} \cap \operatorname{Hess}(S, h)\right)
$$

We call $C_{w} \cap \operatorname{Hess}(S, h)$ a Hessenberg-Schubert cell.

- $C_{w} \cap \operatorname{Hess}(S, h) \cong \mathbb{C}^{d}$
- $\overline{C_{w} \cap \operatorname{Hess}(S, h)}=$?
- What is the singular locus of $\operatorname{Hess}(S, h)$?

Goal: To answer the above questions for $h=(2,3,4, \ldots, n, n)$.

The standard Hessenberg space

From now on we fix $h=(2,3, \ldots, n, n)$, i.e., the one defining the Peterson varieties and the toric varieties, and we vary the (conjugacy class of the) semisimple operator S.

Group Actions

Let M be the centralizer of S in $G L_{n}(\mathbb{C}) . M$ is a block-diagonal subgroup.

Example

If $S=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$ then $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & *\end{array}\right]$

Group Actions

Let M be the centralizer of S in $G L_{n}(\mathbb{C}) . M$ is a block-diagonal subgroup.

Example

If $S=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$ then $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & *\end{array}\right]$
Important Fact: M acts on $\operatorname{Hess}(S, h)$ (and so does T).

Group Actions

Let M be the centralizer of S in $G L_{n}(\mathbb{C}) . M$ is a block-diagonal subgroup.

Example

If $S=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$ then $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & *\end{array}\right]$
Important Fact: M acts on $\operatorname{Hess}(S, h)$ (and so does T).
The GKM-graph of $\operatorname{Hess}(S, h)$:

- Vertices are indexed by \mathfrak{S}_{n}.
- Remove any edge from the GKM-graph of $\mathrm{GL}_{n}(\mathbb{C}) / B$ labeled by $[i j]$ such that $E_{i j} \notin M$ and
$w^{-1}(i)>h\left(w^{-1}(j)\right)=w^{-1}(j)+1$.

The Regular Semisimple Case

Theorem: (De Mari, Procesi, Shayman 1992) Let S_{r} be a regular semisimple matrix. Then $\operatorname{Hess}\left(S_{r}, h\right)$ is a smooth, irreducible variety. It is the toric variety associated to the Weyl chambers.

Example: Let $S_{r}=\operatorname{diag}(1,-1)$. In this case, $M=T$.

Remove all edges
[ij] such that
$w^{-1}(i)>w^{-1}(j)+1$
In this case, $\operatorname{Hess}\left(S_{r}, h\right)=\mathbb{P}^{1}$.
[12]

The Regular Semisimple Case

Example: Let $S_{r}=\operatorname{diag}(1,2,3)$. In this case, $M=T$.

Remove all edges
[ij] such that
$w^{-1}(i)>w^{-1}(j)+1$

The Regular Semisimple Case

Example: Let $S_{r}=\operatorname{diag}(1,2,3)$. In this case, $M=T$.

Remove all edges
[$i j$] such that
$w^{-1}(i)>w^{-1}(j)+1$

The Regular Semisimple Case

Example: Let $S_{r}=\operatorname{diag}(1,2,3)$. In this case, $M=T$.

Remove all edges
[$i j]$ such that
$w^{-1}(i)>w^{-1}(j)+1$

The Regular Semisimple Case

Example: Let $S_{r}=\operatorname{diag}(1,2,3)$. In this case, $M=T$.

Remove all edges
[$i j$] such that
$w^{-1}(i)>w^{-1}(j)+1$

The Regular Semisimple Case

Example: Let $S_{r}=\operatorname{diag}(1,2,3)$. In this case, $M=T$.
$\operatorname{dim}\left(C_{w} \cap \operatorname{Hess}\left(S_{r}, h\right)\right)$ is given by the number of edges incident to w and $y \leq w$

The Regular Semisimple Case

Example: Let $S_{r}=\operatorname{diag}(1,2,3)$. In this case, $M=T$.
$\operatorname{dim}\left(C_{w} \cap \operatorname{Hess}\left(S_{r}, h\right)\right)$ is given by the number of edges incident to w and $y \leq w$

The Regular Semisimple Case

Example: Let $S_{r}=\operatorname{diag}(1,2,3)$. In this case, $M=T$.
$\operatorname{dim}\left(C_{w} \cap \operatorname{Hess}\left(S_{r}, h\right)\right)$ is given by the number of edges incident to w and $y \leq w$
$\operatorname{Hess}\left(S_{r}, h\right)=\overline{C_{w_{0}} \cap \operatorname{Hess}\left(S_{r}, h\right)}$

The Non-regular Case

Example: Let $S=\operatorname{diag}[1,1,-2]$ so $M=\left[\begin{array}{lll}* & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right]$.

