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Introduction: varying coefficient models

varying coefficient regression model

Y response variable X(1), . . . , X(p) covariates

multiple linear regression model: Y = β0 + β1X
(1) + . . .+ βpX

(p) + ε

complex data

flexible modelling −→ varying coefficient regression model:

Y (T) = β0(T) + β1(T)X(1)(T) + . . .+ βp(T)X(p)(T) + ε(T )

(Y (T ), X(1)(T ), . . . , X(p)(T ), T ) random vector

T takes values in [0, 1] (without loss of generality)

Hastie & Tibshirani (1993), Hoover et al. (1998), ... , Honda (2004), Kim (2006), ...,

Wang et al. (2008), ..., Antoniadis, G. & Verhasselt (2012a), Andriyana (2015), Xie et

al. (2015), ...
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Introduction: varying coefficient models

Y (t) = β0(t) + β1(t)X
(1)(t) + . . .+ βp(t)X

(p)(t) + ε(t)

= X(t)Tβ(t) + ε(t)

where X(t) =

X(0)(t)︸ ︷︷ ︸
≡1

, X(1)(t), . . . , X(p)(t)

T

β(t) = (β0(t), β1(t), . . . , βp(t))
T

vector of (p+ 1) unknown univariate regression coefficients at time t

β0(t) is the baseline effect

assume that ε(t) is a mean zero stochastic process at time t

first aim: estimate the mean regression function

E(Y (t)|X(t), t) = β0(t) + β1(t)X(1)(t) + . . .+ βp(t)X(p)(t)
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Introduction: varying coefficient models

observational setting: longitudinal data setup

n independent subjects/individuals

for each individual i: measurements repeated over a time period

measurements at time points ti1, . . . , tiNi

Ni different measurements for response and all explanatory variables:

Y (tij) = Yij

X(k)(tij) = X
(k)
ij k = 1, . . . , p =⇒ X(tij)

not.
= Xij = (X

(0)
ij , . . . , X

(p)
ij )T

total number of observations over all individuals:

N =

n∑
i=1

Ni
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Unconstrained B-spline estimation in varying coefficient models

E(Y (t)|X(t), t) = β0(t) + β1(t)X(1)(t) + . . .+ βp(t)X(p)(t)

suppose: each unknown function βk(t), k = 0, . . . , p, can be represented
by a B-spline basis expansion

βk(t) = αk1Bk1(t; νk) + . . .+ αkmkBkmk(t; νk) =

mk∑
`=1

αk`Bk`(t; νk)

= αTkBk(t; νk)

αk = (αk1, . . . , αkmk
)T Bk(t; νk) = (Bk1(t; νk), . . . , Bkmk(t; νk))

T

mk = uk + νk uk + 1 = number of knot points

where {Bk`(·; νk) : ` = 1, . . . , uk + νk = mk} is the νk-th degree B-spline
basis with uk + 1 equidistant knots for the k-th component

normalized B-splines:

mk∑
`=1

Bk`(t; νk) = 1
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Unconstrained B-spline estimation in varying coefficient models

βk(tij) =

mk∑
`=1

αk`Bk`(tij ; νk) αk` unknown coefficients

the B-spline estimates of the coefficients: minimize

S(α) =

n∑
i=1

1

Ni

Ni∑
j=1

(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij ; νk)︸ ︷︷ ︸
=βk(tij)

X
(k)
ij

)2

with respect to α = (αT
0, . . . ,α

T
p)

T, where αk = (αk1, . . . , αkmk)T

what is the solution to this minimization problem ?

it is better to write all this in matrix notation
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Unconstrained B-spline estimation in varying coefficient models

S(α) =

n∑
i=1

1

Ni

Ni∑
j=1

(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij ; νk)X
(k)
ij

)2
=

n∑
i=1

(Yi −Uiα)TWi(Yi −Uiα)

Yi = (Yi1, . . . , YiNi)
T

B(t) =

 B01(t; ν0) . . . B0m0(t; ν0) 0 . . . 0 0 . . . 0

0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 Bp1(t; νp) . . . Bpmp(t, νp)


UT
ij = XT

ijB(tij) ∈ IR1×mtot Xij =
(

1, X(1)(tij), . . . , X
(p)(tij)

)T

Ui = (UT
i1, . . . ,U

T
iNi

)T ∈ IRNi×mtot and mtot =

p∑
k=0

mk

Wi = diag
(
N−1
i , . . . , N−1

i

)
∈ IRNi×Ni

(a diagonal matrix with Ni times N−1
i on the diagonal)
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Unconstrained B-spline estimation in varying coefficient models

