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Setting (Monotone Function Estimation)

We are given data

Yi = f ∗(xi ) + εi for i = 1, . . . , n

where εi ’s are i.i.d N(0, σ2) with σ2 unknown.

f ∗ : [0, 1]d → R is an unknown function which is coordinate wise
monotone non decreasing. The problem is to recover f ∗.

x1, . . . , xn ∈ [0, 1]d are design points which could be assumed to be
fixed or chosen i.i.d at random. In this talk, we consider the fixed
lattice design case.
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Setting (Sequence Estimation)

Let Ld ,n be the d dimensional lattice [1, . . . , k]d where k = n1/d .

Natural partial ordering on Ld ,n. We have u ≤ v iff uj ≤ vj for all
1 ≤ j ≤ d .

θ∗ is monotone with respect to the natural partial order.

We are given data Y ∼ N(θ∗, σ2In×n) with σ2 unknown.

We measure the performance of an estimator θ̂ in terms of the
mean squared error:

R(θ̂, θ∗) =
1

n
Eθ∗‖θ̂ − θ∗‖2

where ‖ · ‖ is Euclidean norm.
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Least Squares Estimator

The space of monotone functions on the lattice Ld ,n is a closed
convex cone.

Md ,n = {θ ∈ Rn : θu ≤ θv for all u ≤ v ∈ Ld ,n}.

LSE is simply the Euclidean projection of Y onto the set Md ,n.

θ̂ = ΠMd,n
(Y ) = argmin

v∈Md,n

‖Y − v‖2.

How good is the LSE as an estimator of θ∗?
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Some History

The d = 1 case is a canonical problem in Shape Constrained
Regression and has been studied by many authors. See Brunk
(1955); van Eeden (1958); van de Geer (1990); Donoho (1991);
Birge and Massart (1993); Zhang (2002); Chatterjee, Guntuboyina
and Sen (2015); Bellec(2016).

The d > 1 case is much less studied. The only work we are aware
of is Chatterjee, Guntuboyina and Sen (2016) who studied the
d = 2 case.

The cases d > 2 have not been studied at all in the literature.
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MINIMAX RATE OPTIMALITY OF THE LSE
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The case of d = 1

The LSE achieves the cube root rate of convergence in MSE, see
(Zhang(2002)).

R(θ̂, θ∗) ≤ C
(V (θ∗)σ2

n

)2/3
+
σ2 log n

n
.

when V (θ∗) = θ∗n − θ∗1.

The LSE is minimax rate optimal.

inf
θ̃

sup
θ∈M1,n:V (θ)≤1

R(θ̂, θ) ≥ C
(σ2
n

)2/3
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The case of d = 2

The LSE achieves the square root rate of convergence in MSE, see
(Chatterjee, Guntuboyina and Sen(2016)).

R(θ̂, θ∗) ≤ C
σV (θ∗) (log n)4√

n
+
σ2(log n)8

n
.

The LSE is minimax rate optimal upto a polylog factor.

inf
θ̃

sup
θ∈M2,n:V (θ)≤1

R(θ̂, θ∗) ≥ C
( σ√

n

)
.
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LSE is minimax rate optimal upto polylog factor in all
dimensions

The LSE achieves a O(n−1/d) rate of convergence in MSE for
d ≥ 3.

sup
θ∈Md,n:V (θ∗)≤1

R(θ̂, θ∗) ≤ Cn−1/d(log n)4.

The LSE is minimax rate optimal upto a log factor for d ≥ 3.

inf
θ̃

sup
θ∈Md,n:V (θ)≤1

R(θ̃, θ) ≥ cdn
−1/d .

where V (θ) is the range of θ∗.
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Some Comments

The metric entropy of bounded monotone functions (Gao, Wellner

(07)) in d ≥ 3 dimensions scales like 1
ε

2(d−1)
. Hence the entropy

integral diverges at a super logarithmic rate.

First(?) example of a global empirical risk minimization procedure
is nearly minimax rate optimal over such a massive parameter
space.

Worst case risk (upto log factors) is n−min{2/(d+2),1/d}. Transition
of rate from d = 1 to d ≥ 3 with d = 2 being the transition case.
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Proof of the minimax lower bound for d = 2

Consider the lattice points on the anti diagonal x + y =
√
n + 1.

Clearly, this set of points forms an antichain; that is no two points
are comparable.

If there are k points on the antichain; the problem is atleast as
hard as estimating k normal means lying in [0, 1]; hence one
obtains a minimax lower bound ck/n.

The largest antichain is the antidiagonal which has O(
√
n) points

and hence gives a minimax lower bound of O(n−1/2).
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Proof of the minimax lower bound for general d .

Consider the set of lattice points x1 + · · ·+ xd = k = n1/d .
Clearly this set forms an antichain.

Standard combinatorics then tells us the cardinality of this
antichain is O(kd−1) = O(n1−1/d).

This immediately proves the minimax lower bound for the MSE
scaling like n−1/d .
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Proof of Upper Bound for LSE

It is well known (Saurav Chatterjee(2015)) that the risk is
intimately driven by the function

f (t) = E sup
θ∈Mn,d :‖θ−θ∗‖≤t

〈Z , θ − θ∗〉.

Step 1: Upper bound the risk for the origin. This involves upper
bounding the statistical dimension of Md ,n.

Step 2: Use step 1 and Cauchy Schwarz inequality to bound f (t)
and derive a risk bound.
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STATISTICAL DIMENSION
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Statistical Dimension

Given a cone C ⊂ Rn, a natural measure of its size is given by its
Statistical dimension δ(C ).

δ(C ) = E‖ΠC (z)‖2 (1)

where z ∼ N(0, In×n).

