An introduction to Hessenberg varieties

Hiraku Abe
Osaka Prefecture University

Hessenberg varieties in
Combinatorics, Geometry and Representation Theory BIRS
2018/10/22

An introduction to Hessenberg varieties

Hiraku Abe
Osaka City University
Hessenberg varieties in
Combinatorics, Geometry and Representation Theory BIRS
2018/10/22

An introduction to Hessenberg varieties

Hiraku Abe
Osaka Prefecture University

Hessenberg varieties in
Combinatorics, Geometry and Representation Theory BIRS
2018/10/22

The (full) flag variety of \mathbb{C}^{n} :

$$
F l\left(\mathbb{C}^{n}\right)=\left\{\left(V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{n}=\mathbb{C}^{n}\right) \mid \operatorname{dim} V_{i}=i, 1 \leq i \leq n\right\} .
$$

The (full) flag variety of \mathbb{C}^{n} :

$$
F l\left(\mathbb{C}^{n}\right)=\left\{\left(V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{n}=\mathbb{C}^{n}\right) \mid \operatorname{dim} V_{i}=i, 1 \leq i \leq n\right\} .
$$

Hess $(X, h) \subseteq F l\left(\mathbb{C}^{n}\right)$ Hessenberg variety

The (full) flag variety of \mathbb{C}^{n} :

$$
F l\left(\mathbb{C}^{n}\right)=\left\{\left(V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{n}=\mathbb{C}^{n}\right) \mid \operatorname{dim} V_{i}=i, 1 \leq i \leq n\right\} .
$$

Hess $(X, h) \subseteq F l\left(\mathbb{C}^{n}\right)$ Hessenberg variety

$$
\left(\begin{array}{l}
X: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \\
\text { a linear map } \\
h:[n] \rightarrow[n]
\end{array} \quad \text { a Hessenberg function } \quad[n]=\{1,2, \ldots, n\}\right.
$$

The (full) flag variety of \mathbb{C}^{n} :

$$
F l\left(\mathbb{C}^{n}\right)=\left\{\left(V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{n}=\mathbb{C}^{n}\right) \mid \operatorname{dim} V_{i}=i, 1 \leq i \leq n\right\} .
$$

$\operatorname{Hess}(X, h) \subseteq F l\left(\mathbb{C}^{n}\right)$ Hessenberg variety
$\binom{X: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ a linear map }{$h:[n] \rightarrow[n] \quad$ a Hessenberg function }$\quad[n]=\{1,2, \ldots, n\}$
$\operatorname{Hess}(X, h):=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid X V_{i} \subseteq V_{h(i)}, 1 \leq i \leq n\right\}$

The (full) flag variety of \mathbb{C}^{n} :

$$
F l\left(\mathbb{C}^{n}\right)=\left\{\left(V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{n}=\mathbb{C}^{n}\right) \mid \operatorname{dim} V_{i}=i, 1 \leq i \leq n\right\} .
$$

Hess $(X, h) \subseteq F l\left(\mathbb{C}^{n}\right)$ Hessenberg variety
$\binom{X: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ a linear map }{$h:[n] \rightarrow[n] \quad$ a Hessenberg function }$\quad[n]=\{1,2, \ldots, n\}$
$\operatorname{Hess}(X, h):=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid X V_{i} \subseteq V_{h(i)}, 1 \leq i \leq n\right\}$

Introduced by DeMari-Shayman 1988 and
DeMari-Procesi-Shayman 1992.

The (full) flag variety of \mathbb{C}^{n} :

$$
F l\left(\mathbb{C}^{n}\right)=\left\{\left(V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{n}=\mathbb{C}^{n}\right) \mid \operatorname{dim} V_{i}=i, 1 \leq i \leq n\right\} .
$$

$\operatorname{Hess}(X, h) \subseteq F l\left(\mathbb{C}^{n}\right)$ Hessenberg variety
$\binom{X: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}}{h:[n] \rightarrow[n] \quad$ a linear messenberg function }$\quad[n]=\{1,2, \ldots, n\}$
$\operatorname{Hess}(X, h):=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid X V_{i} \subseteq V_{h(i)}, 1 \leq i \leq n\right\}$

Introduced by DeMari-Shayman 1988 and DeMari-Procesi-Shayman 1992.

