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Talk outline
I Literature review: bandwidth selection for KDEs, and level sets
I Level set risk approximation
I Highest density regions (HDRs) and HDR risk approximation
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KDEs
Let X1, . . . ,Xn

iid∼ f0 on R and for fixed h > 0 define the univariate KDE

f̂n,h(x) = n−1
n∑

i=1

Kh(x− Xi) =
1

nh

n∑
i=1

K(h−1(x− Xi)).

or, based on X1, . . . ,Xn
iid∼ f0 on Rd, for H > 0, the multivariate KDE

f̂n,H(x) = n−1
n∑

i=1

KH(x− Xi) =
1

n|H|1/2

n∑
i=1

K(H−1/2(x− Xi)).

(In both cases, K is some (univariate, multivariate, respectively) kernel
density function.)
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Bandwidth choice
We have to select h: Least-squares cross-validation (Rudemo, 1982;
Bowman, 1984), biased least-squares cross-validation (Scott and
Terrell, 1987), smoothed cross validation (Müller, 1985; Staniswalis,
1989; Hall, Marron, and Park, 1992), bootstrap (Taylor, 1989; Faraway
and Jhun, 1990; Hall, 1990), direct plug-in methods (Park and Marron,
1992), solve-the-equation direct plug-in methods (Scott, Tapia, and
Thompson, 1977; Sheather 1986; Park and Marron, 1990; Sheather
and Jones, 1991; Engel, Herrman, and Gasser, 1995).

Many of these methods can be extended to selecting H, although there
are sometimes added complications. The methods of direct plug-in
(Wand and Jones, 1994; Duong and Hazelton, 2003; Chacon and
Duong, 09), and smoothed, unbiased, and biased cross-validation
(Duong and Hazelton, 2005ab) have been studied.
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Density level sets and highest density regions
Density level sets are interesting for many reasons. They have been
used for discriminant analysis (classification) (Mammen and Tsybakov,
1999; Duong, Koch, and Wand, 2009), clustering analysis (Hartigan,
1975; Cuevas, Febrero and Fraiman, 2001; Rinaldo and Wasserman,
2010; Jang, 2006), outlier/novelty detection (Lichman and Smyth,
2014; Park, Huang, and Ding, 2010) and in topological data analysis
(Wasserman, 2016).
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Level set estimation and inference
Level set estimation: Hartigan (1987), Müller and Sawitzki (1991),
Polonik (1995), Tsybakov (1997), Walther (1997).

KDE plug-in estimators: Cuevas and Fraiman (1997), Baı́llo,
Cuesta-Albertos, and Cuevas (2001), Baı́llo (2003), Cadre (2006),
Mason and Polonik (2009), Jankowski and Stanberry (2012), Mammen
and Polonik (2013), Chen, Genovese, and Wasserman (2016).

In the d = 1 case Samworth and Wand (2010) study the problem of
highest density region (HDR) estimation. Very recently, Qiao (2017)
studies a problem related to level set estimation when d ≥ 1.
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Let X1, . . . ,Xn
iid∼ f0 on R and for fixed h > 0 define the univariate KDE

f̂n,h(x) = n−1
n∑

i=1

Kh(x− Xi) =
1

nh

n∑
i=1

K(h−1(x− Xi)).

Recall: if f0 is twice continuously differentiable

Var(̂fn,h(x)) =
1
nh

∫
K2(z)f0(x− hz)dz− 1

n
E(̂fn,h(x))2

=
1
nh

f0(x)R(K) + o(nh)−1 and

E(̂fn,h(x)) =

∫
K(z)f0(x− hz)dz = f0(x) + 2−1h2f ′′0 (x)µ2(K) + o(h2)

as nh→∞ and h↘ 0. (Here, R(K) :=
∫

K2(z)dz and
µ2(K) :=

∫
zK(z)dz depend only on K.)

Thus

MSE(̂fn,h(x)) = (nh)−1f (x)R(K) +
1
4

h4f ′′(x)2µ2(K) + o((nh)−1 + h4) and so

MISE(̂fn,h) = (nh)−1R(K) +
1
4

h4µ2(K)2R(f ′′) + o((nh)−1 + h4).
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Bandwidth selection for squared error loss
Let X1, . . . ,Xn

iid∼ f0 on Rd and for H ≡ Hd×d > 0, define the KDE

f̂n,H(x) = n−1
n∑

i=1

KH(x− Xi) =
1

n|H|1/2

n∑
i=1

K(H−1/2(x− Xi)).

If f0 is twice continuously differentiable then

Var(̂fn,H(x)) = (n|H|1/2)−1f0(x)R(K) + o(n|H|1/2)−1

E(̂fn,H(x)) = f0(x) + 2−1 tr(H∇2f0(x))µ2(K) + o(tr(H)).

Thus

MISE(̂fn,H) = (n|H|1/2)−1R(K) + 4−1µ2(K)2
∫

tr(H∇2f0(x))2dx

+ o((n|H|1/2)−1 + tr(H)2).
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A density (d = 1)
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A density (d = 2)
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Bandwidths for KDE level sets
Fix the level 0 < c < max f0. Let

Lc := {x : f0(x) ≥ c} and L̂c :=
{

x : f̂n,H(x) ≥ c
}
.