For us, this is just the unnormalized risk at the origin.

An equivalent description is

δ(C ) = E
(

sup
θ∈C ,‖θ‖≤1

n∑
i=1

Ziθi
)2
.
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Statistical Dimension of Monotone Cone

δ(M1,n) = 1 +
1

2
+ . . .

1

n
.

c(log n)2 ≤ δ(M2,n) ≤ C (log n)8

cdn
1−2/d ≤ δ(Md ,n) ≤ Cn1−2/d(log n)8

The statistical dimension becomes super logarithmic for d > 2.

18 / 30



Proof Ideas

To prove the upper bounds for d ≥ 3, it is useful to view the
lattice Ld ,n as a collection of kd−2 = n(d−2)/d many two
dimensional lattices.

Enlarge Md ,n by removing the constraints between the lattices.
Then an upper bound to δ(Md ,n) is just the sum of δ(M2,n2/d )
times the number of two dimensional lattices.

To prove the lower bound we make the Gaussian supremum inner
product large by setting the values to be proportional to the
Gaussian vector on the antichain.
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ADAPTATION OF THE LSE
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Adaptive Risk Bounds for d = 1

When d = 1, Chatterjee, Guntuboyina and Sen(15); Bellec(2016)
prove that

R(θ̂, θ∗) ≤ inf
θ∈M1,n

(
‖θ∗ − θ‖2

n
+
σ2k(θ)

n
log

en

k(θ)

)
where k(θ) is the number of constant pieces of θ.

LSE adapts to piecewise constant functions at a parametric rate
upto a log factor.
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Adaptive Risk Bounds for d = 2

In Bivariate Isotonic Regression Chatterjee, Guntuboyina and
Sen(2016) proved

R(θ̂, θ∗) ≤ inf
θ∈M2,n

(
‖θ∗ − θ‖2

n
+
σ2k(θ)

n
(log(en))8

)
.

k(θ) is the smallest k s.t there exists a rectangular block-wise
partition of the

√
n ×
√
n square into k blocks such that θ is

constant on each block.

LSE adapts to bivariate non decreasing functions which are
piecewise constant on rectangles at a parametric rate upto a log
factor.
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Adaptation to Intrinsic Dimensionality for d = 2

For r = 0, 1, 2, we say a vector θ0 ∈M(L2,n) is a function of r
variables, written θ0 ∈Mr (L2,n), if θ0 only depends on r many
coordinates out of d = 2.

For d ≥ 2, there exists constant C > 0

sup
θ0∈Mr (L2,n)∩B∞(1)

R(θ̂n, θ0) ≤ Cd


n−1 log8 n if r = 0

n−2/3 log8 n if r = 1

n−1/2 log4 n if r = 2.
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Adaptive Risk Bound for d > 2?

The LSE has a O(n−2/d) rate of convergence when θ∗ is a
constant function; parametric adaptation therefore is not possible.

However this rate is faster than the minimax rate of convergence
O(n−1/d).

It is still natural to surmise that the LSE will have faster rate of
convergence than the minimax rate whenever θ∗ is piecewise

constant on rectangles; subsets of the lattice of the form
d∏

i=1

[ai , bi ].
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Adaptive Risk Bound for d > 2?

It is useful to view the lattice Ld ,n as a collection of two
dimensional lattices; for example by fixing d − 2 coordinates.

One can then apply the existing adaptation result for 2 dimensional
lattices in Chatterjee, Guntuboyina, Sen(2016) on each of these
lattices.
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Adaptive Risk Bound for d > 2

For a rectangle
d∏

i=1

[ai , bi ], call it a two dimensional sheet if

|i : ai = bi | ≥ d − 2.

For any α ∈Md ,n, define k(α) to be the cardinality of the
minimal partition of Ld ,n into two dimensional sheets.

R(θ̂, θ∗) ≤ inf
α∈Md,n

(
‖θ∗ − α‖2

n
+
σ2k(α)

n
(log(en))8

)
.

The above theorem works even if the model is misspecified.
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Adaptation to general rectangular level sets

Let Mk,d ,n be the collection of all θ ∈M(d , n) such that there
exists a partition Ld ,n = ∪ki=1Ri where R1, ...,Rk are rectangles
with the property that θ is constant on each rectangle.

R(θ̂, θ∗) ≤ inf
k

{
inf

α∈Mk,d,n

(
‖θ∗ − α‖2

n
+ C

(k
n

)2/d
(log n)8

)}
.

If θ∗ ∈Mk,d ,n then we get a Õ(k/n)2/d rate of convergence.
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Adaptation to Intrinsic Dimensionality for d ≥ 3.

For r = 0, 1, . . . , d , we say a vector θ0 ∈M(Ld ,n) is a function of
r variables, written θ0 ∈Mr (Ld ,n), if θ0 only depends on r many
coordinates out of d .

For d ≥ 2, there exists constant Cd > 0, depending only on d ,
such that

sup
θ0∈Mr (Ld,n)∩B∞(1)

R(θ̂n, θ0) ≤ Cd


n−2/d log8 n if r ≤ d − 2

n−4/(3d) log16/3 n if r = d − 1

n−1/d log4 n if r = d .
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Summary

LSE is minimax rate optimal with Õ(n−1/d) rate of convergence.

The Statistical Dimension of the Monotone Cone becomes super
logarithmic as soon as d > 2.

Nearly parametric adaptation to piecewise constant functions is no
longer obtained as in d = 1 and 2 but faster rates than the
minimax rates are still obtained when θ∗ has additional structure
such as piecewise constant on rectangles or when intrinsic
dimensionality is lower than d .
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THANK YOU!
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