Flexibility of Semiparametric Choice Models in
Traffic Equilibrium

Selin Damla Ahipasaoglu
joint work with Karthik Natarajan

Singapore University of Technology and Design

February 5th, 2018



Agenda

e Discrete Choice Models
e Route/Link Choice in Traffic: (Stochastic) User Equilibrium

e New SUE models arising from DRO framework



Discrete Choice Models

Which message is effective?

Which product is popular?



Discrete Choice Models

Random Utility Model (RUM)
Representative Agent Model (RAM)
Semiparametric Choice Model (SCM)

Relations: RUM C RAM = SCM



Random Utility Model (RUM)

Let N ={1,2,...,n} be the set of alternatives.

The random utility of alternative k is defined as:

Uk:uk—l- s Vk ¢ N.

The deterministic/systemic component of the utility captures many
observable attributes affecting the choice.

Often a linear-in-parameters model is used to model the deterministic
component in terms of observed attributes.

€, accounts for the component.

Random utilities form a random vector € that follow a
known joint distribution 6.




Random Utility Model (RUM)

When 6 is absolutely continuous,
pe = Pzog (k = arg max ji; —|—€/) , VkeWN,
1EN

is the probability of alternative k to be the best choice.

We refer py as the choice probability of alternative k.

Choice probabilities depend on the choice of the distribution 6.

For given 6, we can calculate the expected utility as

Z%(n) = Eewo (g‘lEaquk + €k) :

6
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Representative Agent Model (RAM)

A representative agent chooses between products in N to maximize the
expected utility while keeping some level of diversity.

He solves the following optimization problem:

.
- V(x).
NS

V(x) is a (strictly) convex regularization term promoting diversification.

Optimal solution, if it is unique, gives the choice probabilities.



Semiparametric Choice Model (SCM)

RUM is a special case of SCM, where the distribution € of € is not given
but it is known to lie in a set of distributions, say ©.

Under this model, maximum expected utility is defined as

Z%(p) = ;:gEew (Qweaquk + €k> .

The corresponding choice probabilities are calculated using the extremal
distribution 6*.

pk = P:op (k = arg max u; + €/> , VkeWN.
IeN



Relationships between different choice models

e MNL C RAM ( Anderson et al., 1988)
e RUM C RAM (Hofbauer and Sandholm, 2002)
e RAM = SCM (Feng et al., 2017)

Two special cases where © and V/(x) are given explicitly:

¢ MMM, MDM C RAM (Natarajan et al., 2009)
e CMM C RAM (Ahipasaoglu et al., 2018)
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Choice Models (that are of interest to us)

Model 0 V(x) © P
MNL iid Marginals: %
(logit) Gum(0)| %>, xilog xi Exp(0, 3)
MNP N(0,X)| exists N(0,X) [
(probit) (simulation)
MMM none Marginals: | 1 + ——2—= )

. 2/ (g —N)2+o2
(marginal —>i0iv/xi(1 —x) mean O, (bisectioﬁlk over Rk)
moment) std o;
MDM none Marginals: | 1 — Fe(A — p)
(marginal > fll,x. F ' (t)dt | Fi() (bisection over R)
distr.)

12

CMM none —tr (21/2 S(x) ):1/2) Mean 0, | Gradient descent
(cross cov X (locally linear)
moment)
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Route Choice and Traffic Equilibrium

Assumptions:

e Multiple origin-destination pairs with
fixed demand

e Multiple available routes (possibly
overlapping) for each OD pair

e Arc costs as a function of arc flows

o Additive model for path/route costs




Setup and Notation

G=(N,A) Directed graph with nodes N and arcs/links A
w Set of origin-destination (OD) pairs in G
(rw, sw) The wth OD pair

Kw Directed simple paths between r,, and s,
K Set of all simple paths in G, i.e., Uwew Kw
dy Demand associated with the wth OD pair
X = (Xkw) ke, wew The path flow vector

f=(f)scu The arc flow vector

c(fa) The det. cost of arc a € A with f, units!
c(f) = (ckw(f))kex, wew  The path cost vector

xw(f) = (uw(F)) e, The wth path flow vector

cw(F) = (ckw(F))iex, The wth path cost vector

1We slightly abuse the notation and use the same symbol for arc costs and path
costs. We assume that ¢,(f3)’s are non-decreasing and continuous.



Traffic Equilibrium

Introduced by Wardrop (1952):

e Deterministic Wardropian User Equilibrium: The travel costs on all
routes that are actually used are equal to or less than those which
would be experienced by a user on any unused route.

o Traffic is distributed (by a central planner) to
minimize the average journey time.
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Wardropian User Equilibrium

Convex formulation by Beckman, McGuire, and Winsten (1956):

min Z ca
x,f

’ acA
s.t. Z Xiew = Ay Yw € W,
ke,
Xiw > 0, Vk e Ky,w e W,

fa:Z Z Xiw, Vae A.

weW ke, k>a

Equilibrium flows can be calculated by a linearisation algorithm based on
Frank-Wolfe.
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Stochastic User Equilibrium

Introduced by Daganzo and Sheffi (1977):

e Stochastic User Equilibrium: No user can improve his perceived
travel time by unilateraly changing routes.

