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Sasaki Geometry

A (pseudo-)Riemannian manifold (Mn, g) is Sasakian if its standard
metric cone is (pseudo-)Kähler (so n = 2m + 1). It is
Sasaki-Einstein if also the metric g is Einstein.

Definition

A Sasaki structure on a manifold M (n ≥ 5 here and throughout)
consists of a (pseudo-)Riemannian metric gab ∈ Γ(S2T ∗M) and a
Killing field ka ∈ Γ(TM) of g (i.e. Lkg = 0) such that

1 gabk
akb = 1

2 ∇a∇bk
c = −gabkc + δcakb, (?)

where ∇ denotes the Levi-Civita connection of g .

• Can replace (?) by: Rbc
a
dk

d = 2δa[bkc].
• In fact ka is a contact form and Jba := ∇ak

b determines complex
structure on the contact distribution. So this data of Sasaki
determines a CR structure.

Q: If g indef. sig., complete, non-compact: right way to compactify?
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Projective DG – a less rigid structure

Definition

On a manifold Mn≥2 a projective structure is an equivalence class p
of torsion-free affine connections that share the same geodesics as
unparametrised curves.

• ∇, ∇̂ ∈ p ⇔ ∇̂ξη = ∇ξη + Υ(ξ)η + Υ(η)ξ where Υ a 1-form

On a general (M,p) there is no distinguished ∇ on TM. But there
is on the tractor bundle T which extends TM:

0→ E(−1)
XA

−→ T A Z a
A−→ TM(−1)→ 0,

given by

∇Ta
(
νb

ρ

)
=

(
∇aν

b + ρδba
∇aρ− Pabν

b

)
. ← standard tractor connection

Here (ΛnTM)2 = E(2n + 2) and E(w) are roots.
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Sasaki  projective

On Sasaki (M, g , k), Levi-Civita ∇g determines p = [∇g ],

Rab
c
d = Wab

c
d︸ ︷︷ ︸

tf and projectively invariant

+δcaPbd − δcbPad ,

Theorem

A (pseudo-)Riemannian manifold (M, g) is Sasaki if and only if ∃
ka ∈ Γ(TM) s.t

1 ∇(akb) = 0 ← projectively invariant
2 Wab

c
dk

d = 0 ← k in projective Weyl nullity
3 gabk

akb = 1,
4 Pabk

akb = 1,
where Pab = 1

nRicciab is the projective Schouten tensor of ∇g .
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Sasaki Einstein manifolds

There is a particularly simple result for Sasaki-Einstein structures:

Theorem
A Sasaki-Einstein manifold (M, g , k) (of signature (2p − 1, 2q)),
canonically carries a parallel Hermitian structure on the projective
tractor bundle T . That is, it carries a tractor metric h ∈ Γ(S2T ∗)
(of signature (2p, 2q)) and a tractor complex structure
J ∈ Γ(End T ) compatible in the sense that h( · , · ) = h(J · , J · ) and
both are parallel for the tractor connection of p = [∇g ].

Proof.
In the scale of the metric

h :=

(
1 0
0 gab

)
and JAB =:

(
0 −kb
ka ∇bk

a

)
,

now use the properties of k and the formula for the tractor
connection.
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The converse: Projective with SU(p, q)-holonomy

Theorem

Let (M,p) be a projective manifold equipped with compatible
parallel tractor metric h and tractor complex structure J.
Then M is stratified into a disjoint union of submanifolds

M = M+ ∪M0 ∪M−,

according to the strict sign of τ := h(X ,X ):
1 The submanifolds M± are open and (if nonempty) resp.

equipped with Sasaki-Einstein structures (g±, k) with
Ricg± = 2mg± where g+ has signature (2p − 1, 2q), and g−
has signature (2q − 1, 2p) and [∇g ] = p.

2 The submanifold M0 is (if nonempty) a smooth separating
hypersurface and is equipped with an oriented Fefferman
conformal structure of signature (2p − 1, 2q − 1).
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The picture. From above we have:

(M,p) with SU(2p) holonomy ⇔ Sasaki-Einstein manifold s.t. g +ve def.

In other signatures something even more interesting can happen:

M0 has a conformal structure that is locally an S1 bundle over a
CR manifold: S1 → M0 → M̃0 = MCR
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Compactification

Theorem

Assume the setting above. Then the manifold with boundary
(M \M∓,p, J, h) is an order 2 projective compactification of the
Sasaki-Einstein manifold, respectively, (M±, g±, k).