Remove all edges
$[i j]$ such that $E_{i j} \notin M$ and $w^{-1}(i)>w^{-1}(j)+1$

The Non-regular Case

Example: Let $S=\operatorname{diag}[1,1,-2]$ so $M=\left[\begin{array}{lll}* & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right]$.

Remove all edges
$[i j]$ such that $E_{i j} \notin M$ and $w^{-1}(i)>w^{-1}(j)+1$

The Non-regular Case

Example: Let $S=\operatorname{diag}[1,1,-2]$ so $M=\left[\begin{array}{lll}* & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right]$.

Remove all edges
$[i j]$ such that $E_{i j} \notin M$ and $w^{-1}(i)>w^{-1}(j)+1$

Both $C_{s_{1} s_{2} s_{1}} \cap \operatorname{Hess}(S, h)$ and and $C_{s_{1} s_{2}} \cap \operatorname{Hess}(S, h)$ have dimension 2

Preview of Main Results

Theorem (I.-Precup)

The irreducible components of $\operatorname{Hess}(S, h)$ are of the form

$$
M \cdot\left(\overline{C_{v} \cap \operatorname{Hess}(S, h)}\right)
$$

for v in a certain subset of ${ }^{M} W$.

Theorem (1.-Precup)

Each irreducible component of $\operatorname{Hess}(S, h)$ is smooth. Therefore the singularities of $\operatorname{Hess}(S, h)$ occur exactly where two irreducible components intersect.

Using the M-orbit

Fact: If $g_{1} B$ and $g_{2} B$ are in the same M-orbit of $\operatorname{Hess}(S, h)$, then $g_{1} B$ is singular if and only if $g_{2} B$ is.

Let $W_{M}=\left\langle s_{i}: s_{i} \in M\right\rangle$. For each $w \in \mathfrak{S}_{n}$ there exists a unique $v \in \mathfrak{S}_{n}$ and $y \in W_{M}$ such that

$$
w=y v \quad \text { and } \quad \ell(w)=\ell(y)+\ell(v)
$$

We say that v is the shortest coset representative for $W_{M} \backslash \mathfrak{S}_{n}$. Denote the subset of shortest coset representatives by ${ }^{M} W$.

Example
$M=\left[\begin{array}{ccc}* & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right]$ so $W_{M}=\left\{e, s_{1}\right\}$ and ${ }^{M} W=\left\{e, s_{2}, s_{2} s_{1}\right\}$.

M-orbit on $\operatorname{Hess}(S, h)$

If $v \in{ }^{M} W$, then
$M \cdot C_{v}=\bigsqcup_{y \in W_{M}} C_{y v} \Rightarrow M \cdot\left(C_{v} \cap \operatorname{Hess}(S, h)\right)=\bigsqcup_{y \in W_{M}}\left(C_{y v} \cap \operatorname{Hess}(S, h)\right)$.
Example: Let $S=\operatorname{diag}[1,1,-2]$ so $M=\left[\begin{array}{ccc}* & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right]$.

M-orbit on $\operatorname{Hess}(S, h)$

If $v \in{ }^{M} W$, then
$M \cdot C_{v}=\bigsqcup_{y \in W_{M}} C_{y v} \Rightarrow M \cdot\left(C_{v} \cap \operatorname{Hess}(S, h)\right)=\bigsqcup_{y \in W_{M}}\left(C_{y v} \cap \operatorname{Hess}(S, h)\right)$.
Example: Let $S=\operatorname{diag}[1,1,-2]$ so $M=\left[\begin{array}{ccc}* & * & 0 \\ * & * & 0 \\ 0 & 0 & *\end{array}\right]$.

Another Example

Let $S=\operatorname{diag}[1,1,-1,-1]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & *\end{array}\right]$.

Another Example

Let $S=\operatorname{diag}[1,1,-1,-1]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & *\end{array}\right]$.

Another Example

Let $S=\operatorname{diag}[1,1,-1,-1]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & *\end{array}\right]$.

Another Example

Let $S=\operatorname{diag}[1,1,-1,-1]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & *\end{array}\right]$.

Cell Closures

Given $v \in{ }^{M} W$, let $\Delta_{v}=\left\{i: \ell\left(v s_{i}\right)=\ell(v)-1\right\}$. Each v can be written uniquely as $v=x_{v} w_{v}$ for $w_{v} \in W_{v}:=\left\langle s_{i}: i \in \Delta_{v}\right\rangle$.

