Shape testing for coefficient functions in varying coefficient models

Irène Gijbels
KU Leuven
Department of Mathematics and Leuven Statistics Research Centre Belgium

$$
\text { January 30, } 2018
$$

Joint work with M. Akhim, M. Ibrahim and A. Verhasselt, UHasselt

Outline

- Introduction: varying coefficient models
- Unconstrained estimation in varying coefficient models
- Constrained estimation in varying coefficient models
- Shape testing in varying coefficient models
- Quantile regression in varying coefficient models
... particular shape testing ...
varying coefficient regression model
Y response variable $\quad X^{(1)}, \ldots, X^{(p)}$ covariates
multiple linear regression model: $Y=\beta_{0}+\beta_{1} X^{(1)}+\ldots+\beta_{p} X^{(p)}+\varepsilon$
complex data
flexible modelling \longrightarrow varying coefficient regression model:

$$
Y(\mathbf{T})=\beta_{0}(\mathbf{T})+\beta_{1}(\mathbf{T}) X^{(1)}(\mathbf{T})+\ldots+\beta_{p}(\mathbf{T}) X^{(p)}(\mathbf{T})+\varepsilon(T)
$$

$\left(Y(T), X^{(1)}(T), \ldots, X^{(p)}(T), T\right)$ random vector T takes values in $[0,1]$ (without loss of generality)

Hastie \& Tibshirani (1993), Hoover et al. (1998), ... , Honda (2004), Kim (2006), ..., Wang et al. (2008), ..., Antoniadis, G. \& Verhasselt (2012a), Andriyana (2015), Xie et al. (2015), ...

$$
\begin{aligned}
Y(t) & =\beta_{0}(t)+\beta_{1}(t) X^{(1)}(t)+\ldots+\beta_{p}(t) X^{(p)}(t)+\varepsilon(t) \\
& =\mathbf{X}(t)^{\top} \boldsymbol{\beta}(t)+\varepsilon(t)
\end{aligned}
$$

where $\mathbf{X}(t)=(\underbrace{X^{(0)}(t)}_{\equiv 1}, X^{(1)}(t), \ldots, X^{(p)}(t))^{\top}$
$\boldsymbol{\beta}(t)=\left(\beta_{0}(t), \beta_{1}(t), \ldots, \beta_{p}(t)\right)^{\top}$
vector of $(p+1)$ unknown univariate regression coefficients at time t $\beta_{0}(t)$ is the baseline effect
assume that $\varepsilon(t)$ is a mean zero stochastic process at time t
first aim: estimate the mean regression function

$$
E(Y(t) \mid \mathbf{X}(t), t)=\beta_{0}(\mathbf{t})+\beta_{\mathbf{1}}(\mathbf{t}) X^{(1)}(t)+\ldots+\beta_{\mathbf{p}}(\mathbf{t}) X^{(p)}(t)
$$

observational setting: longitudinal data setup

n independent subjects/individuals
for each individual i : measurements repeated over a time period measurements at time points $t_{i 1}, \ldots, t_{i N_{i}}$
N_{i} different measurements for response and all explanatory variables:
$Y\left(t_{i j}\right)=Y_{i j}$
$X^{(k)}\left(t_{i j}\right)=X_{i j}^{(k)} \quad k=1, \ldots, p \Longrightarrow \mathbf{X}\left(t_{i j}\right) \stackrel{\text { not. }}{=} \mathbf{X}_{i j}=\left(X_{i j}^{(0)}, \ldots, X_{i j}^{(p)}\right)^{\top}$
total number of observations over all individuals:

$$
N=\sum_{i=1}^{n} N_{i}
$$

$$
E(Y(t) \mid \mathbf{X}(t), t)=\beta_{0}(\mathbf{t})+\beta_{1}(\mathbf{t}) X^{(1)}(t)+\ldots+\beta_{\mathbf{p}}(\mathbf{t}) X^{(p)}(t)
$$

suppose: each unknown function $\beta_{k}(t), k=0, \ldots, p$, can be represented by a B-spline basis expansion

$$
\begin{aligned}
& \begin{array}{r}
\beta_{k}(t)=\alpha_{k 1} B_{k 1}\left(t ; \nu_{k}\right)+\ldots+\alpha_{k m_{k}} B_{k m_{k}}\left(t ; \nu_{k}\right)=\sum_{\ell=1}^{m_{k}} \alpha_{k \ell} B_{k \ell}\left(t ; \nu_{k}\right) \\
=\boldsymbol{\alpha}_{k}^{T} \mathbf{B}_{k}\left(t ; \nu_{k}\right)
\end{array} \\
& \begin{array}{l}
\alpha_{\mathbf{k}}=\left(\alpha_{\mathbf{k} 1}, \ldots, \alpha_{\mathbf{k m}_{\mathbf{k}}}\right)^{\top} \quad \mathbf{B}_{k}\left(t ; \nu_{k}\right)=\left(B_{k 1}\left(t ; \nu_{k}\right), \ldots, B_{k m_{k}}\left(t ; \nu_{k}\right)\right)^{\top} \\
m_{k}=u_{k}+\nu_{k} \quad u_{k}+1=\text { number of knot points }
\end{array}
\end{aligned}
$$

