# Bi- $s^{*}$-Concave Distributions 



Jon A. Wellner (Seattle)

Shape Constrained Methods: Inference, Applications, and Practice

# Shape Constrained Methods: <br> Inference, Applications, and Practice Banff International Research Station 

January 29 - February 2, 2018

Based on joint work with: Nilanjana Laha

## Outline

- 0. A mysterious condition: quantile process theory
- 1. Log-concavity and $s$-concavity
- 2. Questions and examples.
- 3. $\mathrm{Bi}-s^{*}$-concavity.
- 4. Improved confidence bands.
- 5. Open questions.


## 1. A Mysterious condition: quantile process <br> theory

- Let $X_{1}, \ldots, X_{n}$ be i.i.d. $F$, absolutely continuous with density $f$.
- Let $\mathbb{F}_{n}$ denote the empirical distribution function of the $X_{i}$ 's: $\mathbb{F}_{n}(x)=n^{-1} \sum_{i=1}^{n} 1\left\{X_{i} \leq x\right\}$.
- Let $\mathbb{F}_{n}^{-1}$ denote the empirical quantile function, and let $F^{-1}$ denote the population quantile function, where $F^{-1}(t) \equiv \inf \{x: F(x) \geq t\}, 0<t<1$.
- The standardized quantile process $\mathbb{Q}_{n}$ is defined by

$$
\mathbb{Q}_{n}(t) \equiv g(t) \sqrt{n}\left(\mathbb{F}_{n}^{-1}(t)-F^{-1}(t)\right) \quad \text { for } \quad 0<t<1
$$

where

$$
g(t) \equiv f\left(F^{-1}(t)\right) .
$$

is the density quantile function or isoperimetric profile function.

Now suppose that $X_{i} \equiv F^{-1}\left(\xi_{i}\right)$ for $1 \leq i \leq n$ where:

- $\xi_{1}, \ldots, \xi_{n}$ are i.i.d. Uniform $(0,1)$ random variables.
- $\mathbb{G}_{n}$ is the empirical d.f. of the $\xi_{i}$ 's.
- $\mathbb{G}_{n}^{-1}$ is the empirical quantile function of the $\xi_{i}$ 's.
- $\mathbb{V}_{n}(t) \equiv \sqrt{n}\left(\mathbb{G}_{n}^{-1}(t)-t\right)$ is the uniform quantile process.

Csörgó and Révész (1978) imposed the following mysterious condition in their study of the asymptotic equivalence of $\mathbb{V}_{n}$ and $\mathbb{Q}_{n}^{0}$, the version of $\mathbb{Q}_{n}$ with the $X_{i}$ 's constructed in terms of the $\xi_{i}$ 's as above.
Let $J(F) \equiv\{x \in \mathbb{R}: 0<F(x)<1\}$, and assume

$$
\begin{equation*}
\gamma(F) \equiv \sup _{x \in J(F)} F(x)(1-F(x)) \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} \leq \text { some } M<\infty \tag{1}
\end{equation*}
$$

Then, for any (small) $r>0$

$$
\left\|\mathbb{Q}_{n}^{0}-\mathbb{V}_{n}\right\|_{\infty}=O\left(n^{-1 / 2}(\log \log n)^{M}(\log n)^{(1+r)(M-1)}\right) \text { a.s. }
$$

Define the $C R(x)$ and $C R_{m}(x)$ functions as follows:

$$
\begin{aligned}
& C R(x) \equiv F(x)(1-F(x)) \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)}, \\
& C R_{m}(x) \equiv \min \{F(x), 1-F(x)\} \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} .
\end{aligned}
$$

The condition (1) has also appeared in the study of transportation distances between the empirical measure and true measure $\mathbb{P}_{n}$ and $P$ on $\mathbb{R}$; see e.g.

