Sasaki-Einstein structures and their compactification

Rod Gover,

Based on: G-., Neusser, Willse, arXiv:1803.09531

and e.g.

Čap+G-., Math. Ann. (2016)

Čap, G-, Hammerl: Duke M. J., (2014).

Armstrong, Ann. Global Anal. Geom. (2008)

Calderbank, Eastwood, Matveev, Neusser: Mem. AMS (2018)

University of Auckland Department of Mathematics

BIRS Workshop 18w5108 Asymptotically Hyperbolic Manifolds

Sasaki Geometry

A (pseudo-)Riemannian manifold (M^n,g) is Sasakian if its standard metric cone is (pseudo-)Kähler (so n=2m+1). It is Sasaki-Einstein if also the metric g is Einstein.

Definition

A Sasaki structure on a manifold M ($n \ge 5$ here and throughout) consists of a (pseudo-)Riemannian metric $g_{ab} \in \Gamma(S^2T^*M)$ and a Killing field $k^a \in \Gamma(TM)$ of g (i.e. $\mathcal{L}_k g = 0$) such that

where ∇ denotes the Levi-Civita connection of g.

- Can replace (\star) by: $R_{bc}{}^{a}{}_{d}k^{d}=2\delta^{a}{}_{[b}k_{c]}$.
- In fact k_a is a contact form and $J_a^b := \nabla_a k^b$ determines complex structure on the contact distribution. So this data of Sasaki determines a CR structure.

Q: If g indef. sig., complete, non-compact: right way to compactify? • • • •

Projective DG – a less rigid structure

Definition

On a manifold $M^{n\geq 2}$ a projective structure is an equivalence class ${\bf p}$ of torsion-free affine connections that share the same geodesics as unparametrised curves.

•
$$\nabla, \widehat{\nabla} \in \mathbf{p} \Leftrightarrow \widehat{\nabla}_{\xi} \eta = \nabla_{\xi} \eta + \Upsilon(\xi) \eta + \Upsilon(\eta) \xi$$
 where Υ a 1-form

On a general (M, \mathbf{p}) there is no distinguished ∇ on TM. But there is on the **tractor bundle** \mathcal{T} which extends TM:

$$0 o \mathcal{E}(-1) \stackrel{X^A}{\longrightarrow} \mathcal{T}^A \stackrel{Z_A^s}{\longrightarrow} \mathit{TM}(-1) o 0,$$

given by

$$\nabla_{\mathbf{a}}^{\mathcal{T}} \left(\begin{array}{c} \nu^b \\ \rho \end{array} \right) = \left(\begin{array}{c} \nabla_{\mathbf{a}} \nu^b + \rho \delta_{\mathbf{a}}^b \\ \nabla_{\mathbf{a}} \rho - P_{\mathbf{a} \mathbf{b}} \nu^b \end{array} \right). \quad \leftarrow \quad \text{standard tractor connection}$$

Here $(\Lambda^n TM)^2 = \mathcal{E}(2n+2)$ and $\mathcal{E}(w)$ are roots.

Sasaki ~> projective

On Sasaki (M, g, k), Levi-Civita ∇^g determines $\boldsymbol{p} = [\nabla^g]$,

$$R_{ab}{}^{c}{}_{d} = \underbrace{W_{ab}{}^{c}{}_{d}}_{\text{tf and projectively invariant}} + \delta^{c}{}_{a}\mathsf{P}_{bd} - \delta^{c}{}_{b}\mathsf{P}_{ad},$$

Theorem

A (pseudo-)Riemannian manifold (M,g) is Sasaki if and only if $\exists k^a \in \Gamma(TM)$ s.t

- **1** $\nabla_{(a}k_{b)} = 0 \leftarrow \text{projectively invariant}$
- 2 $W_{ab}{}^{c}{}_{d}k^{d} = 0 \leftarrow k$ in projective Weyl nullity

where $P_{ab} = \frac{1}{n} Ricci_{ab}$ is the projective Schouten tensor of ∇^g .

Sasaki Einstein manifolds

There is a particularly simple result for Sasaki-Einstein structures:

Theorem

A Sasaki-Einstein manifold (M,g,k) (of signature (2p-1,2q)), canonically carries a parallel Hermitian structure on the projective tractor bundle \mathcal{T} . That is, it carries a tractor metric $h \in \Gamma(S^2\mathcal{T}^*)$ (of signature (2p,2q)) and a tractor complex structure $\mathbb{J} \in \Gamma(\operatorname{End} \mathcal{T})$ compatible in the sense that $h(\cdot,\cdot) = h(\mathbb{J}\cdot,\mathbb{J}\cdot)$ and both are parallel for the tractor connection of $\mathbf{p} = [\nabla^g]$.