where $\left\{B_{k \ell}\left(\cdot ; \nu_{k}\right): \ell=1, \ldots, u_{k}+\nu_{k}=m_{k}\right\}$ is the ν_{k}-th degree B -spline basis with $u_{k}+1$ equidistant knots for the k-th component
normalized B-splines: $\quad \sum_{\ell=1}^{m_{k}} B_{k \ell}\left(t ; \nu_{k}\right)=1$

$$
\beta_{k}\left(t_{i j}\right)=\sum_{\ell=1}^{m_{k}} \alpha_{k \ell} B_{k \ell}\left(t_{i j} ; \nu_{k}\right)
$$

$\alpha_{k \ell}$ unknown coefficients
the B-spline estimates of the coefficients: minimize

$$
S(\boldsymbol{\alpha})=\sum_{i=1}^{n} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}}(Y_{i j}-\sum_{k=0}^{p} \underbrace{\sum_{\ell=1}^{m_{k}} \alpha_{k \ell} B_{k \ell}\left(t_{i j} ; \nu_{k}\right)}_{=\beta_{k}\left(t_{i j}\right)} X_{i j}^{(k)})^{2}
$$

with respect to $\boldsymbol{\alpha}=\left(\boldsymbol{\alpha}_{0}^{\top}, \ldots, \boldsymbol{\alpha}_{p}^{\top}\right)^{\top}$, where $\boldsymbol{\alpha}_{k}=\left(\alpha_{k 1}, \ldots, \alpha_{k m_{k}}\right)^{\top}$
what is the solution to this minimization problem ?
it is better to write all this in matrix notation

$$
\begin{aligned}
S(\boldsymbol{\alpha}) & =\sum_{i=1}^{n} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}}\left(Y_{i j}-\sum_{k=0}^{p} \sum_{\ell=1}^{m_{k}} \alpha_{k \ell} B_{k \ell}\left(t_{i j} ; \nu_{k}\right) X_{i j}^{(k)}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\mathbf{U}_{i} \boldsymbol{\alpha}\right)^{T} \mathbf{W}_{i}\left(\mathbf{Y}_{i}-\mathbf{U}_{i} \boldsymbol{\alpha}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{Y}_{i}=\left(Y_{i 1}, \ldots, Y_{i N_{i}}\right)^{\top} \\
& \mathbf{B}(t)=\left(\begin{array}{ccccccc}
B_{01}\left(t ; \nu_{0}\right) & \ldots & B_{0 m_{0}}\left(t ; \nu_{0}\right) & 0 & \ldots & 0 & 0 \\
\ldots & 0 \\
0 & \ldots & 0 & \ddots & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 & B_{p 1}\left(t ; \nu_{p}\right) \\
\ldots & B_{p m_{p}}\left(t, \nu_{p}\right)
\end{array}\right) \\
& \mathbf{U}_{i j}^{\top}=\mathbf{X}_{i j}^{\top} \mathbf{B}\left(t_{i j}\right) \in \mathbb{R}^{1 \times m_{\text {tot }}} \\
& \mathbf{x}_{i j}=\left(1, X^{(1)}\left(t_{i j}\right), \ldots, X^{(p)}\left(t_{i j}\right)\right)^{\top} \\
& \mathbf{U}_{i}=\left(\mathbf{U}_{i 1}^{\top}, \ldots, \mathbf{U}_{i N_{i}}^{\top}\right)^{\top} \in \mathbb{R}^{N_{i} \times m_{\mathrm{m}} \text { tot }} \quad \text { and } \quad m_{\mathrm{tot}}=\sum_{k=0}^{p} m_{k} \\
& \mathbf{W}_{i}=\operatorname{diag}\left(N_{i}^{-1}, \ldots, N_{i}^{-1}\right) \in \mathbb{R}^{N_{i} \times N_{i}} \\
& \text { (a diagonal matrix with } N_{i} \text { times } N_{i}^{-1} \text { on the diagonal) }
\end{aligned}
$$