- del Barrio, E., Giné, E., and Utzet, F. (2005). Asymptotics for L2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances. Bernoulli 11, 131-189.
- Bobkov, S. and Ledoux, M. (2014). One - Dimensional empirical measures, order statistics, and Kantorovich transport distances. Memoirs of the American Mathematical Society, to appear. (especially see p. 45)


## 2. Log-concavity and $s$-concavity

If a density $f$ on $\mathbb{R}^{d}$ is of the form

$$
f(x) \equiv f_{\varphi}(x)= \begin{cases}(\varphi(x))^{1 / s}, & \varphi \text { convex, if } s<0 \\ \exp (-\varphi(x)), & \varphi \text { convex, if } s=0 \\ (\varphi(x))^{1 / s}, & \varphi \text { concave, if } s>0\end{cases}
$$

then $f$ is $s$-concave.
The classes of all densities $f$ on $\mathbb{R}^{d}$ of these forms are called the classes of $s$-concave densities, $\mathcal{D}_{s}$. The following inclusions hold: if $-\infty<s<0<r<\infty$, then

$$
\mathcal{D}_{-\infty} \supset \mathcal{D}_{s} \supset \mathcal{D}_{0} \supset \mathcal{D}_{r} \supset \mathcal{D}_{\infty}
$$

## Properties of $s$-concave densities:

- Every $s$-concave density $f$ is quasi-concave.
- The Student $t_{\nu}$ density, $t_{\nu} \in \mathcal{P}_{s}$ for $s \leq-1 /(1+\nu)$. Thus the Cauchy density $\left(=t_{1}\right)$ is in $\mathcal{P}_{-1 / 2} \subset \mathcal{P}_{s}$ for $s \leq-1 / 2$.
- The classes $\mathcal{D}_{s}$ have interesting closure properties under convolution and marginalization which follow from the Borell-Brascamp-Lieb inequality: let $0<\lambda<1,-1 / d \leq s \leq \infty$, and let $f, g, h: \mathbb{R}^{d} \rightarrow[0, \infty)$ be integrable functions such that

$$
h((1-\lambda) x+\lambda y) \geq M_{s}(f(x), g(x), \lambda) \quad \text { for all } \quad x, y \in \mathbb{R}^{d}
$$

where

$$
M_{s}(a, b, \lambda)=\left((1-\lambda) a^{s}+\lambda b^{s}\right)^{1 / s}, \quad M_{0}(a, b, \lambda)=a^{1-\lambda} b^{\lambda}
$$

Then

$$
\int_{\mathbb{R}^{d}} h(x) d x \geq M_{s /(s d+1)}\left(\int_{\mathbb{R}^{d}} f(x) d x, \int_{\mathbb{R}^{d}} g(x) d x, \lambda\right)
$$

If $p$ is an $s$-concave density with corresponding probability measure $P$, then for Borel sets $A, B$

$$
\begin{aligned}
P(\lambda A+(1-\lambda) B) & =\int_{\lambda A+(1-\lambda) B} p(x) d x \\
& \geq M_{s /(s d+1)}\left(\int_{A} p(x) d x, \int_{B} p(x) d x, \lambda\right) \\
& =M_{s /(s d+1)}(P(A), P(B), \lambda)
\end{aligned}
$$

When $d=1$, let $s^{*} \equiv s /(1+s)$ for $s \in(-1, \infty)$. Thus $0^{*}=0$.

Definition: Dümbgen, Kolesnyk, and Wilke (2017)
A distribution function $F$ on $\mathbb{R}$ is bi-log-concave if $\operatorname{both} \log F$ and $\log (1-F)$ are concave functions from $\mathbb{R}$ to $[-\infty, 0]$.

