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The inviscid Boussinesq modulation
equations

Horizontally homogeneous modulation equations for nonlinear inviscid
Boussinesq waves in uniformly stratified atmosphere

∂Tkz + ∂Z
�

ω̂(kz) +Kxu
�

= 0

∂Ta+ ∂Z
�

ω̂′(kz)a
�

= 0

∂Tu+ ∂Z
�

ω̂′(kz)Kxa
�

= 0 (1)

where

ω̂(kz) =
NKx

Ç

K2
x + k2

z

(2)

is the non-hydrostatic intrinsic frequency (Muraschko et al., 2015).
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Spectral stability of the inviscid Boussinesq
plane wave

É Modulation equations in vector
form for y = (kz, a, u)T ∈ R3

∂Ty+ ∂ZF(y) = 0 (3)

É Has plane wave solution
y = Y = (Kz, A, U)T = const.

É Linearize for stability

∂Ty+ DF(Y)∂Zy = 0 (4)

É Must have solution

y(Z,T) = y(Z)eλT (5)

É Translates (4) to eigenvalue
problem, LYy = λy, for operator
LY = −DF(Y)∂Z on L2.

ℜ(λ)

ℑ(λ)

Figure: Stable (ω̂′′(Kz) ≥ 0) and
unstable (ω̂′′(Kz) < 0) spectrum
of operator LY . This is known as
modulational instability.
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Absolute instability of the inviscid Boussinesq
plane wave
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The inviscid pseudo-incompressible
modulation equations

Boussinesq does not account for varying background density but
pseudo-incompressible (Durran, 1989) can:

∂Tkz + ∂Z
�

ω̂(kz) +Kxu
�

= 0

∂Ta+ ∂Z
�

ω̂′(kz)a
�

= −ηω̂′(kz)a

∂Tu+ ∂Z
�

ω̂′(kz)Kxa
�

= −ηω̂′(kz)Kxa (6)

where the background density is

ρ(Z) = ρ0eηZ (7)

in the isothermal atmosphere.
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Spectral stability of the upward-traveling
wave front

É The pseudo-
incompressible
modulation equations
are solved by
traveling wave fronts.

É Assess stability be
linearization as
before.

É Solve eigenvalue
problem for LY in
terms of Fredholm
operator theory.

ℜ(λ)
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Figure: Unconditionally unstable essential
spectrum of operator LY .
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Absolute instability of the upward-traveling
wave front
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The dissipative Grimshaw modulation
equations

É Inviscid spectra allow for arbitrarily large instability growth rates ℜ(λ)
which is evidence for ill-posedness.

É Regularization is found by including dissipation.

∂Tkz + ∂Z
�

ω̂(kz) +Kxu
�

= 0

∂Ta+ ∂Z
�

ω̂′(kz)a
�

= −ηω̂′(kz)a −Λ(K2
x + k2

z )a

∂Tu+ ∂Z
�

ω̂′(kz)Kxa
�

= −ηω̂′(kz)Kxa (8)
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Spectral stability of the traveling wave packet

É The dissipative
Grimshaw modulation
equations are solved by
up(down)ward-traveling
wave packets.

É Upward-traveling wave
packets are transient
unstable if

C > ω̂′(K+
z ) > ω̂′(K−z ) > 0

and absolute unstable
otherwise.

É Downward-traveling
wave packets are
unconditionally transient
unstable.

ℜ(λ)
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Figure: Stable essential spectrum of operator
LY in weighted space L2

α.

,
Mark Schlutow, Stability of nonlinear gravity waves in the atmosphere 9



Spectral stability of the traveling wave packet

É The dissipative
Grimshaw modulation
equations are solved by
up(down)ward-traveling
wave packets.

É Upward-traveling wave
packets are transient
unstable if

C > ω̂′(K+
z ) > ω̂′(K−z ) > 0

and absolute unstable
otherwise.

É Downward-traveling
wave packets are
unconditionally transient
unstable.

ℜ(λ)

ℑ(λ)λ±
1

λ+
2

λ+
3

λ−
2

λ−
3

012110

Figure: Stable essential spectrum of operator
LY in weighted space L2

α.

,
Mark Schlutow, Stability of nonlinear gravity waves in the atmosphere 9



Spectral stability of the traveling wave packet

É The dissipative
Grimshaw modulation
equations are solved by
up(down)ward-traveling
wave packets.

É Upward-traveling wave
packets are transient
unstable if

C > ω̂′(K+
z ) > ω̂′(K−z ) > 0

and absolute unstable
otherwise.

É Downward-traveling
wave packets are
unconditionally transient
unstable.

ℜ(λ)

ℑ(λ)λ±
1

λ+
2

λ+
3

λ−
2

λ−
3

012110

Figure: Stable essential spectrum of operator
LY in weighted space L2

α.

,
Mark Schlutow, Stability of nonlinear gravity waves in the atmosphere 9



Transient instability of the upward-traveling
wave packet
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Transient instability of the
downward-traveling wave packet
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Thank you for your attention!
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