Example

Let $M=\left\{e, s_{1}, s_{3}\right\}$ as in the previous slides. Then

$v \in{ }^{M} W$	$v=x_{v} w_{v}$	Δ_{v}
$s_{2} s_{3} s_{1} s_{2}$	$s_{2} s_{3} s_{1} s_{2}$	$\{2\}$
$s_{2} s_{3} s_{1}$	$s_{2} s_{3} s_{1}$	$\{1,3\}$
$s_{2} s_{1}$	$s_{2} s_{1}$	$\{1\}$
$s_{2} s_{3}$	$s_{2} s_{3}$	$\{3\}$
s_{2}	s_{2}	$\{2\}$

One More Example

Let $S=\operatorname{diag}[1,1,-1,-2]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & *\end{array}\right]$.

- $\overline{C_{v} \cap \operatorname{Hess}(S, h)}$ is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of $\operatorname{Hess}(S, h)$ are the M-orbits of the intersections between $\overline{C_{v} \cap \operatorname{Hess}(S, h)}$ and $\overline{C_{u} \cap \operatorname{Hess}(S, h)}$ for some $u, v \in{ }^{M} W$.

One More Example

Let $S=\operatorname{diag}[1,1,-1,-2]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & *\end{array}\right]$.

- $\overline{C_{v} \cap \operatorname{Hess}(S, h)}$ is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of $\operatorname{Hess}(S, h)$ are the M-orbits of the intersections between $\overline{\overline{C_{v} \cap \operatorname{Hess}(S, h)}}$ and $u, v \in{ }^{M} W$.

One More Example

Let $S=\operatorname{diag}[1,1,-1,-2]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & *\end{array}\right]$.

- $\overline{C_{v} \cap \operatorname{Hess}(S, h)}$ is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of $\operatorname{Hess}(S, h)$ are the M-orbits of the intersections between $\overline{\overline{C_{v} \cap \operatorname{Hess}(S, h)}}$ and $u, v \in{ }^{M} W$.

One More Example

Let $S=\operatorname{diag}[1,1,-1,-2]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & *\end{array}\right]$.

- $\overline{C_{v} \cap \operatorname{Hess}(S, h)}$ is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of $\operatorname{Hess}(S, h)$ are the M-orbits of the intersections between $\overline{\overline{C_{v} \cap \operatorname{Hess}(S, h)}}$ and $u, v \in{ }^{M} W$.

One More Example

Let $S=\operatorname{diag}[1,1,-1,-2]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & *\end{array}\right]$.

- $\overline{C_{v} \cap \operatorname{Hess}(S, h)}$ is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of $\operatorname{Hess}(S, h)$ are the M-orbits of the intersections between $\overline{\overline{C_{v} \cap \operatorname{Hess}(S, h)}}$ and $u, v \in{ }^{M} W$.

One More Example

Let $S=\operatorname{diag}[1,1,-1,-2]$ so $M=\left[\begin{array}{cccc}* & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & *\end{array}\right]$.

- $\overline{C_{v} \cap \operatorname{Hess}(S, h)}$ is isomorphic to a smaller rank, regular semisimple Hessenberg variety.
- The singularities of $\operatorname{Hess}(S, h)$ are the M-orbits of the intersections between $\overline{\overline{C_{v} \cap \operatorname{Hess}(S, h)}}$ and $u, v \in{ }^{M} W$.

Irreducible Components

Lemma

If $v \in{ }^{M} W$ then $\overline{C_{v} \cap \operatorname{Hess}(S, h)} \cong \operatorname{Hess}_{v}\left(S_{v}, h_{v}\right)$ where

- $\operatorname{Hess}_{v}\left(S_{v}, h_{v}\right)$ is a regular semisimple Hessenberg variety in a smaller rank flag variety, and
- for all $u, v \in{ }^{M} W$, we get $C_{u} \cap \operatorname{Hess}(S, H) \subseteq \overline{C_{v} \cap \operatorname{Hess}(S, H)}$ if and only if $x_{u}=x_{v}$ and $\Delta_{u} \subseteq \Delta_{v}$.

Theorem (I.-Precup)

The irreducible components of $\operatorname{Hess}(S, h)$ are of the form

$$
M \cdot\left(\overline{C_{v} \cap \operatorname{Hess}(S, h)}\right)
$$

for v in a certain subset of ${ }^{M} W$.

Singular Locus

Theorem (I.-Precup)

Each irreducible component of $\operatorname{Hess}(S, h)$ is smooth. Therefore the singularities of $\operatorname{Hess}(S, h)$ occur exactly where two irreducible components intersect.

Questions

- Classify singular loci of regular nilpotent Hessenberg varieties.
- Are Peterson varieties orbifolds?
- Which Hessenberg varieties are rationally smooth?

Thank you!