- DKW (2017) noted that if $F$ has log-concave density $f=$ $F^{\prime}$, then $F$ is bi-log-concave. This follows from the Borell-Brascamp-Lieb inequality with $d=1, s=0$, and considering sets of the form $(-\infty, x]$ or $(x, \infty)$.
- But ... bi-log-concavity of $F$ is a much weaker constraint:
$\triangleright$ While any log-concave density is unimodal,
$\triangleright$ a bi-log-concave distribution function $F$ may have a density with an arbitrary number of modes; e.g.

$$
f_{k, a}(x)=\left(1+\frac{a \sin (2 \pi k x)}{k \pi}\right) 1_{[0,1]}(x) / C(k, a) .
$$

for $a$ small, is bi-log-concave





CR functions, mixed Gaussian density:

$$
2^{-1} \phi(x+\delta)+2^{-1} \phi(x-\delta), \delta=1.37
$$



Multi-modal perturbed uniform density, $f_{k, a}$ with $k=4, a=0.795$


C-R functions, multi-modal perturbed uniform density:
$f_{k, a}$ with $k=4, a=0.0795$

Let

$$
J(F) \equiv\{x \in \mathbb{R}: \quad 0<F(x)<1\}
$$

Then a distribution function $F$ is non-degenerate if $J(F) \neq \emptyset$.

Theorem 1. (DKW-2017).
If $F$ is non-degenerate, the following four statements are equivalent:
(i) $F$ is bi-log-concave, and we write
$F \in \mathcal{F}_{b l c}=\mathcal{F}_{b i-s^{*}}$.
(ii) $F$ is continuous on $\mathbb{R}$ and differentiable on $J(F)$ with derivative $f=F^{\prime}$ such that

$$
F(x+t)\left\{\begin{array}{l}
\leq F(x) \exp \left(\frac{f(x)}{F(x)} t\right) \\
\geq 1-(1-F(x)) \exp \left(-\frac{f(x)}{1-F(x)} t\right)
\end{array}\right.
$$

for all $x \in J(F)$ and $t \in \mathbb{R}$.
(iii) $F$ is continuous on $\mathbb{R}$ and differentiable on $J(F)$ with derivative $f=F^{\prime}$ such that the hazard function $f /(1-F)$ is nondecreasing and the reverse hazard function $f / F$ in non-increasing on $J(F)$.
(iv) $F$ is continuous on $\mathbb{R}$ and differentiable on $J(F)$ with bounded and strictly positive derivative $f=F^{\prime}$. Furthermore, $f$ is locally Lipschitz continuous on $J(F)$ with $L^{1}$-derivative $f^{\prime}=F^{\prime \prime}$ satisfying

$$
\frac{-f^{2}}{1-F} \leq f^{\prime} \leq \frac{f^{2}}{F}
$$

or, equivalently,

$$
\frac{-f}{1-F} \leq \frac{f^{\prime}}{f} \leq \frac{f}{F} .
$$

Corollary. If $F$ is bi-log-concave

$$
\begin{aligned}
\tilde{\gamma}(F) & \equiv \sup _{x \in \mathbb{R}}\{F(x) \wedge(1-F(x))\} \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} \leq 1, \\
\gamma(F) & \equiv \sup _{x \in \mathbb{R}} F(x)(1-F(x)) \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} \leq 1 .
\end{aligned}
$$

## 3. Questions and some examples

If a density $f$ on $\mathbb{R}^{d}$ is of the form

$$
f(x) \equiv f_{\varphi}(x)= \begin{cases}(\varphi(x))^{1 / s}, & \varphi \text { convex, if } s<0 \\ \exp (-\varphi(x)), & \varphi \text { convex, if } s=0 \\ (\varphi(x))^{1 / s}, & \varphi \text { concave, if } s>0\end{cases}
$$

then $f$ is $s$-concave.
The classes of all densities $f$ on $\mathbb{R}^{d}$ of these forms are called the classes of $s$-concave densities, $\mathcal{P}_{s}$. The following inclusions hold: if $-\infty<s<0<r<\infty$, then

$$
\mathcal{P}_{\infty} \subset \mathcal{P}_{r} \subset \mathcal{P}_{0} \subset \mathcal{P}_{s} \subset \mathcal{P}_{-\infty}
$$