$S(\boldsymbol{\alpha})=\sum_{i=1}^{n}\left(\mathbf{Y}_{i}-\mathbf{U}_{i} \boldsymbol{\alpha}\right)^{T} \mathbf{W}_{i}\left(\mathbf{Y}_{i}-\mathbf{U}_{i} \boldsymbol{\alpha}\right)$
if $\sum^{n} \mathbf{U}_{i}^{T} \mathbf{W}_{i} \mathbf{U}_{i}$ is invertible then $S(\boldsymbol{\alpha})$ has a unique minimizer $i=1$

$$
\widehat{\boldsymbol{\alpha}}=\left(\sum_{i=1}^{n} \mathbf{U}_{i}^{T} \mathbf{W}_{i} \mathbf{U}_{i}\right)^{-1} \sum_{i=1}^{n} \mathbf{U}_{i}^{T} \mathbf{W}_{i} \mathbf{Y}_{i}
$$

where $\widehat{\boldsymbol{\alpha}}=\left(\widehat{\boldsymbol{\alpha}}_{0}^{\top}, \ldots, \widehat{\boldsymbol{\alpha}}_{p}^{\top}\right)^{\top}$ and $\widehat{\boldsymbol{\alpha}}_{k}=\left(\widehat{\alpha}_{k 1}, \ldots, \widehat{\alpha}_{k m_{k}}\right)^{\top}$ for $k=0, \ldots, p$
the \mathbf{B}-spline estimate of $\boldsymbol{\beta}(t)$ is then

$$
\widehat{\boldsymbol{\beta}}(t)=\mathbf{B}(t) \widehat{\boldsymbol{\alpha}}=\left(\widehat{\beta}_{0}(t), \ldots, \widehat{\beta}_{p}(t)\right)^{\top} \quad \text { with } \quad \widehat{\beta}_{k}(t)=\sum_{\ell=1}^{m_{k}} \widehat{\alpha}_{k \ell} B_{k \ell}\left(t ; \nu_{k}\right)
$$

what about the asymptotic behaviour of this estimator?

notations:

$u^{\max }=\max _{0 \leq k \leq p} u_{k}$ maximal number of knot points we allow $u^{\text {max }}$ to grow with the sample size n, and denote it $u_{n}^{\max }$

$$
\rho_{n}=\inf _{\mathbf{g}^{*} \in \mathcal{G}}\left\|\boldsymbol{\beta}-\mathbf{g}^{*}\right\|_{\infty} \quad \text { assume: } \rho_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

$$
\left\|\boldsymbol{\beta}-\mathbf{g}^{*}\right\|_{\infty}=\max _{0 \leq k \leq p}\left\|\beta_{k}-g_{k}^{*}\right\|_{\infty}=\max _{0 \leq k \leq p}\left(\sup _{t}\left|\beta_{k}(t)-g^{*}(t)\right|\right)
$$

where $\mathbf{g}^{*}=\left(g_{0}^{*}, \ldots, g_{p}^{*}\right)^{\top} \in \mathcal{G}$
$\mathcal{G}=\mathcal{G}_{\nu_{0}}\left(\mathcal{K}_{0}\right) \times \ldots \times \mathcal{G}_{\nu_{p}}\left(\mathcal{K}_{p}\right) \quad \mathcal{K}_{k}$ are sets of knots in $[0,1]$ for $k=0, \ldots, p$ $\mathcal{G}_{\nu}(\mathcal{K})=$ space of spline functions of degree ν with set of knots \mathcal{K}
$B^{r}([0,1])=$ set of real-valued functions on $[0,1]$, who have a bounded r-th derivative
e.g. $r=2, \nu=3, \rho_{n}=O\left(\left(u_{n}^{\max }\right)^{-2}\right)$

theoretical results

- uniform consistency of $\widehat{\beta}_{k}(\cdot)$, estimator of $\beta_{k}(\cdot) ;+$ rate
- uniform consistency of $\widehat{\beta}_{k}^{(v)}(\cdot)$, estimator of $\beta_{k}^{(v)}(\cdot) ;+$ rate

$$
v=0, \ldots, \nu_{k}
$$

Corollary.

Suppose $\beta_{k}(\cdot) \in B^{\nu_{k}+1}([0,1])$ for $k=0, \ldots, p$. Then, under Assumptions 1-5,

$$
\left\|\widehat{\boldsymbol{\beta}}^{(v)}-\boldsymbol{\beta}^{(v)}\right\|_{\infty}=O_{P}\left(\left(u_{n}^{\max }\right)^{v} \rho_{n}+\left(u_{n}^{\max }\right)^{v-\nu_{n}^{\min }-1}+\left(u_{n}^{\max }\right)^{v} r_{n}\right)
$$

for $v=0, \ldots, \nu_{n}^{\min }$, where $\nu_{n}^{\min }=\min _{0 \leq k \leq p} \nu_{k}$

$$
r_{n}^{2}=\frac{\left(u_{n}^{\max }\right)^{2}}{n^{2}} \sum_{i=1}^{n}\left(\frac{1}{N_{i}}\left(1-\frac{1}{u_{n}^{\max }}\right)+\frac{1}{u_{n}^{\max }}\right)
$$

Assumption 1:

(1) The observation times $t_{i j}, j=1, \ldots, N_{i}, i=1, \ldots, n$, are chosen independently according to a distribution function $F_{T}(t)$ on $[0,1]$. Moreover, they are independent of the response and the covariate process $\left\{\left(Y_{i}(t), X_{i}^{(1)}(t), \ldots, X_{i}^{(p)}(t)\right)\right\}, i=1, \ldots, n$.
The distribution function $F_{T}(t)$ has a Lebesgue density $f_{T}(t)$ that is bounded away from zero and infinity, uniformly over all $t \in[0,1]$, that is, \exists positive constants M_{1} and M_{2} such that $M_{1} \leqslant f_{T}(t) \leqslant M_{2}$ for all $t \in[0,1]$.
(2) The eigenvalues $\eta_{0}(t), \ldots, \eta_{p}(t)$ of $\boldsymbol{\Sigma}(t)=E\left(\mathbf{X}(t) \mathbf{X}(t)^{\boldsymbol{\top}}\right)$ are bounded away from zero and infinity, uniformly over all $t \in[0,1]$, that is, \exists positive constants M_{3} and M_{4} such that $M_{3} \leqslant \eta_{0}(t) \leqslant \ldots \leqslant \eta_{p}(t) \leqslant M_{4}$ for all $t \in[0,1]$.
(3) \exists a positive constant M_{5} such that $\left|X^{(k)}(t)\right| \leqslant M_{5}$ for all $t \in[0,1]$ and $k=0, \ldots, p$.
(9) \exists a positive constant M_{6} such that $E\left(\varepsilon^{2}(t)\right) \leqslant M_{6}<\infty$ for all $t \in[0,1]$.
(9) $\lim \sup _{n \rightarrow \infty}\left(\frac{\max _{k} m_{k}}{\min _{k} m_{k}}\right)<\infty$.

example

- data from the National Institute of Mental Health Schizophrenia Collaborative Study
- response variable: 'severity of the illness', measured on a numerical scale from 1 (normal, not ill) to 7 (among most extremely ill)
- most patients were measured at weeks $0,1,3$ and 6 a few patients were additionally measured at weeks 2,4 and 5 hence, N_{i} is between 4 and 7
- $n=437$ patients were randomly assigned to either receive a drug or a placebo
- Drug=binary variable : Drug=1, patient received the drug Drug $=0$, patient received a placebo
- consider a varying coefficient model:

$$
Y(\text { week })=\beta_{0}(\text { week })+\beta_{1}(\text { week }) \operatorname{Drug}+\varepsilon(\text { week })
$$

- number of knots are determined by a 4 -fold cross validation
(with the number of knots ranging from 1 to 8)
mean fits $(\widehat{E}(Y(t) \mid \mathbf{X}(t), t))$ for the placebo group and the drug group

Figure: Schizophrenia data. The mean fits for the placebo and the drug group. The squares and triangles are the mean response measurements at weeks $0,1,3$ and 6 , of the placebo group and drug group, respectively.

- how does the drug affects the severity of the illness of patients?
- how does a possible effect evolve over time?

(a)

(b)

Figure: Schizophrenia data. Estimates of coefficient functions $\beta_{0}(\cdot)$ and $\beta_{1}(\cdot)$, using cubic splines (full lines) and splines with degree vector $(3,2)$ (dashed lines).

- negative $\beta_{1}(\cdot)$ which is decreasing: drug is effective
- the drug effect drops quickly to reach a steady effect of -1 from week 3 onwards
main goal: testing for various shape constraints on the coefficient functions in a varying coefficient model
- testing

$$
\begin{array}{cc}
H_{0}: & \beta_{k}(\cdot) \text { is monotone increasing } \\
\text { versus } H_{1}: & \beta_{k}(\cdot) \text { is not monotone increasing }
\end{array}
$$

- testing

$$
\begin{array}{cl}
& H_{0}: \\
\beta_{k}(\cdot) \text { is a convex function } \\
\text { versus } H_{1}: & \beta_{k}(\cdot) \text { is not a convex function }
\end{array}
$$

- simultaneous testing (e.g.)
$H_{0}: \quad \beta_{1}(\cdot)$ is monotone decreasing and $\beta_{3}(\cdot)$ is convex versus $H_{1}: \quad \neg H_{0}$
- constrained spline estimation: monotonicity which constraints need to be added on the B-spline coefficients to obtain a monotone B-spline estimate ?
- spline function $g(t)=\sum_{\ell=1}^{m} \gamma_{\ell} B_{\ell}(t ; \nu)$ with distance $1 / u$ between equidistant knot points the derivative of g is:

$$
g^{\prime}(t)=\sum_{\ell=1}^{m} \gamma_{\ell} B_{\ell}^{\prime}(t ; \nu)=u \sum_{\ell=1}^{m-1} \Delta \gamma_{\ell+1} B_{\ell}(t ; \nu-1) \quad \Delta \gamma_{\ell+1}=\gamma_{\ell+1}-\gamma_{\ell}
$$

- in general: if $\quad \Delta \gamma_{\ell+1} \geq 0 \quad \forall \ell, \quad$ then $g(\cdot)$ is monotone increasing
- Lemma