This means that locally near the boundary the metric looks like

g = c · dt
2

t2
+

g0

t
, g0|TM0×TM0 gives conformal str on M0

where t a defining function for M0 = ∂M, so ∂M at infinity for
geodesics of g , but projective structure extends to ∂M. We
understand asymptotics . . .
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Another link to CR geometry

It is well known that Sasaki-Einstein manifolds locally fibre over
Kähler-Einstein structures. So

Sasaki-Ein. (M±, g±, k)→ (M̃±, g̃±, J) Kähler-Ein..

This is compatible with the Fefferman fibration M0 → M̃0 = MCR:

Theorem

Assume the setting of above with M0 6= ∅. The construction
produces a manifold with boundary (M̃ \ M̃∓, J) that is an (order
2) c-projective compactification of the Kähler-Einstein manifold
(M̃±, g̃±) with CR boundary M̃0.

The notion of c-projective compactification is the analogue of
projective compactification, based around c-projective geometry,
that is suitable for Kähler compactification.
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The big picture

This encodes the singularity of the (Cheng-Yau type)
Kähler-Einstein metric for CR manifolds compatibly with the
singularity of the Sasaki geometry on the “metric cone”.
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Background: H = SO(n, 1) orbits on the sphere

Sn = P+(Rn+1 \ {0}) is model of flat projective geometry.
Symmetry reduction by h (plus time↑): ⇒ North polar cap is projective
compactification of Hn; τ = 0 projective ∞ with conformal str.
NB: Embeddings relate the orbits – but these encoded in H ↪→ G .
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A background problem
Problem: Suppose a Lie group H acts on a manifold X with a
finite number of orbits. Then: (i) understand and relate the
different (Klein) geometries on the orbits; and (ii) construct and
treat a well defined curved version of this theory.

If H < G and the Lie gp G transitive on X. There is a nice route:
Theorem (Cartan,Tanaka, · · · )
If P is a parabolic subgroup of a semisimple Lie group G then there
is a canonical notion of geometry

G ← P
↓
M

modelled on
G ← P
↓

G/P
where G is equipped with a Cartan connection ω – viz. a suitably
equivariant Lie(G )-valued 1-form, cf. Maurer-Cartan form on G .

Projective DG: G = SL(Rn+1), & P < G stabilises a ray in Rn+1.
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A short “proof” of nearly everything

Theorem (Curved orbit decomposition - Čap,G., Hammerl)

Suppose (G, ω)→ M is a Cartan geometry (modelled on
G → G/P) endowed with a parallel tractor field h giving a
Cartan holonomy reduction with holonomy group H. Then:
(1) M is canonically stratified M =

⋃
i∈H\G/P Mi in a way locally

diffeomorphic to the the H-orbit decomposition of G/P ; and
(2) there ∃ a Cartan geometry on Mi of the same type as the
model.

Thus there is a general way to define a curved analogue of an
orbit decomposition of a homogeneous space.

Rod Gover, Based on: G-., Neusser, Willse, arXiv:1803.09531 and e.g. Čap+G-., Math. Ann. (2016) Čap, G-, Hammerl: Duke M. J., (2014). Armstrong, Ann. Global Anal. Geom. (2008) Calderbank, Eastwood, Matveev, Neusser: Mem. AMS (2018)Sasaki-Einstein and their compactification



The resolution

Well known useful move. Can consider a Kähler structure from
different perspectives. namely as:
• symplectic manifold equipped also with a compatible complex
structure; or
• a complex manifold equipped with a suitable Hermitian metric; or
• a Riemannian manifold with a complex structure that is
compatible with the metric and parallel for the Levi-Civita
connection.

The analogue here is to note SU(p, q) = U(p, q) ∩ SL(m + 1,C),
where p + q = m + 1, and

U(p, q) = SO(2p, 2q) ∩ Sp(2m + 2,R) ∩ GL(m + 1,C)

(in fact intersection of any two will do) and thus consider
separately projective (Cartan) holonomy reductions to
SO(2p, 2q), Sp(2m + 2,R), and GL(m + 1,C).
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Projective geometry with SO(2p, 2q) holonomy
Theorem (Cap,G.,Hammerl)

h tractor metric sig. (2p, 2q) and parallel on (M,p) implies
• If q = 0 then (M,p, h) ⇔ (M, g) Einstein with positive scalar
curvature.
• If p, q 6= 0 then M is stratified M = M+ ∪M0 ∪M− according to
strict sign of τ = h(X ,X ).
• If M0 6= ∅ then it is a smooth embedded separating hypersurface
with a conformal structure c of signature (2p − 1, 2q − 1).
• On the open submanifolds M±, h induces metrics g± which are
positive/negative Einstein of signature (2p − 1, 2q)/ resp.
(2q − 1, 2p). (Complete if M closed.)
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Symplectic holonomy reduction of projective geometries

For a symplectic holonomy reduction we consider a projective
manifold of dimension 2m + 1 equipped with a parallel and
nondegenerate skew tractor field

ΩAB ∈ Γ(∧2T ∗) s.t. ∇T Ω(x) = 0 & ∧mΩ(x) 6= 0 ∀x ∈ M.