## Questions:

- Q1: What if the density $f$ is $s$-concave with $s \neq 0$. In particular, what if $f \in \mathcal{D}_{s}$ with $s<0$ where we know (Borell, Brascamp \& Lieb, Rinott, ...)

$$
\mathcal{D}_{-\infty} \supset \mathcal{D}_{s} \supset \mathcal{D}_{0} \supset \mathcal{D}_{r} \supset \mathcal{D}_{\infty}
$$

$$
\text { for }-\infty<s<0<r<\infty ?
$$

- Q2: If $f \in \mathcal{D}_{s}$, is there a class of bi- $s^{*}$-concave distribution functions $F$ with the property that $F$ and $1-F$ are $s^{*}$ concave?
- Q3: Is there an analogue of Theorem 1 including an analogue of Theorem 1 (iv) with the corollary that $\gamma(F)$ is bounded by some function of $s$ ?

From Borell, Brascamp, \& Lieb, Rinott, we know that if $f \in \mathcal{D}_{s}$ for $s>-1$, then the measure $P_{f}(A)=\int_{A} f d \lambda$ for Borel sets $A$ is $t$-concave with $t=s /(1+s) \equiv s^{*}$ for $s>-1$. Thus by taking $A=(-\infty, x]$, it follows that $x \mapsto F(x)$ is $s^{*}$-concave; similarly, taking $A=[x, \infty)$ it follows that $x \mapsto 1-F(x)$ is $s^{*}$-concave.
Example 1. $t_{r}$ densities: $s=-1 /(1+r) ; s^{*}=s /(1+s)=-1 / r$. Suppose that

$$
f_{r}(x)=\frac{C_{r}}{\left(1+\frac{x^{2}}{r}\right)^{(r+1) / 2}}
$$

where $C_{r}=\Gamma((r+1) / 2) /(\sqrt{\pi} \Gamma(r / 2))$. Then $f_{r}$ is $s$-concave for all $s \leq-(1+r)^{-1}$. By the Borell-Brascamp-Lieb-Rinott correspondence between $s$-concave densities we know that

$$
x \mapsto F_{r}(x)^{s^{*}} \quad \text { and } \quad x \mapsto\left(1-F_{r}(x)\right)^{s^{*}}
$$

are convex.

Here are some plots, for $r \in\{1 / 8,1 / 4,1 / 2,1,4,16\}$, and hence $s \in\{-8 / 9,-4 / 5,-2 / 3,-1 / 2,-1 / 3,-1 / 5\}$ :

- $f_{r}$,
- $f_{r}^{s}, s=-1 /(1+r)$.
- $f_{r} /\left(1-F_{r}\right)^{1-s^{*}}, s^{*}=s /(1+s)=-1 / r$.
- $C R m(x, f) \equiv \min \{F(x), 1-F(x)\} f^{\prime}(x) / f(x)^{2}$ for $f=f_{r}$. $C R(x, f) \equiv F(x)(1-F(x)) f^{\prime}(x) / f(x)^{2}$.

$f_{r}, r \in\{1 / 8,1 / 4,1 / 2,1,4,16\}$ or $s \in\{-8 / 9,-4 / 5,-2 / 3,-1 / 2,-1 / 3,-1 / 5\}$

$f_{r}^{s}, r \in\{1 / 8,1 / 4,1 / 2,1,4,16\}$ or $s \in\{-8 / 9,-4 / 5,-2 / 3,-1 / 2,-1 / 3,-1 / 5\}$



$$
C R_{m}(x, f) \equiv \min \{F(x), 1-F(x)\} f^{\prime}(x) / f(x)^{2} \text { for } f=f_{r}
$$

Here the black bounding lines at the top and bottom are given by

$$
1-s^{*}=\frac{1}{1+s}=\frac{1}{1-8 / 9}=9 \quad \text { since } \quad s=-\frac{1}{1+1 / 8}=-\frac{8}{9}
$$

