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Sasaki Geometry

A (pseudo-)Riemannian manifold (M", g) is Sasakian if its standard
metric cone is (pseudo-)Kahler (so n=2m+1). It is
Sasaki-Einstein if also the metric g is Einstein.

Definition

A Sasaki structure on a manifold M (n > 5 here and throughout)
consists of a (pseudo-)Riemannian metric g, € [(S?T*M) and a
Killing field k? € [(TM) of g (i.e. Lxg = 0) such that

Q g kkb =1
© V.Vpk® = —gapk® + 6¢akp, (%)
where V denotes the Levi-Civita connection of g.

o Can replace (x) by: Rpc?qgk® = 207,kq).
e In fact k, is a contact form and J? := V,k® determines complex
structure on the contact distribution. So this data of Sasaki
determines a CR structure.

Q: If g indef. sig., complete, non-compact: right way to compactify?
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Projective DG — a less rigid structure

Definition

On a manifold M"22 a projective structure is an equivalence class p
of torsion-free affine connections that share the same geodesics as
unparametrised curves.

eV.Veps %577 = Ven+ T(E)n + T(n)§ where T a 1-form

On a general (M, p) there is no distinguished V on TM. But there
is on the tractor bundle 7 which extends TM:

0 &(-1) X5 74 2 Tm(-1) > 0,

given by
b b b
vaT( Vp ) — < vVapV ;p%b ) . < standard tractor connection
aP — I"ab

Here (A"TM)? = £(2n + 2) and E(w) are roots.
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Sasaki ~ projective

On Sasaki (M, g, k), Levi-Civita V& determines p = [V4],

Rap“d = Wab 4 +03Pbd — 6P ad,

tf and projectively invariant

Theorem

A (pseudo-)Riemannian manifold (M, g) is Sasaki if and only if 3
k? € T(TM) s.t

Q@ V(:kp) = 0 < projectively invariant

Q@ W.,,qkY =0 « k in projective Weyl nullity

Q gapk’k® =1,

Q P.pkkP =1,

where P,p = %Ricciab is the projective Schouten tensor of V8.
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Sasaki Einstein manifolds

There is a particularly simple result for Sasaki-Einstein structures:

Theorem

A Sasaki-Einstein manifold (M, g, k) (of signature (2p — 1,2q)),
canonically carries a parallel Hermitian structure on the projective
tractor bundle T. That is, it carries a tractor metric h € T(S>T*)
(of signature (2p,2q)) and a tractor complex structure

J € T(End T') compatible in the sense that h(-, -) = h(J-,J-) and
both are parallel for the tractor connection of p = [V&].

Proof.

In the scale of the metric

(1 0 A (0 —k
= (o gab> and  J%p =: (ka vbka)’

now use the properties of k and the formula for the tractor
connection. ]
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The converse: Projective with SU(p, g)-holonomy

Theorem

Let (M, p) be a projective manifold equipped with compatible
parallel tractor metric h and tractor complex structure J.
Then M is stratified into a disjoint union of submanifolds

M= M, UM U M-,

according to the strict sign of T := h(X, X):

@ The submanifolds My are open and (if nonempty) resp.
equipped with Sasaki-Einstein structures (g4, k) with
Ric&* = 2mgy where g, has signature (2p — 1,2q), and g_
has signature (2qg — 1,2p) and [V&] = p.

@ The submanifold My is (if nonempty) a smooth separating
hypersurface and is equipped with an oriented Fefferman
conformal structure of signature (2p — 1,2q — 1).
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The picture.  From above we have:

‘(M,p) with SU(2p) holonomy < Sasaki-Einstein manifold s.t. g +ve def. ‘

In other signatures something even more interesting can happen:

(N

|
Mo~ Mee

e

Moy has a conformal structure that is locally an S* bundle over a
CR manifold: ST — My — My = Mcg
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Compactification

Assume the setting above. Then the manifold with boundary
(M\ M=,p, I, h) is an order 2 projective compactification of the
Sasaki-Einstein manifold, respectively, (M+, g+, k).

CRED) Mo, TN
, N

e -/ |
‘\\ /
~.___ 7
PN
This means that locally near the boundary the metric looks like
dt? :
g=c- e + ng), 80| TMox TM,  gives conformal str on My

where t a defining function for My = OM, so OM at infinity for
geodesics of g, but projective structure extends to OM. We
understand asymptotics . . .
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Another link to CR geometry

It is well known that Sasaki-Einstein manifolds locally fibre over
Kahler-Einstein structures. So

Sasaki-Ein. (M, g+, k) — (My,g+,J) Kahler-Ein..