We let
L(L̂c,Lc) =

∫
Lc∆L̂c

f0(x)dx =

∫
Rd
|1L̂c
− 1Lc |.

The risk is

EL(L̂c,Lc)

=

∫
Rd

f0(x)|P(̂fn,H(x) < c)− 1{f0(x)<c}|dx

= fτ

∫
βδn

|P(̂fn,H(x) < c)− 1{f0(x)<c}|dx + error

where βc = {x : f0(x) = c} and βδn
c := {x : |x− βc| ≤ δn}. Here δn ↘ 0.

10



Bandwidths for KDE level sets
Fix the level 0 < c < max f0. Let

Lc := {x : f0(x) ≥ c} and L̂c :=
{

x : f̂n,H(x) ≥ c
}
.

We let
L(L̂c,Lc) =

∫
Lc∆L̂c

f0(x)dx =

∫
Rd
|1L̂c
− 1Lc |.

The risk is

EL(L̂c,Lc) =

∫
Rd

f0(x)|P(̂fn,H(x) < c)− 1{f0(x)<c}|dx

= fτ

∫
βδn

|P(̂fn,H(x) < c)− 1{f0(x)<c}|dx + error

where βc = {x : f0(x) = c} and βδn
c := {x : |x− βc| ≤ δn}. Here δn ↘ 0.

10



Bandwidths for KDE level sets
Fix the level 0 < c < max f0. Let

Lc := {x : f0(x) ≥ c} and L̂c :=
{

x : f̂n,H(x) ≥ c
}
.

We let
L(L̂c,Lc) =

∫
Lc∆L̂c

f0(x)dx =

∫
Rd
|1L̂c
− 1Lc |.

The risk is

EL(L̂c,Lc) =

∫
Rd

f0(x)|P(̂fn,H(x) < c)− 1{f0(x)<c}|dx

= fτ

∫
βδn

|P(̂fn,H(x) < c)− 1{f0(x)<c}|dx + error

where βc = {x : f0(x) = c} and βδn
c := {x : |x− βc| ≤ δn}. Here δn ↘ 0.

10



Bandwidths for KDE level sets
We then show that∫

βδn
c

|P(̂fn,H(x) < c)− 1{f0(x)<c}|dx

=

∫
βc

∫
Jn

|P(̂fn,H(y(x, t)) < c)− 1{f0(y(x,t))<c}|dtdH(x) + O(δ2
n)

where

I H is (d − 1)-dimensional Hausdorff measure,
I y(x, t) := x + tux where ux is the outer normal vector to βc at x,
I and Jn ⊂ R.

Then P(̂fn,H(y(x, t) < c) can be approximated by a normal probability
since f̂n,H(y(x, t))− c is approximately N

(
µ, σ2

)
where

I µ = t‖∇f0(x)‖+ 2−1µ2(K) tr(H∇2f0(x)),
I σ2 = R(K)c

n|H|1/2
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Theorem 1
Let Assumptions D, K, and H hold. Then

EL(L̂c,Lc) = LS(H) + o
{

(n|H|1/2)−1/2 + tr(H)
}

as n→∞, where

LS(H) :=
c√

n|H|1/2

∫
βc

2φ(Bx(H)) + 2Φ(Bx(H))Bx(H)− Bx(H)

Ax
dH(x),

Ax :=
‖∇f0(x)‖√

R(K)c
, and Bx(H) := −

√
n|H|1/2D1(x,H)√

R(K)c
,

with D1(x,H) := 1
2µ(K) tr(H∇2f0(x)).

Here, φ and Φ are the standard normal density and CDF, respectively.
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Level set expansion assumptions
Assumption K: Assumptions on the kernel K.

Assumption D:

1. Assume f0 has two bounded continuous partial derivatives for
x ∈ Rd and that f0 has a continuous third derivative in a
neighborhood of βc.

2. Assume inf ‖∇f0‖ > 0, where the inf is over an open neighborhood
of βc.

3. The level set βc is a disjoint union of sets that are each
diffeomorphic to the sphere Sd−1.

Assumption H: Let λ− ≡ λ−,n, λ+ ≡ λ+,n be two positive sequences
converging to 0 such that λ− ≤ λ+. Assume that nλd/2

− /(log n)3 →∞
and λ(d+8)

+ n(log n)2 = O(1). We assume that λ− ≤ λmax(Hn) ≤ λ+.
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Highest density regions
What if the level is unknown, specified only through the super level set
probability content? Fix τ ∈ (0, 1). Let fτ,0 be such that∫

f0(x)1{f0(x)≥fτ,0} = 1− τ.