Example 2. (Mixtures of $t_{r}$ ) Suppose that

$$
f(x)=f(x ; r, \delta) \equiv \frac{1}{2} g_{r}(x-\delta)+\frac{1}{2} g_{r}(x+\delta)
$$

where $g_{r}$ is the $t_{r}$-density in Example 1 and where $\delta>0$ is not too large. For example here are Figures 2-5 of Laha \& W (2017). Showing $g_{r}$ with $r=1$ and $\delta=1.3$


$f^{\prime}$, black; bounds $f^{2} / F$ and $f^{2} /(1-F)$ from bi- $s^{*}$-concave characterization


Example 3. (symmetric beta densities). Now consider the family of $s$-concave densities with $s>0$ given for any $r \in(0, \infty)$ by

$$
f_{r}(x)=\sqrt{r} C_{r}\left(1-x^{2}\right)^{r / 2} 1_{[-1,1]}(x)
$$

where $C_{r} \equiv \Gamma((3+r) / 2) /(\sqrt{\pi r} \Gamma(1+r / 2))$. Then $f_{r} \in \mathcal{P}_{s}$. with $s=2 / r$. Here are some plots, for $r \in\{1 / 8,1 / 2,2,4,8,16\}$, and hence $s \in\{16,4,1,1 / 2,1 / 4,1 / 8\}$ :

- $f_{r}$,
- $f_{r}^{s}, s=2 / r$.
- $f_{r} /\left(1-F_{r}\right)^{1-s^{*}}, s^{*}=s /(1+s)=$.
- $C R m(x, f) \equiv \min \{F(x), 1-F(x)\} f^{\prime}(x) / f(x)^{2}$ for $f=f_{r}$. $C R(x, f) \equiv F(x)(1-F(x)) f^{\prime}(x) / f(x)^{2}$.


Symmetrized beta densities $f_{r}$ with $r \in\{1 / 8,1 / 4,1 / 2,2,4,16\}$


Powers of symmetrized beta densities $f_{r}^{s}=f_{r}^{2 / r}$
with $r \in\{1 / 8,1 / 4,1 / 2,2,4,16\}$


$\operatorname{CRm}(x)$ for $f_{r}$ symmetrized Beta, $r \in\{1 / 8,1 / 4,1 / 2,2,4,16\}$ Here the black bounding lines at the top and bottom are given by the bound for the biggest class, namely for $r=16$, so $s=1 / 8$ and

$$
1-s^{*}=\frac{1}{1+s}=\frac{1}{1+1 / 8}=\frac{8}{9} \quad \text { since } \quad s=\frac{2}{16}=\frac{1}{8} .
$$

## 3. Bi-s*-concave distributions

## Definition.

- For $s \in(-1, \infty)$, let $s^{*} \equiv s /(1+s) \in(-\infty, 1]$.
- For $s \in(-1,0)$, a distribution function $F$ on $\mathbb{R}$ is bi-s*-concave if both $x \mapsto F^{s^{*}}(x)$ and $x \mapsto(1-F)^{s^{*}}(x)$ are convex functions of $x \in J(F)$.
- For $s \in(0, \infty), F$ on $\mathbb{R}$ is bi-s*-concave if $x \mapsto F^{s^{*}}(x)$ is concave for $x \in(\inf J(F), \infty)$ and and $x \mapsto(1-F)^{s^{*}}(x)$ is concave for $x \in(-\infty, \sup J(F))$.
- For $s=0, F$ on $\mathbb{R}$ is bi-0-concave or bi-log-concave if both $x \mapsto \log F(x)$ and $x \mapsto \log (1-F(x))$ are concave functions of $x \in J(F)$.