This is compatible with the Fefferman fibration My — My = Mcg:

Assume the setting of above with Mo # (). The construction
produces a manifold with boundary (M \ M=, J) that is an (order
2) c-projective compact:f/catlon of the Kahler-Einstein manifold
(Mi, g+) with CR boundary Mo.

The notion of c-projective compactification is the analogue of
projective compactification, based around c-projective geometry,
that is suitable for Kahler compactification.
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The big picture

M\ M_
/\/\—'—ﬁ
Sasal:
(M-\r' %.,_\ - Zeaghein [\Fe‘?€2rmc\n
S‘\c«{
‘ (M° b) Qo}
| J !
(M«- N 34—\ Kakler - SQI\S\'QV\. Qﬁ(): MCK

This encodes the singularity of the (Cheng-Yau type)
Kahler-Einstein metric for CR manifolds compatibly with the
singularity of the Sasaki geometry on the “metric cone”.
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Background: H = SO(n, 1) orbits on the sphere

ey A G
R S

Stondosd Vo,

sc\mme_\-r\.‘ reduct?

b‘\ké C‘lsl\ /ﬁ-

ackuisalion

(_(‘Ala ‘\)f‘l\)
— SR )
S - G
\; (_\"\ acts coﬁ%:rmq\h,\
H: So (‘\1\) WS — Y ads \ov\ isomelries

S" =P, (R"1\ {0}) is model of flat projective geometry.
Symmetry reduction by h (plus time?): = North polar cap is projective
compactification of H"; 7 = 0 projective co with conformal str.

NB: Embeddings relate the orbits — but these encoded in H — G.
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A background problem

Problem: Suppose a Lie group H acts on a manifold X with a
finite number of orbits. Then: (i) understand and relate the

different (Klein) geometries on the orbits; and (ii) construct and
treat a well defined curved version of this theory. ‘ o

g

If H < G and the Lie gp G transitive on X. There is a nice route:
Theorem (Cartan, Tanaka, ---)

If P is a parabolic subgroup of a semisimple Lie group G then there
is a canonical notion of geometry

G < P G <+ P
J modelled on J
M G/P

where G is equipped with a Cartan connection w — viz. a suitably
equivariant Lie(G )-valued 1-form, cf. Maurer-Cartan form on G.

v

Projective DG: G = SL(R"1), & P < G stabilises a ray in R"*L.
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A short “proof” of nearly everything

Theorem (Curved orbit decomposition - Cap,G., Hammerl)

Suppose (G,w) — M is a Cartan geometry (modelled on

G — G/P) endowed with a parallel tractor field h giving a
Cartan holonomy reduction with holonomy group H. Then:

(1) M is canonically stratified M = J;cpp g p Mi in a way locally
diffeomorphic to the the H-orbit decomposition of G/P; and
(2) there 3 a Cartan geometry on M, of the same type as the
model.

Thus there is a general way to define a curved analogue of an
orbit decomposition of a homogeneous space.
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The resolution

Well known useful move. Can consider a Ka3hler structure from
different perspectives. namely as:

e symplectic manifold equipped also with a compatible complex
structure; or

e a complex manifold equipped with a suitable Hermitian metric; or
e a Riemannian manifold with a complex structure that is
compatible with the metric and parallel for the Levi-Civita
connection.

The analogue here is to note SU(p, q) = U(p, q) N SL(m + 1,C),
where p+ g =m—+1, and
U(p, g) = SO(2p,2q) N Sp(2m + 2, R) N GL(m + 1,C)

(in fact intersection of any two will do) and thus consider
separately projective (Cartan) holonomy reductions to
SO(2p,2q), Sp(2m + 2,R), and GL(m + 1,C).
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Projective geometry with SO(2p, 2q) holonomy

Theorem (Cap,G.,Hammerl)

h tractor metric sig. (2p,2q) and parallel on (M, p) implies

e If g =0 then (M,p, h) & (M, g) Einstein with positive scalar
curvature.

e If p,q # 0 then M is stratified M = M U My U M_ according to
strict sign of T = h(X, X).

o If My # () then it is a smooth embedded separating hypersurface
with a conformal structure c of signature (2p — 1,2 — 1).

e On the open submanifolds My, h induces metrics g+ which are
positive/negative Einstein of signature (2p — 1,2q)/ resp.

