
Unified optimization for self-learning robust penalties.

Aleksandr Aravkin1

Peng Zheng 2

1Applied Math & eSciences, UW
2Applied Math, UW

0 / 32

Classic vs. unified approach to scientific discovery.

data collectionexperimental
design

learning/
inversion

probabilistic/
physics models

statistical
models

error analysis/
UQ

data�driven
models

cleaning/
imputation

1 / 32

Classic vs. unified approach to scientific discovery.

data collectionexperimental
design

learning/
inversion

probabilistic/
physics models

statistical
models

error analysis/
UQ

data�driven
models

cleaning/
imputation

data�driven
models

physics�based
models

error
models

side
information

uncertainty
quantification

anomaly
analysis

experimental
design

outlier detection

data interpolation

learning/inversion

error analysis

Unified Optimization

2 / 32

Inversion & Learning Problems

min
x

ρ1(Ax− b) + ρ2(Cx)

s.t. Fx ≤ f.

• Data misfit: good results in the face of large measurement errors

• Regularization: prior information e.g. sparsity.

• Constraints: use information about feasible region

3 / 32

Penalties with Parameters

(a) huber, κ = 1 (b) elastic net, α = 0.5

(c) quantile, τ = 0.3 (d) quantile huber

Figure: Piecewise linear-quadratic penalties with shape parameters.

4 / 32

Central Theme: Learning the Learning Criterion

-1 1

−τ 1− τ

q(r; τ) = (1− τ)r+ + τr−.

min
x

τ∈[0,1]
q(Ax− b; τ) + ???

5 / 32

Tuning Parameters

• Tuning parameters is difficult.

• Current methods:
• cross-validation
• random search
• Bayesian optimization

• We can simultaneously solve for shape parameters and the model x.

6 / 32

Statistical View

We assume εi are drawn from density

p(r; θ) = 1
nc(θ)

exp[−ρ(r; θ)], nc(θ) =
∫
R

exp[−ρ(r; θ)] dr

where θ controls the shape, and nc(θ) is a normalization constant.

7 / 32

Maximum Likelihood

The joint maximum likelihood (in x and θ) is equivalent to:

min
x,θ

m∑
i=1

ρ(yi − 〈ai, x〉 ; θ) +m log[nc(θ)].

Self-tuning quantile penalty formulation:

min
x,τ∈[0,1]

m∑
i=1

q(yi − 〈ai, x〉 ; τ) +m log
(1
τ

+ 1
1− τ

)

8 / 32

Self-Tuned Quantile Result

Figure: true generator (black), least squares (blue), self-tuned quantile huber (red).

9 / 32

Restricting the Problem Class

Assumption
Consider ρ(r; θ) : D × R→ R, such that

1. ρ(r; θ) ≥ 0 for any r ∈ R and θ ∈ D.

2. For any θ ∈ D, nc(θ) =
∫
R exp[−ρ(r; θ)] dr <∞.

3. For any θ0 ∈ D, ρ(r; θ) is C2 around θ0 for almost every r ∈ R.

10 / 32

Smoothness

Theorem (smoothness of nc(θ))

For nc(θ) =
∫
R exp[−ρ(r; θ)] dr, if Assumption holds and for any θ0 ∈ D, there

exist functions gk(r), k = 1, 2, such that,

1. for any unit v, | 〈∇θ exp[−ρ(r; θ)], v〉 | ≤ g1(r) for all θ in nbhd of θ0,

2. for any unit v,
∣∣〈∇2

θ exp[−ρ(r; θ)]v, v
〉∣∣ ≤ g2(r) for all θ in nbhd of θ0,

3.
∫
R gk(r) dr <∞, k = 1, 2.

then nc(θ) is C2 in nbhd of θ0 and,

∇nc(θ0) =
∫
R
∇θ exp[−ρ(r; θ0)] dr, ∇2nc(θ0) =

∫
R
∇2
θ exp[−ρ(r; θ0)] dr.

11 / 32

Examples

• Piecewise linear quadratic (PLQ) penalties, e.g. huber, quantile,
quantile-huber, `2, `1 and elastic net.

• Other robust penalties, e.g. negative log-likelihood of Student’s T:

Figure: Student’s T: ρ(r; v) = log(1 + x2/v)

12 / 32

Convexity

Theorem (convexity of log(nc(θ)))

Suppose Assumption holds, and let ρ(r; θ) be a coercive convex non-negative
function of r for every θ. We have the following results:

1. If ρ(r; θ) is convex in r and θ, then log[nc(θ)] is a concave function of θ.

2. If ρ(r; θ) is concave with respect to θ for every r, then log[nc(θ)] is a
convex function.

13 / 32

Bottom Line
The joint optimization problem is never convex. However, in many cases local
search finds global optima.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

κ

0.05

0.10

0.15

0.20

0.25

0.30
τ

Figure: Level sets for value function v(θ) := minx ρ(x, θ) for the quantile Huber
model. The blue star is the maximum likelihood estimator, while the red dot
represents the true parameters in the simulation.