Examples:
Flag variety, Springer fibers, Peterson variety, permutohedral variety, etc

$$
h:[n] \rightarrow[n] \text { is a Hessenberg function }
$$

$h:[n] \rightarrow[n]$ is a Hessenberg function

$$
\stackrel{\text { def }}{\Longleftrightarrow} \quad \bullet h(1) \leq h(2) \leq \ldots \leq h(n)
$$

$h:[n] \rightarrow[n]$ is a Hessenberg function

$$
\begin{array}{ll}
\text { def } & \bullet h(1) \leq h(2) \leq \ldots \leq h(n) \\
& \bullet h(i) \geq i(i=1,2, \ldots, n)
\end{array}
$$

$$
\text { e.g. } h=(2,3,5,5,5)
$$

$h:[n] \rightarrow[n]$ is a Hessenberg function

$$
\stackrel{\text { def }}{\Longleftrightarrow} \quad \bullet h(1) \leq h(2) \leq \ldots \leq h(n) ~ 子 h(i) \geq i(i=1,2, \ldots, n)
$$

$$
\text { e.g. } h=(2,3,5,5,5)
$$

$h:[n] \rightarrow[n]$ is a Hessenberg function

$$
\stackrel{\text { def }}{\Longleftrightarrow} \quad \bullet h(1) \leq h(2) \leq \ldots \leq h(n))
$$

e.g. $h=(2,3,5,5,5)$

$\operatorname{Hess}(X, h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid X V_{i} \subseteq V_{h(i)}, 1 \leq i \leq n\right\}$
$h:[n] \rightarrow[n]$ is a Hessenberg function

$$
\stackrel{\text { def }}{\Longleftrightarrow} \quad \bullet h(1) \leq h(2) \leq \ldots \leq h(n))
$$

e.g. $h=(2,3,5,5,5)$

$\operatorname{Hess}(X, h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid X V_{i} \subseteq V_{h(i)}, \quad 1 \leq i \leq n\right\}$
a Dyck path \rightsquigarrow a subvariety of $F l\left(\mathbb{C}^{n}\right)$
h Hess (X, h)
$h:[n] \rightarrow[n]$ is a Hessenberg function

$$
\stackrel{\text { def }}{\Longrightarrow} \quad \bullet h(1) \leq h(2) \leq \ldots \leq h(n)
$$

- $h(i) \geq i+1(i=1,2, \ldots, n-1)$

$$
\text { e.g. } h=(2,3,5,5,5)
$$

$\operatorname{Hess}(X, h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid X V_{i} \subseteq V_{h(i)}, 1 \leq i \leq n\right\}$
a Dyck path \rightsquigarrow a subvariety of $F l\left(\mathbb{C}^{n}\right)$

$$
h
$$ Hess (X, h)

Goal of this talk:
To share the idea that we can study Hessenberg varieties from several different perspectives.

Goal of this talk:
To share the idea that we can study Hessenberg varieties from several different perspectives.

Keywords:

Goal of this talk:
To share the idea that we can study Hessenberg varieties from several different perspectives.

Keywords:
representations of symmetric groups,

To share the idea that we can study Hessenberg varieties from several different perspectives.

Keywords:
representations of symmetric groups, hyperplane arrangements,

Goal of this talk:
To share the idea that we can study Hessenberg varieties from several different perspectives.

Keywords:
representations of symmetric groups, hyperplane arrangements, Stanley-Stembridge conjecture,

Goal of this talk:
To share the idea that we can study Hessenberg varieties from several different perspectives.

Keywords:
representations of symmetric groups, hyperplane arrangements, Stanley-Stembridge conjecture, Schubert polynomials

Goal of this talk:
To share the idea that we can study Hessenberg varieties from several different perspectives.

Keywords:
representations of symmetric groups, hyperplane arrangements, Stanley-Stembridge conjecture, Schubert polynomials toric degenerations,

Goal of this talk:
To share the idea that we can study Hessenberg varieties from several different perspectives.

Keywords:
representations of symmetric groups, hyperplane arrangements, Stanley-Stembridge conjecture, Schubert polynomials toric degenerations, integrable systems,

Goal of this talk:
To share the idea that we can study Hessenberg varieties from several different perspectives.

Keywords:
representations of symmetric groups, hyperplane arrangements, Stanley-Stembridge conjecture, Schubert polynomials toric degenerations, integrable systems, (holomorphic) symplectic/Poisson geometry,

Goal of this talk:
To share the idea that we can study Hessenberg varieties from several different perspectives.

Keywords:
representations of symmetric groups, hyperplane arrangements, Stanley-Stembridge conjecture, Schubert polynomials toric degenerations, integrable systems, (holomorphic) symplectic/Poisson geometry, Toda lattice, etc.
§0. Paving by affines

Theorem(Tymoczko '06)

Theorem(Tymoczko '06)
For any X and any $h, \operatorname{Hess}(X, h)$ is paved by complex affine spaces.
paving by complex affine spaces
$=$ cellular decomposition by complex cells \mathbb{C}^{k}

Theorem(Tymoczko '06)
For any X and any $h, \operatorname{Hess}(X, h)$ is paved by complex affine spaces.
paving by complex affine spaces
$=$ cellular decomposition by complex cells \mathbb{C}^{k}