(29 — 1,2p). (Complete if M closed.)
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Symplectic holonomy reduction of projective geometries

For a symplectic holonomy reduction we consider a projective
manifold of dimension 2m + 1 equipped with a parallel and
nondegenerate skew tractor field

Qag € T(N2T*) st. VIQ(x)=0 & A™Q(x)#0 Vxe M.

Theorem

Suppose (M, p) is a projective (necessarily odd-dimensional)
manifold equipped with a parallel symplectic form Qag € [(/A\?T*).
Then k := N*T"(Q) satisfies V(akp)y = 0 and

H:=kerk={u? € TM : kou? =0} C TM (1)

is a contact distribution and p is compatible with H in that H
is totally geodesic. [So (M, H,(p)) is a contact projective
manifold and the torsion of (M, H, (p)) vanishes identically.]
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Proof.
The tractor Q parallel and skew implies

\ 0 —kb
QAB = (ka kaa) and v(akb) =0.

Then Q non-deg implies k A (dk) A --- A (dk) # 0 Vx. So k, is a
contact form. The restriction of V(,kp) to the contact distribution
H is the second fundamental form, and this vanishes. ]

4
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Complex holonomy reduction of projective geometries

A projective manifold (M, p) with a parallel tractor complex
structure

J#5 € [(End T),

that is, a parallel tractor endomorphism J#g satisfying J? = — ids
— is oriented and odd dimensional. The tractor holonomy group
must be in SL(2m +2,R) N GL(m +1,C) = SL(m+ 1,C) x U(1),
but one can show that, if M is simply connected, there is a parallel
tractor complex volume form, so the holonomy group is (in)
SL(m+1,C).

In special scales (V s.t. V,k? =0) we have

JA, — 0 —Ppck©
BTk Vpk? )
k? is nowhere zero: SL(m + 1,C) acts transitively on C™*1\ {0}

and hence on the projective model P& (C™ 1) = P, (R?™*2). So in
the curved case there can be only one curved orbit.
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Assembling

o (locally) when k =T1(J) is a projective symmetry the leaf
space M gets a complex structure J on TM and a compatible
c-projective structure p = [V] - this is a certain equivalence
class of affine connections preserving J.

e Along (M, co), from the othogonal holonomy reduction, the
parallel J is also parallel for the conformal tractor connection.
Thus by a characterisation (Cap+G., Leitner) this is a
Fefferman Space that fibres over a CR manifold M.

o The leaf space My is a hypersurface in M so also gets a CR
structure from J. It is straightforward to show these agree.

@ The parallel tractor fields on M descend to parallel tractors for
the c-projective geometry (M, [p]) — thus the latter has a
parallel tractor hermitian form and hence an Einstein
(pseudo-)Kahler structure (cf.CENM) in the parts M. off M.
By results of Cap+G. and Cap+G.+Hammerl, we then know
that the CR structure M is the c-projective infinity of these.
It is a curved orbit decomposition, now downstairs.

Rod Gover, Based on: G-., Neusser, Willse, arXiv:1803.09¢ Sasaki-Einstein and their compactification



Thank you for Listening
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The projective geometry of Sasaki-Einstein structures and their
compactification

Sasaki geometry is often viewed as the odd dimensional analogue of
Kaehler geometry. In particular a Riemannian or
pseudo-Riemannian manifold is Sasakian if its standard metric cone
is Kaehler or, respectively, pseudo-Kaehler. We show that there is a
natural link between Sasaki geometry and projective differential
geometry. The situation is particularly elegant for Sasaki-Einstein
geometries and in this setting we use projective geometry to provide
the resolution of such structures into less rigid components. This is
analogous to usual picture of a Kaehler structure: a symplectic
manifold equipped also with a compatible complex structure; or as
a complex manifold equipped with a suitable Hermitian metric; or
finally as a Riemannian manifold with a complex structure that is
compatible with the metric and parallel for the Levi-Civita
connection. However the treatment of Sasaki geometry this way is
locally more interesting and involves the projective Cartan or
tractor connection. This enables us to describe a natural type of
compactification of complete non-compact pseudo-Riemannian
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