14 / 32

First and second order methods

nonquadratic example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x(0)

x(1)

x(2)

x(0)

x(1)

backtracking line search exact line search

Unconstrained minimization 10–9

a problem in R100

f(x) = cTx −
500∑

i=1

log(bi − aT
i x)

k

f
(x

(k
))

−
p

⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

‘linear’ convergence, i.e., a straight line on a semilog plot

Unconstrained minimization 10–10

example (page 13-9):

g(x1, x2) = ex1+x2−1 + ex1−x2−1 + e−x1−1

−3 −2 −1 0 1
−3

−2

−1

0

1

2

3

x1

x
2

x(0)

x(1)

0 1 2 3 4 5
10−10

10−5

100

k

g
(x

(k
))

−
g
(x

∗)
)

Unconstrained minimization 13-23

example (page 13-9):

g(x1, x2) = ex1+x2−1 + ex1−x2−1 + e−x1−1

−3 −2 −1 0 1
−3

−2

−1

0

1

2

3

x1

x
2

x(0)

x(1)

0 1 2 3 4 5
10−10

10−5

100

k

g
(x

(k
))

−
g
(x

∗)
)

Unconstrained minimization 13-23

15 / 32

PALM

To apply PALM3 to the joint maximum likelihood problem for smooth ρ, take

H(x, θ) =
m∑
i=1

ρ(yi − 〈ai, x〉 ; θ),

r1(x) = g(x), r2(θ) = δD(θ) +m log[nc(θ)].

where where δ is indicator function and g is‘prox-friendly’ regularizer.

Algorithm 1 PALM
Input: A, y
Initialize: x0, θ0

1: while not converge do
2: xk+1 ← prox

c−1
k
r1

[
xk − c−1

k ∇xH(xk, θk)
]

3: θk+1 ← prox
d−1

k
r2

[
θk − d−1

k ∇θH(xk+1, θk)
]

Output: xk+1, θk+1

3Bolte, Sabach & Teboulle, 2014
16 / 32

PALM Pros and Cons

Pros:

• Flexibility.

• Low per-iteration cost (we use it for larger examples).

Cons:

• Requires smooth H (so quantile is out.)

• Needs many iterations (first-order method).

17 / 32

PLQ Penalties

All PLQ penalties have a simple dual representation:

• Quantile:

q(r; τ) =
m∑
i=1

{
−τri, ri < 0

(1− τ)ri, ri ≥ 0
= sup
u∈[−τ,(1−τ)]m

{
uTr
}

• Huber:

h(r;κ) =
m∑
i=1

{
κ|ri| − κ2/2, |ri| > κ

r2/2, |ri| < κ
= sup
u∈[−κ,κ]m

{
uTr − 1

2u
TMu

}
• Quantile-Huber:

qh(r; [τ , κ]) = sup
u∈[−τκ,(1−τ)κ]m

{
uTr − 1

2u
TMu

}

18 / 32

PLQ Class

PLQ class with explicit shape parameters θ:

ρ(r;B, b̄θ, C, c̄θ,M) = sup
u

{
uT(Br − b̄θ)−

1
2u

TMu | CTu ≤ c̄θ
}

4, 5

b̄θ = GTθ + b, c̄θ = HTθ + c6

4Rockafellar and Wets, Variational Analysis, 2009.
5A., Burke, and Pillonetto. ”Sparse/robust estimation and kalman smoothing with nonsmooth log-concave

densities: Modeling, computation, and theory.” The Journal of Machine Learning Research 14.1 (2013): 2689-2728.
6Zheng, P., A., and Ramamurthy, K. ”Shape Parameter Estimation.” arXiv preprint arXiv:1706.01865 (2017).

19 / 32

Interior Point Approach

Our full problem (in x, θ) is given by

min
x,STθ≤s

sup
CTu≤HTθ+c

{
uT[B(Ax− y)−GTθ − b]− 1

2u
TMu

}
+m log[nc(θ)].

• x are (original) regression variables.

• u are ‘conjugate’ variables from PLQ representation.

• θ encode shape parameters.

Overview of Interior Point:

• z := (x, u, θ).

• Replace constraints using logarithmic barrier, e.g. x ≥ 0 with −µ ln(x).

• Define relaxed KKT system Fµ(z).

• solve Fµ(z) = 0 using Newton while taking µ to 0.

20 / 32

KKT System

And our KKT system could be written as,

Fµ(z) =

Dq − µ1

B(Ax− y)−GTθ − b−Mu+
[
−C 0

]
q

ATBTu

−Gu+m∇ log[nc(θ)] +
[
H S

]
q

And the Jacobian matrix of the system is,

∇Fµ(z) =

D Q

−CT

0

 Q

 HT

−ST

[
−C 0

]
−M BA −GT

ATBT[
H S

]
−G m∇2 log(nc)

21 / 32

IP Pros and Cons

Pros:

• Solves PLQ problems and estimates PLQ shape parameters.