Theorem(Tymoczko '06)
For any X and any $h, \operatorname{Hess}(X, h)$ is paved by complex affine spaces.
(with an explicit combinatorial formula for Betti numbers)
paving by complex affine spaces
$=$ cellular decomposition by complex cells \mathbb{C}^{k}

Theorem(Tymoczko '06)
For any X and any h, Hess (X, h) is paved by complex affine spaces.
(with an explicit combinatorial formula for Betti numbers)

Corollary
paving by complex affine spaces
$=$ cellular decomposition by complex cells \mathbb{C}^{k}

Theorem(Tymoczko '06)
For any X and any h, Hess (X, h) is paved by complex affine spaces.
(with an explicit combinatorial formula for Betti numbers)

Corollary

- $H^{\text {odd }}(\operatorname{Hess}(X, h) ; \mathbb{Z})=0$
paving by complex affine spaces
$=$ cellular decomposition by complex cells \mathbb{C}^{k}

Theorem(Tymoczko '06)
For any X and any h, $\operatorname{Hess}(X, h)$ is paved by complex affine spaces.
(with an explicit combinatorial formula for Betti numbers)

Corollary

- $H^{\text {odd }}(\operatorname{Hess}(X, h) ; \mathbb{Z})=0$
- $H^{*}(\operatorname{Hess}(X, h) ; \mathbb{Z})$ is torsion-free.
paving by complex affine spaces
$=$ cellular decomposition by complex cells \mathbb{C}^{k}

Theorem(Tymoczko '06)
For any X and any $h, \operatorname{Hess}(X, h)$ is paved by complex affine spaces.
(with an explicit combinatorial formula for Betti numbers)

Corollary

- $H^{\text {odd }}(\operatorname{Hess}(X, h) ; \mathbb{Z})=0$
- $H^{*}(\operatorname{Hess}(X, h) ; \mathbb{Z})$ is torsion-free.
- ring structure of $H^{*}(\operatorname{Hess}(X, h) ; \mathbb{Z})$?
paving by complex affine spaces
$=$ cellular decomposition by complex cells \mathbb{C}^{k}

Theorem(Tymoczko '06)
For any X and any h, Hess (X, h) is paved by complex affine spaces.
(with an explicit combinatorial formula for Betti numbers)

Corollary

- $H^{\text {odd }}(\operatorname{Hess}(X, h) ; \mathbb{Z})=0$
- $H^{*}(\operatorname{Hess}(X, h) ; \mathbb{Z})$ is torsion-free.
- ring structure of $H^{*}(\operatorname{Hess}(X, h) ; \mathbb{Z})$?
- Other Lie types ?
§1. cohomology, \mathfrak{S}_{n}-reps, hyperplane arr.
S : regular semisimple matrix
(i.e. diagonalizable with distinct eigenvalues)
S : regular semisimple matrix
(i.e. diagonalizable with distinct eigenvalues)

$$
S \sim\left(\begin{array}{cccc}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right), \quad c_{i} \neq c_{j}(i \neq j)
$$

S : regular semisimple matrix
(i.e. diagonalizable with distinct eigenvalues)

$$
S \sim\left(\begin{array}{llll}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right), \quad c_{i} \neq c_{j}(i \neq j)
$$

$$
\begin{aligned}
& \operatorname{Hess}(S, h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid S V_{i} \subseteq V_{h(i)}, 1 \leq i \leq n\right\} \\
& \text { regular semisimple Hessenberg variety (smooth) }
\end{aligned}
$$

S : regular semisimple matrix
(i.e. diagonalizable with distinct eigenvalues)

$$
S \sim\left(\begin{array}{cccc}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right), \quad c_{i} \neq c_{j}(i \neq j)
$$

$$
\begin{aligned}
& \operatorname{Hess}(S, h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid S V_{i} \subseteq V_{h(i)}, \quad 1 \leq i \leq n\right\} \\
& \quad \underline{\text { regular semisimple Hessenberg variety }} \text { (smooth) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { e.g. } h=(n, n, \cdots, n): \operatorname{Hess}(S, h)=F l\left(\mathbb{C}^{n}\right) \text {, } \\
& h=(2,3,4, \cdots, n, n): \operatorname{Hess}(S, h)=\text { permutohedral variety }
\end{aligned}
$$

S : regular semisimple matrix
(i.e. diagonalizable with distinct eigenvalues)

$$
S \sim\left(\begin{array}{cccc}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right), \quad c_{i} \neq c_{j}(i \neq j)
$$