If $\nu=2$, then $g^{\prime}(t) \geq 0$ for all $t \in[0,1]$ if and only if $g^{\prime}\left(\xi_{i}\right) \geq 0$ for $i=0,1, \ldots, u$
hence, monotonicity of $g(t)$ in the knots ξ_{0}, \cdots, ξ_{u} is equivalent to monotonicity on the whole domain $\left[\xi_{0}, \xi_{u}\right.$]

- for quadratic splines:
- for $g(t)=\sum_{\ell=1}^{m} \gamma_{\ell} B_{\ell}(t ; 2)$
- denote the matrix $\mathbf{S} \in \mathbb{R}^{(u+1) \times(u+2)}$ which consists of B-spline derivatives at the knots; $\mathbf{S}_{i j}=B_{j}^{\prime}\left(\xi_{i-1} ; 2\right)$ due to the lemma:
g is increasing if and only if

$$
\mathbf{S} \boldsymbol{\gamma} \geq \mathbf{0} \in \mathbb{R}^{u+1} \quad \text { where } \boldsymbol{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{m}\right)^{\top}
$$

Wang \& Meyer (2011), Meyer (2012)

- for cubic splines $(\nu=3)$: for imposing monotonicity we need to impose quadratic constraints at the knots

Akhim, G. \& Verhasselt (2017)

- or, for cubic or higher order splines: impose general constraint (e.g. via penalty term)
see e.g. Bollaerts et al. (2006), Akhim, G. \& Verhasselt (2017)

- testing for monotonicity:

$H_{0}: \beta_{k}(\cdot)$ is monotone increasing versus $H_{1}: \beta_{k}(\cdot)$ is not monotone increasing
or equivalently

$$
H_{0}: \quad \beta_{k}^{\prime}(t) \geq 0 \quad \forall t \in[0,1] \quad \text { versus } \quad H_{1}: \quad \neg H_{0}
$$

(for testing whether $\beta_{k}(\cdot)$ is monotone decreasing, replace $X^{(k)}$ by $-X^{(k)}$)

- - using quadratic spline approximation
- translate monotonicity constraint into linear constraint on B-spline coefficients: define $\mathbf{C}=\left(\mathbf{0}_{1}, \mathbf{S}, \mathbf{0}_{3}\right)$ where
$\mathbf{0}_{1} \in \mathbb{R}^{\left(u_{k}+1\right) \times \sum_{j=0}^{k-1} m_{j}}$ and
$\mathbf{0}_{3} \in \mathbb{R}^{\left(u_{k}+1\right) \times \sum_{j=k+1}^{d} m_{j}}$ are matrices with entries 0
$\mathbf{S} \in \mathbb{R}^{\left(u_{k}+1\right) \times\left(u_{k}+2\right)}=$ matrix of derivatives at the knots of Bsplines corresponding to coefficient $\beta_{k}(\cdot)$: $\mathbf{S}_{i j}=B_{k j}^{\prime}\left(\xi_{k, i-1} ; 2\right)$
- the estimate $\widehat{\beta}_{k}$ is increasing if and only if $\mathbf{C} \widehat{\alpha} \geq 0$

based on this: what would be an appropriate test statistic ?