S(α) =

n∑
i=1

(Yi −Uiα)TWi(Yi −Uiα)

if
n∑
i=1

UT
i WiUi is invertible then S(α) has a unique minimizer

α̂ =
( n∑
i=1

UT
i WiUi

)−1 n∑
i=1

UT
i WiYi

where α̂ = (α̂T

0, . . . , α̂
T

p)
T and α̂k = (α̂k1, . . . , α̂kmk)T for k = 0, . . . , p

the B-spline estimate of β(t) is then

β̂(t) = B(t)α̂ = (β̂0(t), . . . , β̂p(t))
T with β̂k(t) =

mk∑
`=1

α̂k`Bk`(t; νk)

what about the asymptotic behaviour of this estimator?
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Unconstrained B-spline estimation in varying coefficient models

notations:
umax = max0≤k≤p uk maximal number of knot points

we allow umax to grow with the sample size n, and denote it umax
n

ρn = infg∗∈G ‖β − g∗‖∞ assume: ρn → 0 asn→∞

‖β − g∗‖∞ = max
0≤k≤p

‖βk − g∗k‖∞ = max
0≤k≤p

(supt |βk(t)− g∗(t)|)

where g∗ = (g∗0, . . . , g
∗
p)

T ∈ G

G = Gν0(K0) × . . . × Gνp(Kp) Kk are sets of knots in [0, 1] for k = 0, . . . , p

Gν(K) = space of spline functions of degree ν with set of knots K

Br ([0, 1]) = set of real-valued functions on [0, 1], who have a bounded r-th
derivative

e.g. r = 2, ν = 3, ρn = O
(
(umax
n )−2

)
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Unconstrained B-spline estimation in varying coefficient models

theoretical results

• uniform consistency of β̂k(·), estimator of βk(·); + rate

• uniform consistency of β̂
(v)
k (·), estimator of β

(v)
k (·); + rate

v = 0, . . . , νk

Corollary.

Suppose βk(·) ∈ Bνk+1([0, 1]) for k = 0, . . . , p. Then, under
Assumptions 1—5,

‖β̂
(v)
− β(v)‖∞ = OP

(
(umax
n )vρn + (umax

n )v−ν
min
n −1 + (umax

n )vrn

)
for v = 0, . . . , νmin

n , where νmin
n = min

0≤k≤p
νk

r2n = (umax
n )2

n2

n∑
i=1

(
1

Ni

(
1− 1

umax
n

)
+

1

umax
n

)
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Unconstrained B-spline estimation in varying coefficient models

Assumption 1:

1 The observation times tij , j = 1, . . . , Ni, i = 1, . . . , n, are chosen
independently according to a distribution function FT (t) on [0, 1].
Moreover, they are independent of the response and the covariate process

{(Yi(t), X(1)
i (t), . . . , X

(p)
i (t))}, i = 1, . . . , n.

The distribution function FT (t) has a Lebesgue density fT (t) that is
bounded away from zero and infinity, uniformly over all t ∈ [0, 1], that is,
∃ positive constants M1 and M2 such that M1 6 fT (t) 6M2 for all
t ∈ [0, 1].

2 The eigenvalues η0(t), . . . , ηp(t) of Σ(t) = E(X(t)X(t)T) are bounded away
from zero and infinity, uniformly over all t ∈ [0, 1], that is, ∃ positive
constants M3 and M4 such that M3 6 η0(t) 6 . . . 6 ηp(t) 6M4 for all
t ∈ [0, 1].

3 ∃ a positive constant M5 such that |X(k)(t)| 6M5 for all t ∈ [0, 1] and
k = 0, . . . , p.

4 ∃ a positive constant M6 such that E(ε2(t)) 6M6 <∞ for all t ∈ [0, 1].

5 lim supn→∞(maxk mk

mink mk
) <∞.
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Unconstrained B-spline estimation in varying coefficient models

example

• data from the National Institute of Mental Health Schizophrenia
Collaborative Study

• response variable: ‘severity of the illness’, measured on a numerical
scale from 1 (normal, not ill) to 7 (among most extremely ill)

• most patients were measured at weeks 0, 1, 3 and 6
a few patients were additionally measured at weeks 2, 4 and 5

hence, Ni is between 4 and 7

• n = 437 patients were randomly assigned to either receive a drug or a
placebo

• Drug=binary variable : Drug=1, patient received the drug

Drug=0, patient received a placebo

• consider a varying coefficient model:

Y (week) = β0(week) + β1(week) Drug + ε(week)

