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Overview

Problem to Solve

Given an asymptotically Euclidean manifold (Mn , g) with n ≥ 3
and a desired scalar curvature R′ (decaying suitably at
infinity), is there a conformally related asymptotically
Euclidean metric g′ with scalar curvature R[g′] = R′?



Overview

Problem to Solve

Given an asymptotically Euclidean manifold (Mn , g) with n ≥ 3
and a desired non-positive scalar curvature R′ (decaying
suitably at infinity), is there a conformally related,
asymptotically Euclidean metric g′ with scalar curvature
R[g′] = R′?



Motivation
Initial data for the Cauchy problem in general relativity:

• Riemannian manifold (M3, h)
• Second fundamental form K (i.e. a symmetric

(0, 2)-tensor)

R[h] − ∣K∣2 + trK2 = 2ρ [Hamiltonian constraint]

−div(K − trK g) = j [momentum constraint]

• ρ: observed energy density

• j: observed momentum density

• Analogous to div E = ρ in electromagnetism.

• Underdetermined: 4 equations for 12 unknowns.
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The Conformal Method
Seed data:

• g: a metric determining the conformal class of the
solution metric.

• σ : a symmetric, trace-free, divergence-free (0, 2)-tensor.
• τ: a mean curvature
• N: a positive function

Unknowns:
• ϕ: a conformal factor
• W: a vector field.

Seek solution:
• h = ϕ4g
• K = ϕ−2 (σ + 1

N DW) + τ
3h

Notation: D = conformal Killing operator.



The Conformal Method

Substitute

• h = ϕ4g
• K = ϕ−2 (σ + 1

N DW) + τ
3h

into the constraint equations to yield (in three dimensions,
vacuum case):

−8∆ϕ + R[g]ϕ − ∣σ + 1
N

DW∣
2
ϕ−7 + 2

3
τ2ϕ5 = 0

D∗ [ 1
N

DW] + 2
3
ϕ6 dτ = 0.



The Conformal Method

If τ is constant

1
2
D∗ [ 1

N
DW] + 2

3
ϕ6 dτ = 0;

implies DW = 0. All that remains is the Lichnerowicz equation

−8∆gϕ + R[g]ϕ − ∣σ ∣2g ϕ−7 +
2
3
τ2ϕ5 = 0.

If, in addition, σ ≡ 0

−8∆gϕ + R[g]ϕ +
2
3
τ2ϕ5 = 0.

So this is the Yamabe problem (in the easy case of
non-positive scalar curvature).



Lichnerowicz Equation (Compact Setting)
When does

−8∆gϕ + R[g]ϕ − η2ϕ−7 +
2
3
τ2ϕ5 = 0

admit a solution?

Scalar curvature of h = ϕ4g is

R[h] = ϕ12η2 − 2
3
τ2.

• Yg > 0: solveable iff η /≡ 0
• Yg = 0: solveable iff either

• η /≡ 0 and τ /≡ 0, or
• η ≡ 0 and τ ≡ 0

• Yg < 0: [M ’06] solvable iff g is conformally related to a
metric h with R[h] = −τ2.

• The prescribed non-positive scalar curvature problem on a
Yamabe negative compact manifold is solved: [Rauzy ’95]
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Lichnerowicz Equation (AE Setting)

Solve

−8∆gϕ + R[g]ϕ − η2ϕ−7 +
2
3
τ2ϕ5 = 0

with the additional condition that ϕ − 1 suitably decays at
infinity so ϕ4g is again AE.

• [Dilts and Isenberg ’16] this problem is solvable iff g is
conformally related to an AE metric h with R[h] = −τ2.

• Is there a generalization of [Rauzy ’95] to AE manifolds?
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CMC Conformal Method (AE Version)

CMC + Asymptoticaly Euclidean implies τ ≡ 0.

Solve
−8∆gϕ + R[g]ϕ − η2ϕ−7 = 0

with suitable decay on ϕ − 1.

Resulting scalar curvature:

R[ϕ4g] = ϕ12η2 ≥ 0

So, morally, g must be something like Yamabe positive.

But Yamabe positive might not mean what you think it
means...
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Lowering Scalar Curvature Is Easy
g asymptotically Euclidean, R[g] ≥ R′, R′ with suitable decay.
Writing ϕ = 1 + u we wish to solve

−8∆u + Ru = R′(1 + u)−7 − R

where u decays at infinity.

Assuming R′ ≤ 0:

1. Solve −a∆v + (R − R′)v = R′ − R, v decaying at infinity.

2. A homotopy & maximum principle argument shows
0 < 1 + v ≤ 1.

3. −a∆v + Rv = R′(1 + v) − R ≤ R′(1 + v)−7 − R
4. So u = 0 is a supersolution, and u = v is a subsolution

yielding a solution v ≤ u ≤ 0.