 possible test statistic (Wang \& Meyer (2011)) :```
min(C\widehat{\alpha})
```

pseudo algorithm to test the hypothesis $H_{0}$ is:
(1) determine the unconstrained estimator $\widehat{\boldsymbol{\alpha}}$, and calculate the minimum of the slopes at the knots

$$
s_{\min }=\min (\mathbf{C} \widehat{\boldsymbol{\alpha}})
$$

(2) if $s_{\text {min }}$ is non-negative, do not reject $H_{0}$
(3) if $s_{\min }<0$, determine the distribution of $s_{\min }$ under $H_{0}$ and calculate the $\alpha$ percentile $Q_{\alpha}$
(9) if $s_{\text {min }}$ is smaller than the $\alpha$ percentile, then reject $H_{0}$
how to access the distribution of $s_{\text {min }}$ under $H_{0}$ ?
two approaches: bootstrap procedure
OR relying on asymptotic normality result
\& first approach: bootstrap procedure

- calculate residuals

$$
\widehat{\varepsilon}_{i j}=Y_{i j}-\sum_{k=0}^{p} X_{i j}^{(k)} \widehat{\beta}_{k}\left(t_{i j}\right) \quad \widehat{\boldsymbol{\beta}}(\cdot) \text { unconstrained B-spline estimator }
$$

- obtain pseudo responses under $H_{0}$

$$
Y_{i j}^{\mathrm{ps}}=\sum_{k=0}^{p} X_{i j}^{(k)} \widehat{\beta}_{k}^{\mathrm{cs}}\left(t_{i j}\right)+\widehat{\varepsilon}_{i j} \quad \text { for } i=1, \ldots, n \quad \text { and } j=1, \ldots, N_{i}
$$

where

$$
\widehat{\boldsymbol{\beta}}^{\mathrm{cs}}=\left(\widehat{\beta}_{0}^{\mathrm{cs}}, \ldots, \widehat{\beta}_{p}^{\mathrm{cs}}\right)^{\top}
$$

is the constrained estimate putting the constraint on $\beta_{k}$
bootstrap procedure to determine the distribution of $s_{\min }$ under $H_{0}$ is

- Step 1: resample $n$ subjects (with all its repeated measurements) with replacement from

$$
\left\{\left(Y_{i j}^{\mathrm{ps}}, X_{i j}, t_{i j}\right): i=1, \ldots, n, j=1, \ldots, N_{i}\right\}
$$

to obtain the bootstrap sample $\left\{\left(Y_{i j}^{\text {ps* }}, X_{i j}^{*}, t_{i j}^{*}\right): i=1, \ldots, n, j=1, \ldots, N_{i}^{*}\right\}$

- Step 2: repeat the above sampling procedure $B$ times
- Step 3: obtain the test statistic $s_{\min }^{*}$ from each bootstrap sample and derive the empirical distribution based on all $s_{\text {min }}^{*}$
- Step 4:
consider the $\alpha$ percentile $\widehat{Q}_{\alpha}$ of the empirical distribution in Step 3; reject $H_{0}$ if $s_{\min }<\widehat{Q}_{\alpha}$; else do not reject $H_{0}$
\& second approach: via asymptotic normality result (see Wang \& Meyer (2011))
what about the variance-covariance matrix of the B-spline estimators ?
$\diamond$ the B-splines estimator

$$
\widehat{\boldsymbol{\alpha}}=\left(\sum_{i=1}^{n} \mathbf{U}_{i}^{T} \mathbf{W}_{i} \mathbf{U}_{i}\right)^{-1} \sum_{i=1}^{n} \mathbf{U}_{i}^{T} \mathbf{W}_{i} \mathbf{Y}_{i}=\left(\mathbf{U}^{\top} \mathbf{W} \mathbf{U}\right)^{-1} \mathbf{U}^{\top} \mathbf{W} \mathbf{Y}
$$

with additional notations

$$
\mathbf{U}=\left(\mathbf{U}_{1}, \ldots, \mathbf{U}_{n}\right)^{\top} \in \mathbb{R}^{N \times m_{\text {tot }}} \quad \mathbf{W}=\operatorname{diag}\left(\mathbf{W}_{1}, \ldots, \mathbf{W}_{n}\right) \in \mathbb{R}^{N \times N}
$$

$\diamond$ observations under the model: $\mathbf{Y} \approx \mathbf{U} \alpha+\varepsilon$
$\diamond$ denote by $\mathbf{V}$ the variance-covariance matrix of $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}$ a matrix of dimension $N \times N$
$\diamond$ denote $\mathcal{X}=\left\{\left(t_{i j}, \mathbf{X}_{i j}\right): i=1, \ldots, n, j=1, \ldots, N_{i}\right\}$
$\diamond$ conditioning on $\mathcal{X}$, one obtains: $E(\widehat{\boldsymbol{\alpha}} \mid \mathcal{X}) \approx \boldsymbol{\alpha}$ and $\operatorname{Cov}(\widehat{\boldsymbol{\alpha}} \mid \mathcal{X}) \approx\left(\mathbf{U}^{\top} \mathbf{W} \mathbf{U}\right)^{-1} \mathbf{U}^{\top} \mathbf{W} \mathbf{V} \mathbf{W} \mathbf{U}\left(\mathbf{U}^{\top} \mathbf{W} \mathbf{U}\right)^{-1}$

## what now further in case of normal errors? <br> $$
\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \sim N(\mathbf{0}, \mathbf{V})
$$

- recall that we need to evaluate $P(\min (\mathbf{C} \widehat{\boldsymbol{\alpha}}) \leq r)=P\left(s_{\min } \leq r\right), r \in \mathbb{R}$