Theorem 2. ( $\mathrm{Bi}-s^{*}$-characterization theorem) Let $s \in(-1, \infty]$. For a non-degenerate distribution function $F$ the following four statements are equivalent:
(i) $F$ is $\mathrm{bi}-s^{*}$-concave.
(ii) $F$ is continuous on $\mathbb{R}$ and differentiable on $J(F)$ with derivative $f=F^{\prime}$. Moreover when $s \leq 0$,

$$
F(x+t)\left\{\begin{array}{l}
\leq F(x) \cdot\left(1+s^{*} \frac{f(x)}{F(x)} t\right)^{1 / s^{*}}  \tag{2}\\
\geq 1-(1-F(x)) \cdot\left(1-s^{*} \frac{f(x)}{1-F(x)} t\right)_{+}^{1 / s^{*}}
\end{array}\right.
$$

for all $x \in \mathbb{R}$ and $t \in \mathbb{R}$. When $s>0$,
$F(x+t) \begin{cases}\leq F(x) \cdot\left(1+s^{*} \frac{f(x)}{F(x)} t\right)_{+}^{1 / s^{*}}, & \text { for } t \in(a-x, \infty) \\ \geq 1-(1-F(x)) \cdot\left(1-s^{*} \frac{f(x)}{1-F(x)} t\right)_{+}^{1 / s^{*}}, & \text { for } t \in(-\infty, b-x)\end{cases}$
for all $x \in J(F)$.
(iii) $F$ is continuous on $\mathbb{R}$ and differentiable on $J(F)$ with derivative $f=F^{\prime}$ such that the $s^{*}$-hazard function $f /(1-F)^{1-s^{*}}$ is non-decreasing, and the reverse $s^{*}$-hazard function $f / F^{1-s^{*}}$ is non-increasing on $J(F)$.
(iv) $F$ is continuous on $\mathbb{R}$ and differentiable on $J(F)$ with bounded and strictly positive derivative $f=F^{\prime}$. Furthermore, $f$ is locally Lipschitz-continuous on $J(F)$ with $L^{1}$-derivative $f^{\prime}=F^{\prime \prime}$ satisfying

$$
\begin{equation*}
-\left(1-s^{*}\right) \frac{f^{2}}{1-F} \leq f^{\prime} \leq\left(1-s^{*}\right) \frac{f^{2}}{F} \tag{4}
\end{equation*}
$$

## Corollary.

Suppose that $F$ is bi- $s^{*}$-concave for $s \in(-1, \infty]$. Then

$$
\gamma(F)=\sup _{x \in J(F)} F(x)(1-F(x)) \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)}=1-s^{*}=\frac{1}{1+s},
$$

and

$$
\tilde{\gamma}(F)=\sup _{x \in J(F)} \min \{F(x), 1-F(x)\} \frac{\left|f^{\prime}(x)\right|}{f^{2}(x)} \leq 1-s^{*}=\frac{1}{1+s} .
$$

## 4. Improved Confidence bands

Suppose $F$ is bi-logconcave. Given valid nonparametric confidence bands for $F$, can we improve them under the assumption of bi-log-concavity?

YES! DKW (2017)
Suppose that $\left(L_{n}, U_{n}\right)$ is a $(1-\alpha)$-confidence band for $F$ with $0<\alpha \leq 1 / 2$. Thus $L_{n}=L_{n, \alpha}\left(\cdot \mid X_{1}, \ldots, X_{n}\right)<1$ and $U_{n}=$ $U_{n, \alpha}\left(\cdot \mid X_{1}, \ldots, X_{n}\right)$ are non-decreasing functions on $\mathbb{R}$ with $L_{n} \leq$ $U_{n}$ pointwise and

$$
P_{F}\left(L_{n}(x) \leq F(x) \leq U_{n}(x) \text { for all } x \in \mathbb{R}\right)=1-\alpha .
$$