Proof.

In the scale of the metric

$$h:=egin{pmatrix} 1 & 0 \ 0 & g_{ab} \end{pmatrix} \quad ext{ and } \quad \mathbb{J}^A{}_B=:egin{pmatrix} 0 & -k_b \ k^a &
abla_b k^a \end{pmatrix},$$

now use the properties of k and the formula for the tractor connection.

The converse: Projective with SU(p,q)-holonomy

Theorem

Let (M, \mathbf{p}) be a projective manifold equipped with compatible parallel tractor metric h and tractor complex structure \mathbb{J} . Then M is stratified into a disjoint union of submanifolds

$$M=M_+\cup M_0\cup M_-,$$

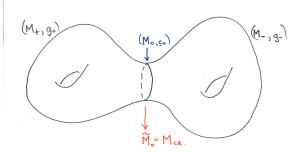
according to the strict sign of $\tau := h(X, X)$:

- The submanifolds M_{\pm} are open and (if nonempty) resp. equipped with Sasaki-Einstein structures (g_{\pm}, k) with $Ric^{g_{\pm}} = 2mg_{\pm}$ where g_{+} has signature (2p-1, 2q), and g_{-} has signature (2q-1, 2p) and $[\nabla^{g}] = \mathbf{p}$.
- 2 The submanifold M_0 is (if nonempty) a smooth separating hypersurface and is equipped with an oriented Fefferman conformal structure of signature (2p 1, 2q 1).

The picture. From above we have:

 (M, \mathbf{p}) with SU(2p) holonomy \Leftrightarrow Sasaki-Einstein manifold s.t. g +ve def.

In other signatures something even more interesting can happen:



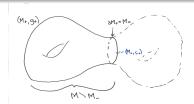
 M_0 has a conformal structure that is locally an S^1 bundle over a CR manifold: $S^1 o M_0 o \tilde{M}_0 = M_{\rm CR}$



Compactification

$\mathsf{Theorem}$

Assume the setting above. Then the manifold with boundary $(M \setminus M_{\mp}, \mathbf{p}, \mathbb{J}, h)$ is an order 2 projective compactification of the Sasaki-Einstein manifold, respectively, (M_{\pm}, g_{\pm}, k) .



This means that locally near the boundary the metric looks like

$$g = c \cdot \frac{dt^2}{t^2} + \frac{g_0}{t}, \qquad g_0|_{TM_0 \times TM_0} \quad \text{gives conformal str on } M_0$$

where t a defining function for $M_0 = \partial M$, so ∂M at infinity for geodesics of g, but projective structure extends to ∂M . We understand asymptotics . . .

Another link to CR geometry

It is well known that Sasaki-Einstein manifolds locally fibre over Kähler-Einstein structures. So

Sasaki-Ein.
$$(M_\pm,g_\pm,k) o (\tilde{M}_\pm,\tilde{g}_\pm,J)$$
 Kähler-Ein..

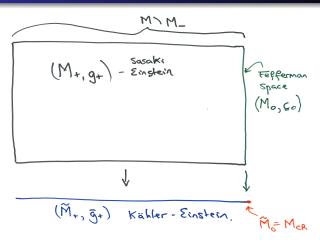
This is compatible with the Fefferman fibration $M_0 o ilde{M}_0 = M_{\mathrm{CR}}$:

Theorem

Assume the setting of above with $M_0 \neq \emptyset$. The construction produces a manifold with boundary $(\widetilde{M} \setminus \widetilde{M}_{\mp}, J)$ that is an (order 2) c-projective compactification of the Kähler-Einstein manifold $(\widetilde{M}_{\pm}, \widetilde{g}_{\pm})$ with CR boundary \widetilde{M}_0 .

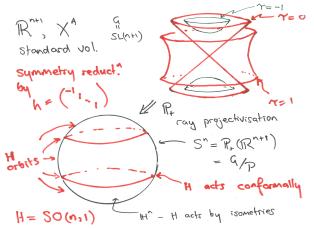
The notion of c-projective compactification is the analogue of projective compactification, based around c-projective geometry, that is suitable for Kähler compactification.

The big picture



This encodes the singularity of the (Cheng-Yau type) Kähler-Einstein metric for CR manifolds compatibly with the singularity of the Sasaki geometry on the "metric cone".

Background: H = SO(n, 1) orbits on the sphere



 $S^n = \mathbb{P}_+(\mathbb{R}^{n+1} \setminus \{0\})$ is model of flat projective geometry. Symmetry reduction by h (plus time \uparrow): \Rightarrow North polar cap is projective compactification of \mathbb{H}^n ; $\tau = 0$ projective ∞ with conformal str.