- since $E(\mathbf{Y} \mid \mathcal{X}) \approx \mathbf{U} \boldsymbol{\alpha}$, we have that $\mathbf{C} \widehat{\alpha}$ is, conditioned on $\mathcal{X}$, approximately normal with mean $\mathbf{C} \alpha$ and variance-covariance matrix

$$
\boldsymbol{\Sigma}=\mathbf{C}\left(\mathbf{U}^{\top} \mathbf{W} \mathbf{U}\right)^{-1} \mathbf{U}^{\top} \mathbf{W} \mathbf{V} \mathbf{W} \mathbf{U}\left(\mathbf{U}^{\top} \mathbf{W} \mathbf{U}\right)^{-1} \mathbf{C}^{\top}
$$

- we obtain the expression

$$
P\left(s_{\min } \leq r\right)=1-P\left(s_{\min }>r\right)=1-\int \cdots \int_{\{\mathbf{z} \mid \mathbf{z}-r \mathbf{1} \geq 0\}} \phi(\mathbf{z} ; \mathbf{C} \boldsymbol{\alpha}, \mathbf{\Sigma}) d \mathbf{z}
$$

where $\mathbf{z}, \mathbf{1}=(1,1, \ldots, 1)^{\top} \in \mathbb{R}^{\left(u_{k}+1\right) \times 1}$
$\phi(\cdot ; \mathbf{C} \boldsymbol{\alpha}, \boldsymbol{\Sigma})=$ multivariate normal density with mean $\mathbf{C} \boldsymbol{\alpha}$ and covariance $\boldsymbol{\Sigma}$

- this probability can only be calculated if $\boldsymbol{\alpha}$ and $\mathbf{V}$ are known ...
consistency of the test, based on asymptotic normality result
probability of committing an error of Type II tends to 0 , when $n \rightarrow \infty$
Theorem 2
Assume that $u_{n}^{\max } \rho_{n}+\left(u_{n}^{\max }\right)^{\nu_{k}}+u_{n}^{\max } r_{n}=o(1)$. Under Assumptions 1-5, if $\inf _{t \in[0,1]} \beta_{k}^{\prime}(t)=\delta>0$, then

$$
\lim _{n \rightarrow \infty} P\left(s_{\min }<\min \left(0, \widehat{Q}_{\alpha}\right)\right)=0
$$

-     - using cubic spline approximation
- test statistic: $\min _{t \in G r i d} \widehat{\beta}_{k}^{\prime}(t)$
- first approach: bootstrap procedure similar as before
- second approach: now rely on the asymptotic behaviour of the derivative estimates
- testing for convexity testing

$$
\begin{array}{cl} 
& H_{0}: \\
\beta_{k}(\cdot) \text { is a convex function } \\
\text { versus } & H_{1}: \\
\beta_{k}(\cdot) \text { is not a convex function }
\end{array}
$$

or equivalently

$$
H_{0}: \beta_{k}^{\prime \prime}(t) \geq 0 \text { for all } t \text { in }[0,1] \quad \text { versus } \quad H_{1}: \neg H_{0}
$$

- similar to before, but now focusing on the estimates of the second derivative function
- here distinction between
-     - use of cubic spline approximation
-     - use of quartic (or higher order) spline approximation
- simultaneous testing : example
$H_{0}: \quad \beta_{1}(\cdot)$ is monotone decreasing and $\beta_{3}(\cdot)$ is convex versus $H_{1}$ : $\neg H_{0}$
- test statistic:

$$
\mathbf{s}=\left(\min _{t \in \operatorname{Grid}} \widehat{\beta}_{1}^{\prime}(t), \min _{t \in \mathrm{Grid}} \widehat{\beta}_{3}^{\prime \prime}(t)\right)
$$

- use bootstrap type of procedure
- use Bonferroni type of correction
we looked at: conditional mean
other quantities of interest: conditional quantiles (quantile regression) what about the objective function $S(\boldsymbol{\alpha})$ ?

| conditional mean | $\sum_{i=1}^{n} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}}\left(Y_{i j}-\sum_{k=0}^{p} \sum_{\ell=1}^{m_{k}} \alpha_{k \ell} B_{k \ell}\left(t_{i j} ; \nu_{k}\right) X_{i j}^{(k)}\right)^{2}$ |
| :--- | :--- |
| conditional quantile (order $\tau)$ | $\sum_{i=1}^{n} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \rho_{\tau}\left(Y_{i j}-\sum_{k=0}^{p} \sum_{\ell=1}^{m_{k}} \alpha_{k \ell} B_{k \ell}\left(t_{i j} ; \nu_{k}\right) X_{i j}^{(k)}\right)$ |

$\rho_{\tau}(z)= \begin{cases}\tau z & \text { if } z>0 \\ -(1-\tau) z & \text { otherwise }\end{cases}$
check function

in both contexts: homoscedasticity $\Longleftrightarrow$ heteroscedasticity
general setting model

$$
\begin{aligned}
Y(T) & =\beta_{0}(T)+\beta_{1}(T) X^{(1)}(T)+\cdots+\beta_{p}(T) X^{(p)}(T)+\widetilde{\varepsilon} \\
& =\mathbf{X}^{\top}(T) \boldsymbol{\beta}(T)+V(\mathbf{X}(T), T) \varepsilon(T)
\end{aligned}
$$

where $\varepsilon(T)$ is independent of $(\mathbf{X}(T), T)$

special settings: | $V(\mathbf{X}(T), T)=V(T)$ |
| :--- | :--- |
| simple heteroscedastic setting |\(\quad V(\mathbf{X}(T), T)=V \quad \begin{aligned} \& a constant <br>