Example: (Kolmogorov-Smirnov band). Let $\mathbb{F}_{n}$ be the empirical distribution function as in Section 1. Then

$$
\left[L_{n}(x), U_{n}(x)\right] \equiv\left[\mathbb{F}_{n}(x)-\frac{\kappa_{\alpha, n}^{K S}}{n^{1 / 2}}, \mathbb{F}_{n}(x)+\frac{\kappa_{\alpha, n}^{K S}}{n^{1 / 2}}\right] \cap[0,1]
$$

where $\kappa_{\alpha, n}^{K S}$ denotes the $(1-\alpha)$-quantile of

$$
\sup _{x \in \mathbb{R}} n^{1 / 2}\left|\mathbb{F}_{n}(x)-F(x)\right| ;
$$

cf. Shorack and W (1986) (and note that $\kappa_{\alpha, n}^{K S} \leq \sqrt{\log (2 / \alpha) / 2}$ by Massart's inequality).

If $F \in \mathrm{~F}_{b l c}$, find a new band for $F$ as follows:

$$
\begin{aligned}
& L_{n}^{0}(x) \equiv \inf \left\{G(x): \quad G \in \mathcal{F}_{b l c}, L_{n} \leq G \leq U_{n}\right\} \\
& U_{n}^{0}(x) \equiv \sup \left\{G(x): G \in \mathcal{F}_{b l c}, L_{n} \leq G \leq U_{n}\right\}
\end{aligned}
$$

If no bi-log-concave distribution function fits into the band $\left(L_{n}, U_{n}\right)$, set $L_{n}^{0} \equiv 1$ and $U_{n}^{0} \equiv 0$ and conclude with confidence $1-\alpha$ that $F \notin \mathcal{F}_{b l c}$. But if $F \in \mathcal{F}_{b l c}$, this happens with probability at most $\alpha$ : by the construction of $\left(L_{n}^{0}, U_{n}^{0}\right)$

$$
\left.P_{F}\left(L_{n}^{0}\right) \leq F \leq U_{n}^{0}\right)=P\left(L_{n} \leq F \leq U_{n}\right)=1-\alpha \text { if } F \in \mathcal{F}_{b l c} .
$$

Similarly, if $F \in \mathcal{F}_{b i-s^{*}}$, find a new band for $F$ by refining the given band.


CEO salary data; Woolridge 2002: $n=177 ; X_{i}=\log _{10} Y_{i}$ $Y_{i}=$ annual salaries of CEO's in multiples of USD
95\% unconstrained band (black); log-concave-constrained band (blue)
Shape Constrained Methods, BIRS, January 29 - February 2, 2018


95\% unconstrained band (black); bi-s*-constrained band, $s=0.10$ (gray)


95\% unconstrained band (black); log-concave-constrained band (blue); $\mathrm{bi}-s^{*}$-constrained band, $s=0.20$ (green)


95\% unconstrained band (black); log-concave-constrained band (blue); $\mathrm{bi}-s^{*}$-constrained band, $s=0.30$ (red)


95\% unconstrained band (black); log-concave-constrained band (blue); $\mathrm{bi}-s^{*}-$ constrained band, $s=0.30$ (red)


95\%unconstrained band (black); log-concave-constrained band (blue);

## 5. Questions and further problems

Questions and further problems: Q1. What can be said about estimation of $s^{*}$ (and $s$ )?
Q2. Can anything be said when $f$ is $s$-concave with $s \leq-1$ ?
Q3. Bi-log-concave or bi-s*-concave in higher dimensions?
Q4. What are the "right" hypotheses for the study of transportation (Wasserstein) distances for empirical measures on $\mathbb{R}^{d}$ with $d \geq 2$ ?

## Selected references:

- Dümbgen, L., Kolesnyk, P., and Wilke, R. (2017). Bi-logconcave distribution functions. J. Statist. Planning and Inference 184, 1-17.
- del Barrio, E., Giné, E., and Utzet, F. (2005). Asymptotics for $L_{2}$ functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances. Bernoulli 11, 131-189.
- Laha, N. and Wellner, J. A. (2017). Bi-s*-concave distributions. Available as arXiv:1705.00252.


## Thank You!