NB: Embeddings relate the orbits – but these encoded in $H \hookrightarrow G$.

A background problem

Problem: Suppose a Lie group *H* acts on a manifold *X* with a finite number of orbits. Then: (i) understand and relate the different (Klein) geometries on the orbits; and (ii) construct and treat a well defined curved version of this theory.

If H < G and the Lie gp G transitive on X. There is a nice route:

Theorem (Cartan, Tanaka, · · ·)

If P is a parabolic subgroup of a semisimple Lie group G then there is a canonical notion of geometry

where G is equipped with a Cartan connection ω – viz. a suitably equivariant Lie(G)-valued 1-form, cf. Maurer-Cartan form on G.

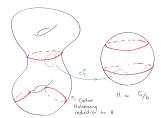
Projective DG: $G = SL(\mathbb{R}^{n+1})$, & P < G stabilises a ray in \mathbb{R}^{n+1} .

A short "proof" of nearly everything

Theorem (**Curved orbit decomposition** - Čap,G., Hammerl)

Suppose $(G, \omega) \to M$ is a Cartan geometry (modelled on $G \to G/P$) endowed with a parallel tractor field h giving a Cartan holonomy reduction with holonomy group H. Then: (1) M is canonically stratified $M = \bigcup_{i \in H \setminus G/P} M_i$ in a way locally diffeomorphic to the H-orbit decomposition of H and (2) there H a Cartan geometry on H of the same type as the model.

Thus there is a general way to define a curved analogue of an orbit decomposition of a homogeneous space.



The resolution

Well known useful move. Can consider a Kähler structure from different perspectives. namely as:

- symplectic manifold equipped also with a compatible complex structure; or
- a complex manifold equipped with a suitable Hermitian metric; or
- a Riemannian manifold with a complex structure that is compatible with the metric and parallel for the Levi-Civita connection.

The analogue here is to note $SU(p,q) = U(p,q) \cap SL(m+1,\mathbb{C})$, where p+q=m+1, and

$$\mathsf{U}(p,q) = \mathsf{SO}(2p,2q) \cap \mathsf{Sp}(2m+2,\mathbb{R}) \cap \mathsf{GL}(m+1,\mathbb{C})$$

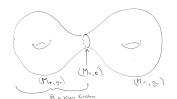
(in fact intersection of any two will do) and thus consider separately **projective** (Cartan) **holonomy reductions** to SO(2p, 2q), $Sp(2m + 2, \mathbb{R})$, and $GL(m + 1, \mathbb{C})$.

Projective geometry with SO(2p, 2q) holonomy

$\mathsf{Theorem}\;(\mathsf{Cap},\mathsf{G.},\mathsf{Hammerl})$

h tractor metric sig. (2p, 2q) and parallel on (M, \mathbf{p}) implies

- If q = 0 then $(M, \mathbf{p}, h) \Leftrightarrow (M, g)$ Einstein with positive scalar curvature.
- If $p, q \neq 0$ then M is stratified $M = M_+ \cup M_0 \cup M_-$ according to strict sign of $\tau = h(X, X)$.
- If $M_0 \neq \emptyset$ then it is a smooth embedded separating hypersurface with a conformal structure c of signature (2p-1, 2q-1).
- On the open submanifolds M_{\pm} , h induces metrics g_{\pm} which are positive/negative Einstein of signature (2p-1,2q)/ resp. (2q-1,2p). (Complete if M closed.)



Symplectic holonomy reduction of projective geometries

For a symplectic holonomy reduction we consider a projective manifold of dimension 2m+1 equipped with a **parallel** and **nondegenerate** skew tractor field

$$\Omega_{AB} \in \Gamma(\wedge^2 \mathcal{T}^*)$$
 s.t. $\nabla^{\mathcal{T}} \Omega(x) = 0$ & $\wedge^m \Omega(x) \neq 0$ $\forall x \in M$.

Theorem

Suppose (M, \mathbf{p}) is a projective (necessarily odd-dimensional) manifold equipped with a parallel symplectic form $\Omega_{AB} \in \Gamma(\wedge^2 \mathcal{T}^*)$. Then $k := \Pi^{\wedge^2 \mathcal{T}^*}(\Omega)$ satisfies $\nabla_{(a} k_{b)} = 0$ and

$$H := \ker k = \{ u^{a} \in TM : k_{a}u^{a} = 0 \} \subset TM \tag{1}$$

is a contact distribution and p is compatible with H in that H is totally geodesic. [So $(M, H, \langle p \rangle)$ is a contact projective manifold and the torsion of $(M, H, \langle p \rangle)$ vanishes identically.]