We refer to estimation of

Lτ := {x : f0(x) ≥ fτ,0}

based on knowledge of τ (but not fτ,0) as HDR estimation.
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HDR estimation
Like in the LS problem, we can approximate EL(L̂τ ,Lτ ) to studying∫

βc

∫
Jn

|P(̂fn,H(y(x, t)) < f̂τ,n)− 1{f0(y(x,t))<fτ,0}|dtdH(x).
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HDR estimation
We estimate fτ,0 by f̂τ,n, satisfying∫

f̂n,H(x)1{̂fn,H(x)≥f̂τ,n} = 1− τ.

We can derive

Ef̂τ,n − fτ,0 = w0(V1(H) + V2(H)) + o(tr(H))

where

w0 :=

{∫
βτ

1
‖∇f0(x)‖

dH(x)

}−1

,

V1(H) :=

∫
βτ

D1(x,H)

‖∇f0(x)‖
dH(x), and V2(H) :=

1
fτ,0

∫
Lτ

D1(x,H) dx.

We can also show that Var f̂τ,n = o(n−1|H|−1/2).

This implies that Cov(̂fτ,n, f̂n,H(y)) = o(n−1|H|−1/2) for fixed y.
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Theorem 2
Let Assumptions D, K, and H hold. Fix 0 < τ < 1. Then as n→∞,
EL(L̂τ ,Lτ ) equals, up to an o((n|H|1/2)−1/2 + tr(H)) error term,

HDR(H) =
fτ,0√

n|H|1/2

∫
βτ

2φ(Cx(H)) + 2Φ(Cx(H))Cx(H)− Cx(H)

Ax
dH(x)

where Ax :=
‖∇f0(x)‖√

R(K)fτ,0
and Cx(H) := Bx(H) +

√
n|H|1/2

R(K)fτ,0
D2(H),

D2(H) := w0 {V1(H) + V2(H)} and Bx(H) := −
√

n|H|1/2D1(x,H)√
R(K)fτ,0

,

with D1(x,H) := 1
2µ2(K) tr(H∇2f0(x)), and

w0 :=

{∫
βτ

1
‖∇f0(x)‖

dH(x)

}−1

,

V1(H) :=

∫
βτ

D1(x,H)

‖∇f0(x)‖
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Here, we simplify to the case where H = h2Idd×d.

Corollary 3

Let Assumptions D, K, and H hold. Assume further that f0(x) = g(‖x‖)
and that the function g(r) defined for r > 0 is strictly decreasing on
[0,∞). Then there exists a constant c0 depending on f0 and K (but not
on n) such that there is a unique positive number
h0 = argminh∈[0,∞] HDR(h) satisfying

h0 = c0n−1/(d+4) and h00 = h0(1 + o(1)) as n→∞,

where h00 is any minimizer of EL(L̂τ ,Lτ ).
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Both LS and HDR depend on unknown constants. To use them, we
form pilot estimators. For HDR, we estimate

I fτ,0, βτ (with bandwidth h1)
I ∇f0 (with bandwidth h2),
I and ∇2f0 (with bandwidth h3).

Corollary 4

Let Assumptions D, D2, K, K2, H, and H2 hold. Assume there exists a
constant c0 (depending on f0 and K but not on n) such that
h0 = argminh∈[0,∞] HDR(h) = c0n−1/(d+4). Then
ĥHDR/h0 = 1 + Op(log n/n2/d+4).
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Assumptions
Assumption D2: Assume f0 is four times continuously differentiable.

Assumption H2: We assume that h1 is of the order n−1/d+4, h2 is order
n−1/d+7, h3 is order n−1/d+9.
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Computation
Hyndman (1996) proposes a “quantile method” for computing fτ,0 from

a known density by Monte Carlo.

Simulate Z1, . . . ,ZM
iid∼ f0; let

Yi = f0(Zi); by definition, P(f0(Zi) ≥ fτ,0) = 1− τ , hence fτ,0 is the τ
quantile of the distribution of Yi; estimate this by letting M →∞.

When d = 2, we use numerical integration and a binary search.

Optimizing over LS(H) or HDR(H)?
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Notes
For some τ ’s the LSCV will generally be comparable to our method,
but for some it will be worse, and don’t know which in advance.
Unfortunately there were some cases where LSCV beat our method.

The V2 term depends on Lτ .

The bias of f̂τ,n seems to in some cases be poorly approximated
(simulation evidence; dependent on τ?). Related to V2?

Pilot estimators improvable?
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Conclusions
I Improvements in our expansion (super level-set integral term)?

I Implementation when d ≥ 3?
I Multi-stage bandwidth selector?

I Methodology using (bandwidth selection in) level set or HDR
estimators?

I Regression?

I
...
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“Fubini Theorem”
Lemma 5
Assume Assumption D holds for f0. Let β := f−1

0 (fτ,0) and let δ > 0 be
no larger than the reach of β. Let h be a bounded function on βδ. Let
H(x) :=

∫ δ
−δ h(x + tux)dt. Then∣∣∣∣∫
βδ

h(x)dx−
∫
β

H(z)dH(z)
∣∣∣∣ ≤ C sup

x∈β

∫ δ

−δ
th(x + tux)dt,

where C is a constant depending on f0.
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