$\operatorname{Hess}(S, h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid S V_{i} \subseteq V_{h(i)}, \quad 1 \leq i \leq n\right\}$ regular semisimple Hessenberg variety (smooth)
e.g. $h=(n, n, \cdots, n): \operatorname{Hess}(S, h)=F l\left(\mathbb{C}^{n}\right)$,

$$
h=(2,3,4, \cdots, n, n): \operatorname{Hess}(S, h)=\text { permutohedral variety }
$$

S : regular semisimple matrix
(i.e. diagonalizable with distinct eigenvalues)

$$
S \sim\left(\begin{array}{cccc}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right), \quad c_{i} \neq c_{j}(i \neq j)
$$

$\operatorname{Hess}(S, h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid S V_{i} \subseteq V_{h(i)}, \quad 1 \leq i \leq n\right\}$

regular semisimple Hessenberg variety (smooth)

e.g. $h=(n, n, \cdots, n): \operatorname{Hess}(S, h)=F l\left(\mathbb{C}^{n}\right)$,

$$
h=(2,3,4, \cdots, n, n): \operatorname{Hess}(S, h)=\text { permutohedral variety }
$$

$\mathfrak{S}_{n} \curvearrowright H^{*}(\operatorname{Hess}(S, h) ; \mathbb{C}):$ representation of symmetric group

$$
\binom{\text { monodromy action (geometry), or }}{\text { torus equiv cohomology (combinatorics) }}
$$

N : regular nilpotent matrix

(i.e. nilpotent matrix with single Jordan block)

N : regular nilpotent matrix

(i.e. nilpotent matrix with single Jordan block)

$$
N \sim\left(\begin{array}{llll}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
& & & 0
\end{array}\right)
$$

N : regular nilpotent matrix
(i.e. nilpotent matrix with single Jordan block)

$$
N \sim\left(\begin{array}{llll}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
& & & 0
\end{array}\right)
$$

$\operatorname{Hess}(N, h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid N V_{i} \subseteq V_{h(i)}, \quad 1 \leq i \leq n\right\}$ regular nilpotent Hessenberg variety (singular in general)
N : regular nilpotent matrix
(i.e. nilpotent matrix with single Jordan block)

$$
N \sim\left(\begin{array}{llll}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
& & & 0
\end{array}\right)
$$

$\operatorname{Hess}(N, h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid N V_{i} \subseteq V_{h(i)}, \quad 1 \leq i \leq n\right\}$ regular nilpotent Hessenberg variety (singular in general)
e.g. $h=(n, n, \cdots, n): \operatorname{Hess}(N, h)=F l\left(\mathbb{C}^{n}\right)$,

$$
h=(2,3,4, \cdots, n, n): \operatorname{Hess}(N, h)=\text { Peterson variety }
$$

	$\operatorname{Hess}(N, h)$	$\operatorname{Hess}(S, h)$
dimension	$\sum_{i=1}^{n}(h(i)-i)$	$\sum_{i=1}^{n}(h(i)-i)$

	$\operatorname{Hess}(N, h)$	$\operatorname{Hess}(S, h)$
dimension	$\sum_{i=1}^{n}(h(i)-i)$ singular (in general)	$\sum_{i=1}^{n}(h(i)-i)$ smooth
singularity		

	$\operatorname{Hess}(N, h)$	$\operatorname{Hess}(S, h)$
dimension	$\sum_{i=1}^{n}(h(i)-i)$	$\sum_{i=1}^{n}(h(i)-i)$
singularity	singular (in general $)$	smooth
$h=(n, n, \ldots, n, n)$	flag variety	flag variety

	$\operatorname{Hess}(N, h)$	$\operatorname{Hess}(S, h)$
dimension	$\sum_{i=1}^{n}(h(i)-i)$	$\sum_{i=1}^{n}(h(i)-i)$
singularity	singular (in general)	smooth
$h=(n, n, \ldots, n, n)$	flag variety	flag variety
$h=(2,3,4, \ldots, n, n)$	Peterson variety	permutohedral variety

	$\operatorname{Hess}(N, h)$	$\operatorname{Hess}(S, h)$
dimension	$\sum_{i=1}^{n}(h(i)-i)$	$\sum_{i=1}^{n}(h(i)-i)$
singularity	singular (in general)	smooth
$h=(n, n, \ldots, n, n)$	flag variety	flag variety
$h=(2,3,4, \ldots, n, n)$	Peterson variety	permutohedral variety

Theorem(A-Harada-Horiguchi-Masuda '15)

$$
H^{*}(\operatorname{Hess}(N, h) ; \mathbb{C}) \quad H^{*}(\operatorname{Hess}(S, h) ; \mathbb{C})
$$

	$\operatorname{Hess}(N, h)$	$\operatorname{Hess}(S, h)$
dimension	$\sum_{i=1}^{n}(h(i)-i)$	$\sum_{i=1}^{n}(h(i)-i)$
singularity	singular (in general)	smooth
$h=(n, n, \ldots, n, n)$	flag variety	flag variety
$h=(2,3,4, \ldots, n, n)$	Peterson variety	permutohedral variety