Banff, Canada Irène Gijbels 13



Unconstrained B-spline estimation in varying coefficient models

• number of knots are determined by a 4-fold cross validation

(with the number of knots ranging from 1 to 8)

mean fits (Ê(Y (t) | X(t), t)) for the placebo group and the drug group

0 1 2 3 4 5 6
1

2

3

4

5

6

7

Week

Ite
m

 7
9

 

 

Mean fit: placebo group
Mean fit: drug group
Mean placebo values
Mean drug values

Figure: Schizophrenia data. The mean fits for the placebo and the drug group. The

squares and triangles are the mean response measurements at weeks 0, 1, 3 and 6, of

the placebo group and drug group, respectively.
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Unconstrained B-spline estimation in varying coefficient models

• how does the drug affects the severity of the illness of patients?

• how does a possible effect evolve over time?

0 1 2 3 4 5 6
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

Week

 

 

(a)

0 1 2 3 4 5 6

−1

−0.6

−0.2

0

Week

(b)
Figure: Schizophrenia data. Estimates of coefficient functions β0(·) and β1(·), using

cubic splines (full lines) and splines with degree vector (3, 2) (dashed lines).

• negative β1(·) which is decreasing: drug is effective

• the drug effect drops quickly to reach a steady effect of −1 from
week 3 onwards
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Unconstrained B-spline estimation in varying coefficient models

main goal: testing for various shape constraints on the coefficient functions
in a varying coefficient model

• testing

H0 : βk(·) is monotone increasing

versus H1 : βk(·) is not monotone increasing

• testing
H0 : βk(·) is a convex function

versus H1 : βk(·) is not a convex function

• simultaneous testing (e.g.)

H0 : β1(·) is monotone decreasing and β3(·) is convex

versus H1 : ¬H0
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Constrained spline estimation: monotonicity

• constrained spline estimation: monotonicity

which constraints need to be added on the B-spline coefficients to
obtain a monotone B-spline estimate ?

• spline function g(t) =

m∑
`=1

γ`B`(t; ν) with distance 1/u between

equidistant knot points

the derivative of g is:

g′(t) =

m∑
`=1

γ`B
′
` (t; ν) = u

m−1∑
`=1

∆γ`+1B`(t; ν − 1) ∆γ`+1 = γ`+1 − γ`

• in general: if ∆γ`+1 ≥ 0 ∀`, then g(·) is monotone increasing

• Lemma
If ν = 2, then g′(t) ≥ 0 for all t ∈ [0, 1] if and only if g′(ξi) ≥ 0 for
i = 0, 1, . . . , u

hence, monotonicity of g(t) in the knots ξ0, · · · , ξu is equivalent to
monotonicity on the whole domain [ξ0, ξu]
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Constrained spline estimation: monotonicity

• for quadratic splines:
•• for g(t) =

∑m
`=1 γ`B`(t; 2)

•• denote the matrix S ∈ IR(u+1)×(u+2) which consists of B-spline
derivatives at the knots; Sij = B′j(ξi−1; 2)
due to the lemma:

g is increasing if and only if

Sγ ≥ 0 ∈ IRu+1 whereγ = (γ1, . . . , γm)T

Wang & Meyer (2011), Meyer (2012)

• for cubic splines (ν = 3): for imposing monotonicity we need to
impose quadratic constraints at the knots

Akhim, G. & Verhasselt (2017)

• or, for cubic or higher order splines: impose general constraint (e.g.
via penalty term)

see e.g. Bollaerts et al. (2006), Akhim, G. & Verhasselt (2017)
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Testing for monotone coefficient functions

• testing for monotonicity:

H0 : βk(·) is monotone increasing versusH1 : βk(·) is not monotone increasing

or equivalently

H0 : β′k(t) ≥ 0 ∀t ∈ [0, 1] versus H1 : ¬H0

(for testing whether βk(·) is monotone decreasing, replace X(k) by −X(k))

• • using quadratic spline approximation

• translate monotonicity constraint into linear constraint on B-spline
coefficients: define C = (01,S,03) where

01 ∈ IR(uk+1)×
∑k−1
j=0 mj and

03 ∈ IR(uk+1)×
∑d
j=k+1mj are matrices with entries 0

S ∈ IR(uk+1)×(uk+2) = matrix of derivatives at the knots of B-
splines corresponding to coefficient βk(·): Sij = B′kj(ξk,i−1; 2)

• the estimate β̂k is increasing if and only if Cα̂ ≥ 0
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Testing for monotone coefficient functions

based on this: what would be an appropriate test statistic ?