Proof.

The tractor Ω parallel and skew implies

$$\Omega_{AB} \stackrel{
abla}{=} \begin{pmatrix} 0 & -k_b \\ k_a &
abla_b k_a \end{pmatrix}$$
 and $\nabla_{(a}k_{b)} = 0$.

Then Ω non-deg implies $k \wedge (dk) \wedge \cdots \wedge (dk) \neq 0 \ \forall x$. So k_a is a contact form. The restriction of $\nabla_{(a}k_{b)}$ to the contact distribution H is the second fundamental form, and this vanishes.

Complex holonomy reduction of projective geometries

A projective manifold (M, \mathbf{p}) with a parallel tractor complex structure

$$\mathbb{J}^{A}_{B}\in\Gamma(\operatorname{End}\mathcal{T}),$$

that is, a parallel tractor endomorphism $\mathbb{J}^A{}_B$ satisfying $\mathbb{J}^2 = -\operatorname{id}_{\mathcal{T}}$ – is oriented and odd dimensional. The tractor holonomy group must be in $\operatorname{SL}(2m+2,\mathbb{R})\cap\operatorname{GL}(m+1,\mathbb{C})\cong\operatorname{SL}(m+1,\mathbb{C})\times\operatorname{U}(1)$, but one can show that, if M is simply connected, there is a parallel tractor complex volume form, so the holonomy group is (in) $\operatorname{SL}(m+1,\mathbb{C})$.

In special scales (∇ s.t. $\nabla_a k^a = 0$) we have

$$\mathbb{J}^{A}{}_{B} = \begin{pmatrix} 0 & -\mathsf{P}_{bc}k^{c} \\ k^{a} & \nabla_{b}k^{a} \end{pmatrix}.$$

 k^a is nowhere zero: $SL(m+1,\mathbb{C})$ acts transitively on $\mathbb{C}^{m+1}\setminus\{0\}$ and hence on the projective model $\mathbb{P}_+^{\mathbb{R}}(\mathbb{C}^{m+1})=\mathbb{P}_+(\mathbb{R}^{2m+2})$. So in the curved case there can be only one curved orbit,

Assembling

- (locally) when $k = \Pi(\mathbb{J})$ is a projective symmetry the leaf space \tilde{M} gets a *complex structure* J on $T\tilde{M}$ and a compatible **c-projective structure** $\tilde{\boldsymbol{p}} = [\tilde{\nabla}]$ this is a certain equivalence class of affine connections preserving J.
- Along (M_0, c_0) , from the othogonal holonomy reduction, the parallel $\mathbb J$ is also parallel for the conformal tractor connection. Thus by a characterisation (Čap+G., Leitner) this is a Fefferman Space that fibres over a CR manifold $\tilde M_0$.
- The leaf space \tilde{M}_0 is a hypersurface in \tilde{M} so also gets a CR structure from J. It is straightforward to show these agree.
- The parallel tractor fields on M descend to parallel tractors for the c-projective geometry $(\tilde{M}, [\tilde{\boldsymbol{p}}])$ thus the latter has a parallel tractor hermitian form and hence an Einstein (pseudo-)Kähler structure (cf.CENM) in the parts \tilde{M}_{\pm} off \tilde{M}_{0} . By results of Čap+G. and Čap+G.+Hammerl, we then know that the CR structure \tilde{M}_{0} is the c-projective infinity of these. It is a curved orbit decomposition, now downstairs.

Thank you for Listening

The projective geometry of Sasaki-Einstein structures and their compactification

Sasaki geometry is often viewed as the odd dimensional analogue of Kaehler geometry. In particular a Riemannian or pseudo-Riemannian manifold is Sasakian if its standard metric cone is Kaehler or, respectively, pseudo-Kaehler. We show that there is a natural link between Sasaki geometry and projective differential geometry. The situation is particularly elegant for Sasaki-Einstein geometries and in this setting we use projective geometry to provide the resolution of such structures into less rigid components. This is analogous to usual picture of a Kaehler structure: a symplectic manifold equipped also with a compatible complex structure; or as a complex manifold equipped with a suitable Hermitian metric; or finally as a Riemannian manifold with a complex structure that is compatible with the metric and parallel for the Levi-Civita connection. However the treatment of Sasaki geometry this way is locally more interesting and involves the projective Cartan or tractor connection. This enables us to describe a natural type of compactification of complete non-compact pseudo-Riemannian