Theorem(A-Harada-Horiguchi-Masuda '15)

$$
H^{*}(\operatorname{Hess}(N, h) ; \mathbb{C}) \quad H^{*}(\operatorname{Hess}(S, h) ; \mathbb{C})^{\mathfrak{S}_{n}}
$$

	$\operatorname{Hess}(N, h)$	$\operatorname{Hess}(S, h)$
dimension	$\sum_{i=1}^{n}(h(i)-i)$	$\sum_{i=1}^{n}(h(i)-i)$
singularity	singular (in general)	smooth
$h=(n, n, \ldots, n, n)$	flag variety	flag variety
$h=(2,3,4, \ldots, n, n)$	Peterson variety	permutohedral variety

Theorem(A-Harada-Horiguchi-Masuda '15)
There is a natural ring isomorphism

$$
H^{*}(\operatorname{Hess}(N, h) ; \mathbb{C}) \cong H^{*}(\operatorname{Hess}(S, h) ; \mathbb{C})^{\mathfrak{S}_{n}}
$$

	$\operatorname{Hess}(N, h)$	$\operatorname{Hess}(S, h)$
dimension	$\sum_{i=1}^{n}(h(i)-i)$	$\sum_{i=1}^{n}(h(i)-i)$
singularity	singular (in general	smooth
$h=(n, n, \ldots, n, n)$	flag variety	flag variety
$h=(2,3,4, \ldots, n, n)$	Peterson variety	permutohedral variety

Theorem(A-Harada-Horiguchi-Masuda '15)
There is a natural ring isomorphism

$$
H^{*}(\operatorname{Hess}(N, h) ; \mathbb{C}) \cong H^{*}(\operatorname{Hess}(S, h) ; \mathbb{C})^{\mathfrak{S}_{n}}
$$

- Hyperplane arrangements
- Shareshian-Wachs conjecture
- $H^{*}(\operatorname{Hess}(S, h) ; \mathbb{C})$
- Schubert polynomials and $H^{*}(\operatorname{Hess}(N, h) ; \mathbb{C})$
- (non-regular) semisimple Hessenberg varieties
§2. Algebro-geometric aspects

semisimple degenerates to nilpotent

semisimple degenerates to nilpotent
$S=\left(\begin{array}{llll}c_{1} & & & \\ & c_{2} & & \\ & & c_{3} & \\ & & & c_{4}\end{array}\right), \quad N=\left(\begin{array}{llll}0 & 1 & & \\ & 0 & 1 & \\ & & 0 & 1 \\ & & & 0\end{array}\right)$

semisimple degenerates to nilpotent

$$
S=\left(\begin{array}{cccc}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right), \quad N=\left(\begin{array}{cccc}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
& & & 0
\end{array}\right)
$$

$$
\Gamma(t)=\left(\begin{array}{cccc}
t c_{1} & 1 & & \\
& t c_{2} & 1 & \\
& & t c_{3} & 1 \\
& & & t c_{4}
\end{array}\right) \quad(t \in \mathbb{C})
$$

semisimple degenerates to nilpotent

$$
S=\left(\begin{array}{llll}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right), \quad N=\left(\begin{array}{llll}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
& & & 0
\end{array}\right)
$$

$$
\Gamma(t)=\left(\begin{array}{cccc}
t c_{1} & 1 & & \\
& t c_{2} & 1 & \\
& & t c_{3} & 1 \\
& & & t c_{4}
\end{array}\right) \quad(t \in \mathbb{C})
$$

$$
\Gamma(t) \xrightarrow{t \rightarrow 0} N \quad \rightsquigarrow \quad \operatorname{Hess}(\Gamma(t), h) \xrightarrow{t \rightarrow 0} \operatorname{Hess}(N, h) \quad(\star)
$$

semisimple degenerates to nilpotent

$$
S=\left(\begin{array}{llll}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right), \quad N=\left(\begin{array}{llll}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
& & & 0
\end{array}\right)
$$

$$
\Gamma(t)=\left(\begin{array}{cccc}
t c_{1} & 1 & & \\
& t c_{2} & 1 & \\
& & t c_{3} & 1 \\
& & & t c_{4}
\end{array}\right) \quad(t \in \mathbb{C})
$$

$$
\Gamma(t) \xrightarrow{t \rightarrow 0} N \quad \rightsquigarrow \quad \operatorname{Hess}(\Gamma(t), h) \xrightarrow{t \rightarrow 0} \operatorname{Hess}(N, h) \quad(\star)
$$