possible test statistic (Wang & Meyer (2011)) : min(Cα̂)

pseudo algorithm to test the hypothesis H0 is:

1 determine the unconstrained estimator α̂, and calculate the minimum
of the slopes at the knots

smin = min(Cα̂)

2 if smin is non-negative, do not reject H0

3 if smin < 0, determine the distribution of smin under H0 and calculate
the α percentile Qα

4 if smin is smaller than the α percentile, then reject H0

how to access the distribution of smin under H0?

two approaches: bootstrap procedure
or relying on asymptotic normality result

Banff, Canada Irène Gijbels 20



Testing for monotone coefficient functions

♣ first approach: bootstrap procedure

• calculate residuals

ε̂ij = Yij −
p∑

k=0

X
(k)
ij β̂k(tij) β̂(·) unconstrained B-spline estimator

• obtain pseudo responses under H0

Y ps
ij =

p∑
k=0

X
(k)
ij β̂

cs
k (tij) + ε̂ij for i = 1, . . . , n and j = 1, . . . , Ni

where
β̂

cs
= (β̂cs

0 , . . . , β̂
cs
p )T

is the constrained estimate putting the constraint on βk
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Testing for monotone coefficient functions

bootstrap procedure to determine the distribution of smin under H0 is

Step 1: resample n subjects (with all its repeated measurements)
with replacement from

{(Y ps
ij , Xij , tij) : i = 1, . . . , n, j = 1, . . . , Ni}

to obtain the bootstrap sample
{(Y ps∗

ij , X∗ij , t
∗
ij) : i = 1, . . . , n, j = 1, . . . , N∗i }

Step 2: repeat the above sampling procedure B times

Step 3: obtain the test statistic s∗min from each bootstrap sample and
derive the empirical distribution based on all s∗min

Step 4:
consider the α percentile Q̂α of the empirical distribution in Step 3;

reject H0 if smin < Q̂α;

else do not reject H0
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Testing for monotone coefficient functions

♣ second approach: via asymptotic normality result
(see Wang & Meyer (2011))

what about the variance-covariance matrix of the B-spline
estimators ?

� the B-splines estimator

α̂ =
( n∑
i=1

UT
i WiUi

)−1 n∑
i=1

UT
i WiYi = (UTWU)−1UTWY

with additional notations

U = (U1, . . . ,Un)T ∈ IRN×mtot W = diag
(
W1, . . . ,Wn

)
∈ IRN×N (a block diagonal matrix)

� observations under the model: Y ≈ Uα+ ε

� denote by V the variance-covariance matrix of ε = (ε1, . . . , εn)T

a matrix of dimension N ×N
� denote X = {(tij ,Xij) : i = 1, . . . , n, j = 1, . . . , Ni}
� conditioning on X , one obtains: E(α̂ | X ) ≈ α and

Cov(α̂ | X ) ≈ (UTWU)−1UTWVWU(UTWU)−1
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Testing for monotone coefficient functions

what now further in case of normal errors?
ε = (ε1, . . . , εn)T ∼ N(0,V)

• recall that we need to evaluate
P (min(Cα̂) ≤ r) = P (smin ≤ r) , r ∈ IR

• since E(Y|X ) ≈ Uα, we have that Cα̂ is, conditioned on X ,
approximately normal with mean Cα and variance-covariance matrix

Σ = C(U>WU)−1UTWVWU(UTWU)−1CT

• we obtain the expression

P (smin ≤ r) = 1−P (smin > r) = 1−
∫
· · ·
∫
{z|z−r1≥0}

φ(z; Cα,Σ)dz

where z,1 = (1, 1, . . . , 1)> ∈ IR(uk+1)×1

φ(· ; Cα,Σ)=multivariate normal density with mean Cα and covariance Σ

• this probability can only be calculated if α and V are known ...
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Testing for monotone coefficient functions

consistency of the test, based on asymptotic normality result

probability of committing an error of Type II tends to 0, when n→∞

Theorem 2

Assume that umax
n ρn + (umax

n )νk + umax
n rn = o(1). Under

Assumptions 1—5, if inft∈[0,1] β
′
k(t) = δ > 0, then

lim
n→∞

P (smin < min(0, Q̂α)) = 0

• • using cubic spline approximation

• test statistic: min
t∈Grid

β̂
′
k(t)

• first approach: bootstrap procedure similar as before

• second approach: now rely on the asymptotic behaviour of the
derivative estimates
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Testing for convexity of coefficient functions

• testing for convexity testing

H0 : βk(·) is a convex function

versus H1 : βk(·) is not a convex function

or equivalently

H0 : β′′k(t) ≥ 0 for all t in [0, 1] versus H1 : ¬H0

• similar to before, but now focusing on the estimates of the second
derivative function