General case via barriers: max(R′, 0) ≤ R′ ≤ R.
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CMC Conformal Method (AE Version)
Claim: The CMC Lichnerowicz equation

−8∆gϕ + R[g]ϕ − η2ϕ−7 = 0
is solvable if and only if g is conformally equivalent to a scalar
flat AE metric.

If solvable
R[ϕ4g] = ϕ12η2 ≥ 0

can be lowered to zero.

Conversely, to solve

−8∆gu = η̂2(1 + u)−7

observe zero is a subsolution and

−8∆gv = η̂2

yields v ≥ 0, a supersolution.
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Yamabe Invariant
When is an AE metric conformally equivalent to an AE scalar
flat metric?

• [Cantor-Brill ’82]: If and only if

∫ a∣∇u∣2 + Ru2 dVg > 0 if u ∈ C∞

c (M), u /≡ 0

a = 4(n − 1)/(n − 2)
• [M ’06]: Define

Yg(M) = inf{Qg(u) ∶ u ∈ C∞

c (M), u /≡ 0}

Qg(u) = ∫
a∣∇u∣2 + R[g]u2

∥u∥22∗
; 2∗ = 2n

n − 2
R′ ≡ 0 is possible if and only if Yg(M) > 0

• [Friedrich ’11]: Counterexample showing
[Cantor-Brill ’82] /Ô⇒ [M ’06]



Yamabe Invariant
When is an AE metric conformally equivalent to an AE scalar
flat metric?

• [Cantor-Brill ’82]: If and only if

∫ a∣∇u∣2 + Ru2 dVg > 0 if u ∈ C∞

c (M), u /≡ 0

a = 4(n − 1)/(n − 2)

• [M ’06]: Define

Yg(M) = inf{Qg(u) ∶ u ∈ C∞

c (M), u /≡ 0}

Qg(u) = ∫
a∣∇u∣2 + R[g]u2

∥u∥22∗
; 2∗ = 2n

n − 2
R′ ≡ 0 is possible if and only if Yg(M) > 0

• [Friedrich ’11]: Counterexample showing
[Cantor-Brill ’82] /Ô⇒ [M ’06]



Yamabe Invariant
When is an AE metric conformally equivalent to an AE scalar
flat metric?

• [Cantor-Brill ’82]: If and only if

∫ a∣∇u∣2 + Ru2 dVg > 0 if u ∈ C∞

c (M), u /≡ 0

a = 4(n − 1)/(n − 2)
• [M ’06]: Define

Yg(M) = inf{Qg(u) ∶ u ∈ C∞

c (M), u /≡ 0}

Qg(u) = ∫
a∣∇u∣2 + R[g]u2

∥u∥22∗
; 2∗ = 2n

n − 2
R′ ≡ 0 is possible if and only if Yg(M) > 0

• [Friedrich ’11]: Counterexample showing
[Cantor-Brill ’82] /Ô⇒ [M ’06]



Yamabe Invariant
When is an AE metric conformally equivalent to an AE scalar
flat metric?

• [Cantor-Brill ’82]: If and only if

∫ a∣∇u∣2 + Ru2 dVg > 0 if u ∈ C∞

c (M), u /≡ 0

a = 4(n − 1)/(n − 2)
• [M ’06]: Define

Yg(M) = inf{Qg(u) ∶ u ∈ C∞

c (M), u /≡ 0}

Qg(u) = ∫
a∣∇u∣2 + R[g]u2

∥u∥22∗
; 2∗ = 2n

n − 2
R′ ≡ 0 is possible if and only if Yg(M) > 0

• [Friedrich ’11]: Counterexample showing
[Cantor-Brill ’82] /Ô⇒ [M ’06]



Problem to Solve

Given an asymptotically Euclidean manifold (Mn , g) with n ≥ 3
and a desired non-positive scalar curvature R′ (decaying
suitably at infinity), is there a conformally related,
asymptotically Euclidean metric g′ with scalar curvature
R[g′] = R′?

• If Yg(M) > 0 then we can transform to scalar flat and
then to R′ < 0.

• If Yg(M) ≤ 0, rasing R′ ≤ 0 up to zero is the challenge.
E.g., how big can the zero set be?

• Can we characterize AE metrics with Yg ≤ 0?



Rauzy’s Condition

Start with (Mn , g), compact, g ∈ Y−. We wish to conformally
transform to h, R[h] = R′ ≤ 0, R′ smooth.

1. Conformally transform to ĝ with R[ĝ] a negative
constant.

2. Compute

µR′ = inf
⎧⎪⎪⎨⎪⎪⎩

∣∣∇u∣∣22, ĝ
∣∣u∣∣22, ĝ

∶ u ∈W 1,2, u ≥ 0,∫ R′u = 0
⎫⎪⎪⎬⎪⎪⎭
.