$$
(t \neq 0: \Gamma(t) \sim t S)
$$

semisimple degenerates to nilpotent

$$
\begin{aligned}
& S=\left(\begin{array}{llll}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right), \quad N=\left(\begin{array}{cccc}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
& & & 0
\end{array}\right) \\
& \Gamma(t)=\left(\begin{array}{cccc}
t c_{1} & 1 & & \\
& t c_{2} & 1 & \\
& & t c_{3} & 1 \\
& & & t c_{4}
\end{array}\right) \quad(t \in \mathbb{C}) \\
& \Gamma(t) \xrightarrow{t \rightarrow 0} N \quad \operatorname{Hess}(\Gamma(t), h) \xrightarrow{t \rightarrow 0} \operatorname{Hess}(N, h) \quad(\star) \\
& (t \neq 0: \Gamma(t) \sim t S) \text { reg. ss. reg. nilp. }
\end{aligned}
$$

semisimple degenerates to nilpotent
$S=\left(\begin{array}{llll}c_{1} & & & \\ & c_{2} & & \\ & & c_{3} & \\ & & & c_{4}\end{array}\right), \quad N=\left(\begin{array}{llll}0 & 1 & & \\ & 0 & 1 & \\ & & 0 & 1 \\ & & & 0\end{array}\right)$
$\Gamma(t)=\left(\begin{array}{cccc}t c_{1} & 1 & & \\ & t c_{2} & 1 & \\ & & t c_{3} & 1 \\ & & & t c_{4}\end{array}\right) \quad(t \in \mathbb{C})$
$\Gamma(t) \xrightarrow{t \rightarrow 0} N \quad \rightsquigarrow \quad \operatorname{Hess}(\Gamma(t), h) \xrightarrow{t \rightarrow 0} \operatorname{Hess}(N, h) \quad(\star)$
($t \neq 0: \Gamma(t) \sim t S)$ reg. ss. reg. nilp.
After the work of Insko-Yong and Anderson-Tymoczko,
Theorem(A-DeDieu-Galetto-Harada '16)
(1)
(2)
semisimple degenerates to nilpotent
$S=\left(\begin{array}{llll}c_{1} & & & \\ & c_{2} & & \\ & & c_{3} & \\ & & & c_{4}\end{array}\right), \quad N=\left(\begin{array}{llll}0 & 1 & & \\ & 0 & 1 & \\ & & 0 & 1 \\ & & & \\ & & \end{array}\right)$
$\Gamma(t)=\left(\begin{array}{cccc}t c_{1} & 1 & & \\ & t c_{2} & 1 & \\ & & t c_{3} & 1 \\ & & & t c_{4}\end{array}\right) \quad(t \in \mathbb{C})$
$\Gamma(t) \xrightarrow{t \rightarrow 0} N \quad \rightsquigarrow \quad \operatorname{Hess}(\Gamma(t), h) \xrightarrow{t \rightarrow 0} \operatorname{Hess}(N, h) \quad(\star)$
$(t \neq 0: \Gamma(t) \sim t S)$ reg. ss. reg. nilp.
After the work of Insko-Yong and Anderson-Tymoczko,
Theorem(A-DeDieu-Galetto-Harada '16)
(1) $X=\operatorname{Hess}(N, h)$ is a local complete intersection.
(2)
semisimple degenerates to nilpotent
$S=\left(\begin{array}{llll}c_{1} & & & \\ & c_{2} & & \\ & & c_{3} & \\ & & & c_{4}\end{array}\right), \quad N=\left(\begin{array}{llll}0 & 1 & & \\ & 0 & 1 & \\ & & 0 & 1 \\ & & & \\ & & \end{array}\right)$
$\Gamma(t)=\left(\begin{array}{cccc}t c_{1} & 1 & & \\ & t c_{2} & 1 & \\ & & t c_{3} & 1 \\ & & & t c_{4}\end{array}\right) \quad(t \in \mathbb{C})$
$\Gamma(t) \xrightarrow{t \rightarrow 0} N \quad \rightsquigarrow \quad \operatorname{Hess}(\Gamma(t), h) \xrightarrow{t \rightarrow 0} \operatorname{Hess}(N, h) \quad(\star)$
$(t \neq 0: \Gamma(t) \sim t S)$ reg. ss. reg. nilp.
After the work of Insko-Yong and Anderson-Tymoczko,
Theorem(A-DeDieu-Galetto-Harada '16)
(1) $X=\operatorname{Hess}(N, h)$ is a local complete intersection.
(2) (\star) is a flat degeneration.