Route choice by passengers can be modelled as a discrete problem.
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Stochastic Route Choice with RUM

Traditionally, stochastic choice is modeled using a random utility model:

UkWZ—CkW(f)—l- NVkeK,,VweWw,
where €, ~ 0.

Additive cost model is used to calculate the path costs:

crw(f) = an(fa)a

ack

c, is estimated from characteristics of link a.

16
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Stochastic Route Choice with RUM

We define
pkw(f) = ]Pgw <Ckw(f) + €pw > 7C/W(f) + €, A ;ﬁ k, | € ]CW>,

to be the route choice probabilities. l.e., the probability of route k to be
the best choice among all possible routes for OD pair w.

Choice probabilities depend on the choice of the distribution 6,,.
The corresponding is given by:

Xkw = dwpkw(f)a Vk € ’CW, weEW.
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Stochastic User Equilibrium with RUM

In a SUE model, the equilibrium arc flow vector f is the solution to the
fixed point equation:

o= > dv Y. pw(f), VacA VYweWw.

wew ke :kda

SUE: Equilibrium
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Stochastic User Equilibrium with RUM

SUE can be calculated using one of the following formulations:

In terms of arc flow variables (Sheffi and Powell, 1982):

n > du, <kma’Cx( Chow(F) +ekw) > fe(f) Z/ calt

wew acA acA
In terms of variables (Daganzo, 1982):
S duEo, (kmax ( $ ca+ekw>> +Z/ (e
wew acA:kda acA
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Stochastic User Equilibrium with RUM

Two well-known SUE models based on RUM are:

o MNL-SUE: Multinomial Logit Model

Suffers from I1A property, needs to be extended to beyond i.i.d. for
successful applications

e MNP-SUE: Multinomial Probit Model

Captures correlations but not practical



Semiparametric Route Choice Models

Choice probabilities are evaluated under an extremal distribution:

prulF) = P9;<—ckw(f)+€sz—clw(f)+aw, w;ék,/e/cw),

where
w

0 = E Ui} ) -
w = arg max e(rpea,g{ k })

Choice of the uncertainty set ©,, leads to different choice models and,
therefore, different SUE models.



RAM/SCM - SUE

The distributionally robust counterpart of Daganzo's arc cost formulation:

ménm;vd Tga@x Ep, [g% (— Z Ca+6kw>>+2/

acA:k>a ac A

Under this approach, the system planner assumes only limited
distributional information and uses a ‘worst-case' potential function in
computing the equilibrium.
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RAM/SCM - SUE

T,iP Z/fa c(t)dt + Z duw V (Xkw)

acA”0 weW
s.t. Z Xkw = dyys Yw € W,
kEK .,
Xiw > 0, Vke Ky,weW,

f, = Z Z Xkw s Va € A.

weW kely:kda

This is a generalization of the convex formulation of Wardropian UE
(Beckman et al., 1956) and MNL - SUE (Fisk, 1980).



RAM/SCM - SUE

Classical RUM - SUE models are:

o MNL-SUE: Multinomial Logit Model
e MNP-SUE: Multinomial Probit Model
o MNW-SUE: Multinomial Weibit Model (relatively new)
Two new RAM/SCM - SUE models are introduced recently:
e CMM-SUE: Cross Moment Model (Ahipasaoglu et al., 2015)

e MDM-SUE: Marginal Distributions Model (Ahipasaoglu et al., 2016)



Summary: CMM-SUE

Captures correlations between routes (due to overlapping arcs).

CMM choice probabilities can be calculated efficiently as an SDP or
using first-order methods.

Using the representative agent version of the CMM model, a
convex-concave min-max reformulation gives the CMM-SUE flows.

CMM-SUE flows exist and are unique.

CMM-SUE flows can be calculated by a gradient-descent type
algorithm, similar to the MSA for MNP-SUE.

CMM-SUE provides a practical alternative to the MNP-SUE model.



Numerical results - Real Network
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Figure: Sioux Falls Network: 24 nodes, 76 links, 552 OD pairs,
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Numerical results - Real Network

Table: Computational times and relative difference of total costs.