3. The desired conformal transformation is possible if and
only if

aµR′ ≥ −R ĝ



Rauzy Simplified

Start with (Mn , g), compact, g ∈ Y−. We wish to conformally
transform to h, R[h] = R′ ≤ 0, R′ smooth. Let V = {R′ = 0}.

1. Conformally transform to ĝ with R[ĝ] a negative
constant.

2. Compute

λ ĝ(V) = inf
⎧⎪⎪⎨⎪⎪⎩

∫ a∣∇u∣2ĝ + R[ĝ]u2 dVĝ
∥u∥22, ĝ

∶ u ∈W 1,2, u /≡ 0, u∣V c = 0
⎫⎪⎪⎬⎪⎪⎭

3. The conformal transformation is possible iff λ ĝ(V) > 0

Morally, the first Dirichlet eigenvalue of −a∆ + R[ĝ] on V
needs to be positive.
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Weighted Spaces
Norm in W k,p

δ (M):

∥u∥W k ,p
δ (M)

∶=
k

∑
j=0

∥ρ−δ−
n
p+ j ∣∇ ju∣∥

Lp(M)
< ∞

• u ∈W k,p
δ ‘implies’ O(ρδ) growth at infinity, ∇u is

O(ρδ−1), etc.
• δ < 0 implies decay.
• Compact Sobolev embedding requires extra decay

• δ∗ = 2 − n
2

is special.

• W 1,2
δ∗ norm is equivalent to ∣∣∇u∣∣2

• L2∗δ∗ norm is exactly the L2∗ norm.

• ∆ ∶W2,p
δ (R

n) →W0,p
δ−2(R

n) is an isomorphism if
δ ∈ (2δ∗, 0).

Metrics of class W2,p
τ (τ < 0, p > n/2): g − gEuc ∈W2,p

τ .
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Yamabe Invariant of a Measurable Set
Suppose:

(M , g) asymptotically Euclidean of class W2,p
τ

V ⊆ M measurable

Define:

Yg(V) = inf {Qg(u) ∶ u ∈W 1,2
δ∗ , u /≡ 0, u∣V c = 0}

Qg(u) = ∫
a∣∇u∣2 + R[g]u2

∥u∥22∗

Properties:

• V1 ⊆ V2 Ô⇒ Yg(V1) ≥ Yg(V2)
• Yg(V) ≥ Yg(M) > −∞
• If g′ = Φ2g with Φ − 1 ∈W2,p

τ then Yg(V) = Yg′(V)
• Otherwise recalcitrant.
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Weighted First Eigenvalues
Suppose:

(M , g) asymptotically Euclidean of class W2,p
τ

V ⊆ M measurable

For δ > δ∗, define

λg ,δ(V) = inf {Jg ,δ(u) ∶ u ∈W 1,2
δ∗ , u /≡ 0, u∣V c = 0}

Jg ,δ(u) = ∫
a∣∇u∣2 + R[g]u2dVg

∥u∥22,δ
.

• Value is not especially meaningful. Depends on choice of
weight function, e.g.

• But Yg(V) has the same sign as λg ,δ(V) for all δ > δ∗.
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Properites of Weighted First Eigenvalues
Monotonicity
V1 ⊆ V2 Ô⇒ λg ,δ(V1) ≥ λg ,δ(V2)

(Limited) Strict Monotonicity
If Ω is connected and open and if E ⊆ Ω has positive measure,
λg ,δ(Ω ∖ E) > λg ,δ(Ω)

Continuity from Above
Vk ↘ V Ô⇒ λg ,δ(Vk) → λg ,δ(V)

Limited Continuity from Below
Vk ↗ V“nicely” Ô⇒ λg ,δ(Vk) → λg ,δ(V)

Minimizers Exist They morally solve
−a∆u + Ru = λg ,δ(V)ρ−2δ−nu

Small Sets are Yamabe Positive

∫
V
ρ−n−єdVg < Cє Ô⇒ Yg(V) > 0.



Main Result

Theorem ([Dilts, M ’16])

Let g be an AE metric of class W2,p
τ , with 2 − n < τ < 0 and

p > n/2. Suppose R′ ∈ Lpτ−2 with R′ ≤ 0. The following are
equivalent.

1. There is a positive function ϕ with ϕ − 1 ∈W2,p
τ such that

the scalar curvature of ϕ2∗−2g is R′.
2. The set {R′ = 0} is Yamabe positive with respect to g.



Easy Direction

The set V = {R = 0} is Yamabe positive:

1. Pick δ > δ∗. Let u ∈W 1,2
δ∗ , u /≡ 0 be a minimizer of J2,δ

among the functions that vanish on V c.

2. Since Ru2 = 0,

λg ,δ(V) = a∫
∣∇u∣2 dVg
∣∣u∣∣22

≥ 0.