semisimple degenerates to nilpotent

$S=\left(\begin{array}{llll}c_{1} & & & \\ & c_{2} & & \\ & & c_{3} & \\ & & & c_{4}\end{array}\right), \quad N=\left(\begin{array}{llll}0 & 1 & & \\ & 0 & 1 & \\ & & 0 & 1 \\ & & & \\ & & \end{array}\right)$
$\Gamma(t)=\left(\begin{array}{cccc}t c_{1} & 1 & & \\ & t c_{2} & 1 & \\ & & t c_{3} & 1 \\ & & & t c_{4}\end{array}\right) \quad(t \in \mathbb{C})$
$\Gamma(t) \xrightarrow{t \rightarrow 0} N \quad \rightsquigarrow \quad \operatorname{Hess}(\Gamma(t), h) \xrightarrow{t \rightarrow 0} \operatorname{Hess}(N, h) \quad(\star)$
$(t \neq 0: \Gamma(t) \sim t S)$ reg. ss. reg. nilp.
After the work of Insko-Yong and Anderson-Tymoczko,
Theorem(A-DeDieu-Galetto-Harada '16)
(1) $X=\operatorname{Hess}(N, h)$ is a local complete intersection.
(2) (\star) is a flat degeneration.
e.g. Peterson variety is a flat limit of permutohedral variety

Regular Hessenberg varieties

Regular Hessenberg varieties

Regular matrices :
$\left\{R \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid\right.$ Adjoint orbit of R has the maximum dimension $\}$

Regular Hessenberg varieties

Regular matrices :
$\left\{R \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid\right.$ Adjoint orbit of R has the maximum dimension $\}$
e.g. regular semisimple S and regular nilpotent N

Regular Hessenberg varieties

Regular matrices :
$\left\{R \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid\right.$ Adjoint orbit of R has the maximum dimension $\}$
e.g. regular semisimple S and regular nilpotent N
$\operatorname{Hess}(R, h)$ plays an important role in the work of Brosnan-Chow.

Regular Hessenberg varieties

Regular matrices :
$\left\{R \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid\right.$ Adjoint orbit of R has the maximum dimension $\}$
e.g. regular semisimple S and regular nilpotent N

Hess (R, h) plays an important role in the work of Brosnan-Chow. (regular Hessenberg varieties)

Regular Hessenberg varieties

Regular matrices:
$\left\{R \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid\right.$ Adjoint orbit of R has the maximum dimension $\}$
e.g. regular semisimple S and regular nilpotent N

Hess (R, h) plays an important role in the work of Brosnan-Chow. (regular Hessenberg varieties)

Theorem(A-Fujita-Zeng '17)

Regular Hessenberg varieties

Regular matrices:
$\left\{R \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid\right.$ Adjoint orbit of R has the maximum dimension $\}$
e.g. regular semisimple S and regular nilpotent N

Hess (R, h) plays an important role in the work of Brosnan-Chow. (regular Hessenberg varieties)

Theorem(A-Fujita-Zeng '17)
(1) $X=\operatorname{Hess}(R, h)$ is a local complete intersection.

Regular Hessenberg varieties

Regular matrices:
$\left\{R \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid\right.$ Adjoint orbit of R has the maximum dimension $\}$
e.g. regular semisimple S and regular nilpotent N

Hess (R, h) plays an important role in the work of Brosnan-Chow. (regular Hessenberg varieties)

Theorem(A-Fujita-Zeng '17)
(1) $X=\operatorname{Hess}(R, h)$ is a local complete intersection.
(2) $H^{i}\left(X, \mathcal{O}_{X}\right)=0 \quad(i>0)$.

Regular Hessenberg varieties

Regular matrices:
$\left\{R \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid\right.$ Adjoint orbit of R has the maximum dimension $\}$
e.g. regular semisimple S and regular nilpotent N

Hess (R, h) plays an important role in the work of Brosnan-Chow. (regular Hessenberg varieties)

Theorem(A-Fujita-Zeng '17)
(1) $X=\operatorname{Hess}(R, h)$ is a local complete intersection.
(2) $H^{i}\left(X, \mathcal{O}_{X}\right)=0 \quad(i>0)$.
(3) X admits a flat degeneration to $\operatorname{Hess}(N, h)$

Regular Hessenberg varieties

Regular matrices:
$\left\{R \in \operatorname{Mat}_{n \times n}(\mathbb{C}) \mid\right.$ Adjoint orbit of R has the maximum dimension $\}$
e.g. regular semisimple S and regular nilpotent N

Hess (R, h) plays an important role in the work of Brosnan-Chow. (regular Hessenberg varieties)

Theorem (A-Fujita-Zeng '17)
(1) $X=\operatorname{Hess}(R, h)$ is a local complete intersection.
(2) $H^{i}\left(X, \mathcal{O}_{X}\right)=0 \quad(i>0)$.
(3) X admits a flat degeneration to $\operatorname{Hess}(N, h)$

- formula for the K-class [Hess (R, h)]
(weak) Fano Hessenberg varieties

(weak) Fano Hessenberg varieties

(weak) Fano Hessenberg varieties
h_{1}

h_{2}

(weak) Fano Hessenberg varieties
h_{1}

h_{2}

(weak) Fano Hessenberg varieties
h_{1}

h_{2}

h_{3}

(weak) Fano Hessenberg varieties
h_{1}

h_{2}

h_{3}

(weak) Fano Hessenberg varieties

\rightsquigarrow Similarly, we define $h_{k}(1 \leq k \leq n-1)$.