• Has a superlinear local convergence rate

Cons:

• Restricted to PLQ functions (for now).

• High per-iteration cost for large scale problems (for now).

22 / 32

Speed Comparison

Convergence rates for self-tuning Quantile Huber:

0 20 40 60 80 100

iterations

10-8

10-6

10-4

10-2

100

102

104

f
−
f
∗

Figure: PALM: linear rate (green); IPsolve: super linear rate (blue).

23 / 32

Timing Comparison

Synthetic Data:

• εi i.i.d. quantile huber errors

• A = randn(m,n), xt = randn(n), y = Ax+ ε

m n PALM: T/#iter IP: T/#iter f∗PALM − f∗IP
100 50 4.12/96 3.11/15 7.25e-12
500 50 5.24/197 4.86/16 1.38e-08

1000 50 5.97/112 11.68/14 1.52e-08
2000 100 11.41/129 69.85/16 1.30e-08
2000 200 22.72/225 72.89/16 9.61e-08
2000 500 66.30/394 87.85/18 3.86e-08

Table: Timing comparison (sec) of PALM and IP for the quantile Huber family. C2, 3
show total run time and number of iterations of PALM and IP; C3 plots difference in
final objective values. IP finds lower values; PALM is faster for larger problems.

24 / 32

Quality of results

[τt, κt] [τ∗, κ∗] r(x∗) r(xLS) r(xM)
[0.1,1.0] [0.09,1.17] 0.14 0.41 0.26
[0.2,1.0] [0.20,1.07] 0.10 0.16 0.13
[0.5,1.0] [0.50,0.95] 0.08 0.12 0.09
[0.8,1.0] [0.81,1.04] 0.09 0.19 0.11
[0.9,1.0] [0.91,1.17] 0.12 0.38 0.36

Table: Joint inference of the shape and model parameters for quantile Huber
regression. r(x) = ‖x− xt‖/‖xt‖ denotes relative error. C2 contains τ, κ estimated
using joint optimization (compare to C1). C3 shows relative error of the new estimate;
compare to C4, 5 which are relative errors for LS and 1-norm estimates.

25 / 32

RPCA

Consider the foreground/background
separation problem.
We want to separate background
(low rank L) from moving
objects in foreground (sparse S).
The dataset is built from 202 frames
from a video clip, which are shaped
into a matrix Y ∈ R20480×202.

Inexact RPCA deconvolves S and L:

min
L,S

1
2‖L+S−Y ‖2

F +κ‖S‖1 +λ‖L‖∗

26 / 32

Huber in RPCA

RPCA is equivalent to a low rank Huber formulation:

min
U,V

ρ(UTV − Y ;κ, σ)

U, V each have k columns.

where

ρ(r;κ, σ) =

{
κ|r/σ| − κ2/2, |r| > κσ

(r/σ)2/2, |r| ≤ κσ

Here, θ = (κ, σ2).

27 / 32

Results for Self-Tuning Huber
Tuning κ through cross-validation is expensive, instead we could automatically
tune κ by our approach.

Figure: Left: huber with fixed κ = 2× 10−3, σ = 1 (INIT)
Right: self-tuned huber starting from INIT; final κ = 1.94× 10−2, σ = 8.28× 10−4

28 / 32

Huberized Student’s T (Tiber)

We introduce a new penalty, huberized student’s t (Tiber)7:

ρ(r; [κ, σ]) =

{
2κ

σ(κ2+1) (|r| − κσ) + log(1 + κ2), |r| > κσ

log(1 + r2/σ2), |r| ≤ κσ

−κσ κσ

Figure: Huberized Student’s t (thick blue) interpolates between Student’s t (red
dash) and Huber (black dash).

7Zheng, P., A., Ramamurthy, K., and Thiagarajan, J. ”Learning Robust Representations for Computer Vision.”
RCL-ICCV, 2017. arXiv preprint arXiv:1708.00069.

29 / 32

Results for Self-Tuned Tiber

Figure: Left: Tiber with κ = 2× 10−3, σ = 1 (INIT)
Right: Self-tuned Tiber from INIT; final: κ = 7.64, σ = 2.24× 10−2

30 / 32

Self-Tuning Tiber RPCA: Escalator

−κσ κσ

(a) Tiber penalty (b) self-tuned Tiber RPCA8

min
U,V,κ>0,σ>0

ρ(UV T − Y ; [κ, σ]) +mn log[nc([κ, σ])].

8Zheng, Aravkin, Ramamurthy, “Shape parameter estimation”. https://arxiv.org/abs/1706.01865
31 / 32

Conclusions

• Estimating densities for errors while fitting gives self-tuning formulations.

• Examples include Huber, quantile, elastic net, variance estimation.

• Simple examples have both real applications, and technical challenges.

• Q: Can we do shape constrained estimation for regression problems?

32 / 32

	Theoretical Properties
	Application: Self-Tuning RPCA