• here distinction between

• • use of cubic spline approximation
• • use of quartic (or higher order) spline approximation
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Simultaneous shape testing

• simultaneous testing : example

H0 : β1(·) is monotone decreasing and β3(·) is convex

versus H1 : ¬H0

• test statistic:

s =

(
min
t∈Grid

β̂
′
1(t), min

t∈Grid
β̂
′′
3 (t)

)
• use bootstrap type of procedure

• use Bonferroni type of correction
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Quantile regression in varying coefficient models

we looked at: conditional mean

other quantities of interest: conditional quantiles (quantile regression)

what about the objective function S(α) ?

conditional mean
n∑
i=1

1

Ni

Ni∑
j=1

(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij ; νk)X
(k)
ij

)2
conditional quantile (order τ)

n∑
i=1

1

Ni

Ni∑
j=1

ρτ
(
Yij −

p∑
k=0

mk∑
`=1

αk`Bk`(tij ; νk)X
(k)
ij

)

ρτ (z) =
{
τ z if z > 0
−(1− τ) z otherwise

check function

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

u

ρ τ
(u

)

Rho_0.5
Rho_0.75
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Quantile regression in varying coefficient models

in both contexts: homoscedasticity ⇐⇒ heteroscedasticity

general setting model

Y (T ) = β0(T ) + β1(T )X(1)(T ) + · · ·+ βp(T )X(p)(T ) + ε̃

= XT(T )β(T ) + V (X(T ), T ) ε(T )

where ε(T ) is independent of (X(T ), T )

special settings: V (X(T ), T ) = V (T ) V (X(T ), T ) = V a constant

simple heteroscedastic setting homoscedastic setting

assumptions to ensure identifiability needed in all settings

Andriyana (2015), Andriyana & G. (2017), Andriyana et al. (2017), ...
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Quantile regression in varying coefficient models

general heteroscedastic varying coefficient model

Y (T ) = β0(T ) + β1(T )X(1)(T ) + . . .+ βp(T )X(p)(T ) + V (X(T ), T ) ε(T )

V (X(T),T) = exp
{
γ0(T) + γ1(T)X(1)(T) + . . .+ γp(T)X(p)(T)

}
from the model and the error structure:

Y (T ) = XT(T )β(T )︸ ︷︷ ︸
signal part

+ exp {XT(T )γ(T )}︸ ︷︷ ︸
variability part

ε(T )

where β(t) = (β0(t), β1(t), . . . , βp(t))
T

and γ(t) = (γ0(t), γ1(t), . . . , γp(t))
T

aims: estimate all unknown coefficient functions (in the signal and
the variability part!)

estimate all conditional quantiles

shape testing for the coefficient functions, the βk’s and the γ`’s
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Quantile regression in varying coefficient models

Y (T ) = β0(T ) + β1(T )X(1)(T ) + . . .+ βp(T )X(p)(T ) + V (X(T ), T ) ε(T )

what is the expression for the conditional quantile function?

denote the conditional quantile of order τ (0 < τ < 1) of ε(T ) given
(X(T ), T ) by

aτ (T ) = inf {y : P{ε(T ) ≤ y | (X(T ), T )} ≥ τ} = qτ (ε(T ) | X(T ), T )

τ -th conditional quantile of Y (T ) given (X(T ), T ) is

qτ (Y (T )|X(T ), T ) = XT(T )β(T ) + V (X(T ), T ) aτ (T )
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Quantile regression in varying coefficient models

• estimation methods

• for identifiability reasons, and for estimating the variability function:
adapt approach of He (1997)

• basic assumptions:

� (H1): the conditional median quantile of the error term equals zero:
q0.5 {ε(T ) | X(T ), T} = 0

� (H2): q0.5
{

ln |ε(T )| | X(T ), T
}

= 0

• the estimation consists of three steps:
1 estimate the conditional median function
2 estimate the variability function V (X(T ), T )
3 estimate the conditional quantile function
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Shape testing in quantile varying coefficient models

various testing problems:

• testing for constancy

• testing for monotonicity

• testing for convexity/concavity

• shape testing for both signal and variability part

tests involving some or all coefficient functions in

the signal part: β(t) = (β0(t), β1(t), . . . , βp(t))
T

the variability part: γ(t) = (γ0(t), γ1(t), . . . , γp(t))
T

� likelihood ratio type of tests

� other tests: based on looking at differences of B-spline coefficients
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Shape testing in quantile varying coefficient models
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