(weak) Fano Hessenberg varieties

\rightsquigarrow Similarly, we define $h_{k}(1 \leq k \leq n-1)$.

- $\operatorname{Hess}\left(S, h_{1}\right)=$ permutohedral variety,
- $\operatorname{Hess}\left(S, h_{n-1}\right)=F l\left(\mathbb{C}^{n}\right)$.

(weak) Fano Hessenberg varieties

\rightsquigarrow Similarly, we define $h_{k}(1 \leq k \leq n-1)$.

- $\operatorname{Hess}\left(S, h_{1}\right)=$ permutohedral variety,
- $\operatorname{Hess}\left(S, h_{n-1}\right)=F l\left(\mathbb{C}^{n}\right)$.

Theorem(A-Fujita-Zeng '18)
Hess $\left(S, h_{k}\right)$ is weak Fano $(\forall k)$.

(weak) Fano Hessenberg varieties

h_{3}

\rightsquigarrow Similarly, we define $h_{k}(1 \leq k \leq n-1)$.

- $\operatorname{Hess}\left(S, h_{1}\right)=$ permutohedral variety,
- $\operatorname{Hess}\left(S, h_{n-1}\right)=F l\left(\mathbb{C}^{n}\right)$.

Theorem(A-Fujita-Zeng '18)
Hess $\left(S, h_{k}\right)$ is weak Fano ($\forall k$).
(X is weak Fano $\Longleftrightarrow-K_{X}$ is nef and big)

Combining with the works of Postinghel-Urbinati, Anderson, Harada-Kaveh,

Combining with the works of Postinghel-Urbinati, Anderson, Harada-Kaveh,

Corollary
$\operatorname{Hess}\left(S, h_{k}\right)$ admits a toric degeneration and hence a completely integrable system.

Combining with the works of Postinghel-Urbinati, Anderson, Harada-Kaveh,

Corollary
$\operatorname{Hess}\left(S, h_{k}\right)$ admits a toric degeneration and hence a completely integrable system.

Hess $\left(S, h_{1}\right)$ admits toric integrable system.

Hess $\left(S, h_{n-1}\right)$ admits Gelfand-Zetlin system.
(Permutohederon)
(G-Z polytope)

Combining with the works of Postinghel-Urbinati, Anderson, Harada-Kaveh,

Corollary
$\operatorname{Hess}\left(S, h_{k}\right)$ admits a toric degeneration and hence a completely integrable system.

Hess $\left(S, h_{1}\right)$ admits toric integrable system.
(Permutohederon)
$\operatorname{Hess}\left(S, h_{n-1}\right)$ admits Gelfand-Zetlin system. (G-Z polytope)
Q. Can we construct explicit integrable system on $\operatorname{Hess}\left(S, h_{k}\right)$?

§2. More developmemnts

- Harada-Precup : deeper study of \mathfrak{S}_{n}-representation on $H^{*}(\operatorname{Hess}(S, h))$ (verifying Stanley-Stembridge conjecture in certain cases)
- Drellich : poset of Hessenberg varieties
- Ayzenberg-Buchstaber : topological twin of $\operatorname{Hess}(S, h)$
- A-Crooks : a holomorphic completely integrable system on (the total space of) a family of Hessenberg varieties

§2. More developmemnts

- Harada-Precup : deeper study of \mathfrak{S}_{n}-representation on $H^{*}(\operatorname{Hess}(S, h))$ (verifying Stanley-Stembridge conjecture in certain cases)
- Drellich : poset of Hessenberg varieties
- Ayzenberg-Buchstaber : topological twin of $\operatorname{Hess}(S, h)$
- A-Crooks : a holomorphic completely integrable system on (the total space of) a family of Hessenberg varieties

§2. More developmemnts

- Harada-Precup : deeper study of \mathfrak{S}_{n}-representation on $H^{*}(\operatorname{Hess}(S, h))$ (verifying Stanley-Stembridge conjecture in certain cases)
- Drellich : poset of Hessenberg varieties
- Ayzenberg-Buchstaber : topological twin of $\operatorname{Hess}(S, h)$
- A-Crooks : a holomorphic completely integrable system on (the total space of) a family of Hessenberg varieties

Thank you for your attention!