3. If λg were zero, u would be constant, and hence zero a.e.
But it isn’t.



Prelude to Hard Direction

1. Opt to solve first for an R′ that is bounded below and
equal to zero in a neighbourhood of infinity. But only
adjust on a small enough neighborhood of infinity such
that the zero set of R′ is still Yamabe positive.
(Continuity from above for λg).

2. Make an initial conformal change to a scalar curvature
that equals zero in a neighbourhood of infinity. (Ad hoc
construction. Uses small neighbourhoods of infinity are
Yamabe positive).



Outline of Proof
Subcritical functionals (2 ≤ q < 2∗):

Fq(u) = ∫ [a∣∇u∣2 + R(1 + u)2] − q
2 ∫

R′(1 + u)q

1. Coercivity: Given B > 0 and δ > δ∗, there is a bound K,
independent of q, such that ∣∣u∣∣2,δ > K implies Fq(u) ≥ B.

2. Existence of subcritical minimizers uq, uniformly bounded
in W 1,2

δ∗ . Uses R′ ≤ 0 and uniform L2δ bounds.
3. On compact sets uq is uniformly bounded in LM for some

M > 2∗.

Oops Rauzy. Oops us. Thanks Rafe.

4. Bootstrap to uniform bounds in W2,p
σ for each

σ ∈ (2 − n, 0).
5. Minimizer subsequence converges strongly in W 1,2

δ∗ and

uniformly on compact sets to a W2,p
σ solution of

−a∆u + R(1 + u) = R′(1 + u)2∗−1.



Outline of Proof
Subcritical functionals (2 ≤ q < 2∗):

Fq(u) = ∫ [a∣∇u∣2 + R(1 + u)2] − q
2 ∫

R′(1 + u)q
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Role of the Yamabe Positive Assumption
Subcritical functionals (2 ≤ q < 2∗):

Fq(u) = ∫ [a∣∇u∣2 + R(1 + u)2] − q
2 ∫

R′(1 + u)q

Want coercivity: Given B > 0 and δ > δ∗, there is a bound K,
independent of q, such that ∣∣u∣∣2,δ > K implies Fq(u) ≥ B.

Aη = {u ∈W 1,2
δ∗ ∶ ∫ ∣R′∣u2 dVg ≤ η∣∣u∣∣22,δ ∫ ∣R′∣ dVg}

Given L ∈ (0, λg ,δ(V)), can find η0 so u ∈ Aη0 implies

∫ a∣∇u∣2 + Ru2 dVg ≥ L∣∣u∣∣22,δ

For u ∈ Aη0 , Fq(u) grows faster than (L/2)∣∣u∣∣22,δ.

For u /∈ Aη0 , Fq(u) grows faster than C(η0, ∣∣R′∣∣1)∣∣u∣∣q2,δ.
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Characterization of Yamabe Classes

R≤0 = {R ∈ Lpτ−2 ∶ R ≤ 0}

• Yg(M) > 0 if and only if for each R ∈ R≤0 we can
conformally change to an AE metric with scalar curvature
R.

• Yg(M) = 0 if and only if for each R ∈ R≤0 ∖ 0 we can
conformally change to an AE metric with scalar curvature
R, and R ≡ 0 is unattainable. (Limited strict monotonicity
of λg(V)).

• Yg(M) < 0 if and only if there is an R ∈ R≤0, R /≡ 0, that is
unattainable via a conformal transformation. (Limited
continuity from below for λg(V))



Characterization of AE Yamabe Classes
The compactification of a smooth AE metric need not be
smooth. But:

Theorem

Suppose p > n/2 and g is an AE metric of class W2,p
τ where

τ = n
p
− 2.

Then there is a smooth conformal factor ϕ, decaying like r2−n
at infinity, such that ḡ = ϕ2∗−2g is a W2,p metric on M̄.

Conversely, a W2,p metric with p > n/2 on M̄ admits a
conformal change to an AE metric on M of class W2,p

τ with

τ = n
p
− 2.



Characterization of AE Yamabe Classes

Proposition

If (g ,M) and (ḡ , M̄) are related as in the previous theorem,
the Yamabe invariants are the same.

1. Find an approximate minimizer u for M:
Qg(u) < Yg(M) + є.

2. Find a compactly supported approximate, û, so
Qg(û) < Yg(M) + 2є.

3. Since Q ḡ(ϕ̄û) = Qg(û), Yḡ ≤ Yg(M) + 2є.
4. So Yḡ ≤ Yg(M).

5. Now reverse.



Characterization of AE Yamabe Classes

Proposition (Dilts-M ’16)

An asymptotically Euclidean manifold (M , g) of class W2,p
τ

with p > n/2 and τ < 0 is Yamabe positive/negative/null if and
only if it admits a W2,q conformal compactification of the
same class for some q > n/2.