\& homoscedastic setting\end{aligned}\)
assumptions to ensure identifiability needed in all settings
Andriyana (2015), Andriyana \& G. (2017), Andriyana et al. (2017), ...

## general heteroscedastic varying coefficient model

$$
\begin{gathered}
Y(T)=\beta_{0}(T)+\beta_{1}(T) X^{(1)}(T)+\ldots+\beta_{p}(T) X^{(p)}(T)+V(\mathbf{X}(T), T) \varepsilon(T) \\
\mathbf{V}(\mathbf{X}(\mathbf{T}), \mathbf{T})=\exp \left\{\gamma_{0}(\mathbf{T})+\gamma_{\mathbf{1}}(\mathbf{T}) \mathbf{X}^{(1)}(\mathbf{T})+\ldots+\gamma_{\mathbf{p}}(\mathbf{T}) \mathbf{X}^{(\mathbf{p})}(\mathbf{T})\right\}
\end{gathered}
$$

from the model and the error structure:

$$
Y(T)=\underbrace{\mathbf{X}^{\top}(T) \boldsymbol{\beta}(T)}_{\text {signal part }}+\underbrace{\exp \left\{\mathbf{X}^{\top}(T) \gamma(T)\right\}}_{\text {variability part }} \varepsilon(T)
$$

where $\boldsymbol{\beta}(t)=\left(\beta_{0}(t), \beta_{1}(t), \ldots, \beta_{p}(t)\right)^{\top}$

$$
\text { and } \gamma(t)=\left(\gamma_{0}(t), \gamma_{1}(t), \ldots, \gamma_{p}(t)\right)^{\top}
$$

aims: estimate all unknown coefficient functions (in the signal and the variability part!)
estimate all conditional quantiles shape testing for the coefficient functions, the $\beta_{k}$ 's and the $\exists_{\S} \gamma_{\ell} s_{\text {I }}$
$Y(T)=\beta_{0}(T)+\beta_{1}(T) X^{(1)}(T)+\ldots+\beta_{p}(T) X^{(p)}(T)+V(\mathbf{X}(T), T) \varepsilon(T)$
what is the expression for the conditional quantile function?
denote the conditional quantile of order $\tau(0<\tau<1)$ of $\varepsilon(T)$ given $(\mathbf{X}(T), T)$ by

$$
a^{\tau}(T)=\inf \{y: P\{\varepsilon(T) \leq y \mid(\mathbf{X}(T), T)\} \geq \tau\}=q_{\tau}(\varepsilon(T) \mid \mathbf{X}(T), T)
$$

$\tau$-th conditional quantile of $Y(T)$ given $(\mathbf{X}(T), T)$ is

$$
q_{\tau}(Y(T) \mid \mathbf{X}(T), T)=\mathbf{X}^{\top}(T) \boldsymbol{\beta}(T)+V(\mathbf{X}(T), T) a^{\tau}(T)
$$

- estimation methods
- for identifiability reasons, and for estimating the variability function: adapt approach of He (1997)
- basic assumptions:
- $\mathbf{H} 1)$ : the conditional median quantile of the error term equals zero:

$$
q_{0.5}\{\varepsilon(T) \mid \mathbf{X}(T), T\}=0
$$

$\diamond(\mathbf{H} 2): q_{0.5}\{\ln |\varepsilon(T)| \mid \mathbf{X}(T), T\}=0$

- the estimation consists of three steps:
(1) estimate the conditional median function
(2) estimate the variability function $V(\mathbf{X}(T), T)$
(3) estimate the conditional quantile function


## various testing problems:

- testing for constancy
- testing for monotonicity
- testing for convexity/concavity
- shape testing for both signal and variability part
tests involving some or all coefficient functions in
the signal part: $\boldsymbol{\beta}(t)=\left(\beta_{0}(t), \beta_{1}(t), \ldots, \beta_{p}(t)\right)^{\top}$
the variability part: $\gamma(t)=\left(\gamma_{0}(t), \gamma_{1}(t), \ldots, \gamma_{p}(t)\right)^{\top}$
- likelihood ratio type of tests
$\diamond$ other tests: based on looking at differences of B-spline coefficients


## References

* Bollaerts, K., Eilers, P.H.C. and Aerts, M. (2006). Quantile regression with monotonicity restrictions using P -splines and the $L_{1}$-norm Statistical Modelling, 6, 189-207.
* Andriyana, Y., G., I. and Verhasselt, A. (2017). Quantile regression in varying coefficient models: non-crossingness and heteroscedasticity. Statistical Papers, to appear.
* Ahkim, M., G., I. and Verhasselt, A. (2017). Shape testing in varying coefficient models. Test, 26, 429-450.
* G., I., Ibrahim, M. and Verhasselt, A. (2017). Shape testing in quantile varying coefficient models with heteroscedastic error. Journal of Nonparametric Statistics, 29, 391-406.
* He, X. (1997). Quantile curves without crossing The American Statistician, 51, 186-192.
* Kim, M.O. (2007). Quantile regression with varying coefficients. Annals of Statistics, 35, 92-108.
* Meyer, M.C. (2012). Constrained penalized splines. The Canadian Journal of Statistics, 40, 190-206.
* Wang, J.C. and Meyer, M.C. (2011). Testing monotonicity or convexity of a function using regression splines. The Canadian Journal of Statistics, 39, 89-107.