Theorem

Suppose (M,p) is a projective (necessarily odd-dimensional)
manifold equipped with a parallel symplectic form ΩAB ∈ Γ(∧2T ∗).
Then k := Π∧2T ∗

(Ω) satisfies ∇(akb) = 0 and

H := ker k = {ua ∈ TM : kau
a = 0} ⊂ TM (1)

is a contact distribution and p is compatible with H in that H
is totally geodesic. [So (M,H, 〈p〉) is a contact projective
manifold and the torsion of (M,H, 〈p〉) vanishes identically.]
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Proof.
The tractor Ω parallel and skew implies

ΩAB
∇
=

(
0 −kb
ka ∇bka

)
and ∇(akb) = 0.

Then Ω non-deg implies k ∧ (dk) ∧ · · · ∧ (dk) 6= 0 ∀x . So ka is a
contact form. The restriction of ∇(akb) to the contact distribution
H is the second fundamental form, and this vanishes.
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Complex holonomy reduction of projective geometries

A projective manifold (M,p) with a parallel tractor complex
structure

JAB ∈ Γ(End T ),

that is, a parallel tractor endomorphism JAB satisfying J2 = − idT
– is oriented and odd dimensional. The tractor holonomy group
must be in SL(2m + 2,R) ∩ GL(m + 1,C) ∼= SL(m + 1,C)× U(1),
but one can show that, if M is simply connected, there is a parallel
tractor complex volume form, so the holonomy group is (in)
SL(m + 1,C).
In special scales (∇ s.t. ∇ak

a = 0) we have

JAB =

(
0 −Pbck

c

ka ∇bk
a

)
.

ka is nowhere zero: SL(m + 1,C) acts transitively on Cm+1 \ {0}
and hence on the projective model PR

+(Cm+1) = P+(R2m+2). So in
the curved case there can be only one curved orbit.
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Assembling

(locally) when k = Π(J) is a projective symmetry the leaf
space M̃ gets a complex structure J on TM̃ and a compatible
c-projective structure p̃ = [∇̃] – this is a certain equivalence
class of affine connections preserving J.
Along (M0, c0), from the othogonal holonomy reduction, the
parallel J is also parallel for the conformal tractor connection.
Thus by a characterisation (Čap+G., Leitner) this is a
Fefferman Space that fibres over a CR manifold M̃0.
The leaf space M̃0 is a hypersurface in M̃ so also gets a CR
structure from J. It is straightforward to show these agree.
The parallel tractor fields on M descend to parallel tractors for
the c-projective geometry (M̃, [p̃]) – thus the latter has a
parallel tractor hermitian form and hence an Einstein
(pseudo-)Kähler structure (cf.CENM) in the parts M̃± off M̃0.
By results of Čap+G. and Čap+G.+Hammerl, we then know
that the CR structure M̃0 is the c-projective infinity of these.
It is a curved orbit decomposition, now downstairs.
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Thank you for Listening
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The projective geometry of Sasaki-Einstein structures and their
compactification
Sasaki geometry is often viewed as the odd dimensional analogue of
Kaehler geometry. In particular a Riemannian or
pseudo-Riemannian manifold is Sasakian if its standard metric cone
is Kaehler or, respectively, pseudo-Kaehler. We show that there is a
natural link between Sasaki geometry and projective differential
geometry. The situation is particularly elegant for Sasaki-Einstein
geometries and in this setting we use projective geometry to provide
the resolution of such structures into less rigid components. This is
analogous to usual picture of a Kaehler structure: a symplectic
manifold equipped also with a compatible complex structure; or as
a complex manifold equipped with a suitable Hermitian metric; or
finally as a Riemannian manifold with a complex structure that is
compatible with the metric and parallel for the Levi-Civita
connection. However the treatment of Sasaki geometry this way is
locally more interesting and involves the projective Cartan or
tractor connection. This enables us to describe a natural type of
compactification of complete non-compact pseudo-Riemannian
Sasakian geometries. The boundary is a Fefferman space that fibres
over over a CR manifold.
This is joint work with Katharina Neusser and Travis Willse.
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