oD No. of paths 3 paths 4 paths 5 paths 6 paths 7 paths 8 paths 9 paths
10 time CMM 0.07 0.10 0.12 0.15 0.17 0.23 0.27
time MNP 0.16 0.20 0.26 0.32 0.36 0.40 0.46
time ratio 2.11 2.08 2.21 2.16 2.13 1.76 1.75
cost difference 4.80e-8 6.19e-8 9.25e-8 9.51e-8 1.31e-7 1.78e-7 2.29e-7
50 time CMM 0.30 0.59 0.54 0.64 0.78 0.93 1.06
time MNP 0.81 1.02 1.29 1.53 1.83 2.07 2.54
time ratio 2.68 1.73 2.40 2.39 2.34 2.23 2.41
cost difference 8.25e-6 6.86e-6 7.75e-6 5.09e-6 6.51e-6 8.92e-6 1.01e-5
100 time CMM 0.75 1.01 1.29 1.65 2.04 2.71 3.44
time MNP 2.30 3.05 3.11 5.92 6.59 8.42 10.05
time ratio 3.04 3.02 2.42 3.59 3.23 3.11 2.92
cost difference 9.13e-6 1.38e-5 1.14e-5 1.75e-5 2.82e-5 3.49e-5 3.64e-5
200 time CMM 3.48 6.06 8.50 11.02 16.48 21.07 26.34
time MNP 20.61 34.61 4471 61.80 81.30 94.36 116.90
time ratio 5.92 5.71 5.26 5.61 4.93 4.48 4.44
cost difference 1.78e-4 3.24e-4 4.44e-4 5.16e-4 6.11e-4 6.75e-4 7.36e-4
400 time CMM 18.88 34.25 52.31 73.87 104.61 129.41 172.64
time MNP 136.16 262.13 367.83 506.45 610.91 781.89 957.77
time ratio 7.21 7.65 7.03 6.86 5.84 6.04 5.55
cost difference 2.58e-3 4.88e-3 6.96e-3 8.60e-3 1.03e-2 1.19e-2 1.31e-2
552 time CMM 26.58 47.82 84.11 119.44 156.10 210.10 286.46
time MNP 186.64 342.60 483.98 685.20 881.98 1250.48 1535.29
time ratio 7.02 7.16 5.75 5.74 5.65 5.95 5.36
cost difference | 5.16e-3 | 9.41e-3 | 1.43e-2 | 1.79e-2 | 2.16e-2 | 2.5le-2 2.81e-2
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Numerical results - Real Network

Norm of D(f) for the 1st to 100th iterations Norm of D(f) for the 1t to 100th terations
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Convergence of the algorithms. (Left: 3 paths, Right: 5 paths)
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Numerical results - Real Network

The CMM-SUE (left) and MNP-SUE (right) flows.



Numerical results - Real Network

Optimal flows of CMM_SUE and MNP_SUE
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Figure: CMM-SUE and MNP-SUE flows when there are 552 OD pairs.
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Summary: MDM-SUE

o MDM assumes that the marginal distributions are given, but not the
general distribution.

o MDM-SUE exists and is unique when
° E|Ukw| < 0.
e Uy, has support on (=00, 00) or [uy,,o0).
e The cumulative distribution function Fi () is assumed to be strictly
increasing and continuous with a pdf fiw(-) > 0 on the support.
e c,(f;) is nondecreasing in f, and continuous.

e Since V(x) is separable, MDM-SUE flows can be easily calculated.
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Summary: MDM-SUE

MDM-SUE is very flexible in terms of capturing the user behaviour:

o A generalization of some important logit and weibit-based models.

Generalizes the scaling approach by allowing route-level scaling.

A practical approach to incorporate normal random variables.

Allows to use skewness to model different route choice behaviors.

Extended to use bounded and discrete marginal distributions.

Allows to distinguish between the used and unused routes.

Handles the overlapping and equal variance problems simultaneously.

Allows assigning perception variances independent of the route costs.



MDM-SUE

MDM-SUE can generate existing logit and weibit based models.

S
G ~ eXp(O~ N PS,,,, 871

s

B ~ U0, )

e ~ U(D, PS;J.)
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MDM-SUE with exponential marginals

o MDM-SUE provides modelling flexibility beyond the capabilities of
existing extensions of MNL.

e |t can extend Chen’s OD-level scaling approach to route-level scaling
by setting Oy = 07/+/6n¢kw(0).

Route-specific perception variances become:
o2, =ncw(0)/6%, Vk € K,,we W.

e MDM can scale dispersion variances more smoothly, especially when
the routes in OD pairs have significantly varying lengths.



MDM-SUE with normal marginals

Normal traffic random variables have several nice properties:
location and scale stable, and reproductive (Castillo et al., 2014).

MNP model is expensive.

MDM-SUE provides a practical approach to use normal distribution.

MDM allows assigning perception variance independent of the cost.

route 2 with three lanes

route 1 with single lane

0, > 0,
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MDM-SUE with gamma marginals

e Shifted gamma random variables are location-scale stable (Castillo
et al., 2014), and share nice properties with normal random variables
such as being reproductive.

e Moreover, it can have positive skewness as the observed traffic flows.

more skewed

@

o

MGM(2.5)

MGM(s)

less skewed

g\
£

2 =
]
s |z

Choice probability of the lower route

o
&

id

E

5
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MDM-SUE with bounded and discrete marginals

Some recent criticism (by Watling et al, 2015) on SUE models are:

e UE models can be considered to be too restrictive as it may assign
no flow to a route that is slightly more costly than the used routes.

e SUE models assign a positive flow to each route in the choice set.

e The continuous and unbounded distribution assumption of SUE is
unrealistic.

e MDM-SUE formulation that can be extended to handle bounded
and discrete distributions by relaxing some of the assumptions.

e Optimal values of the dual variables behave as reference utilities to
distinguish between used and unused routes within the SUE
framework.

e Equilibrium flows are not unique in this case.



(Link-based) Markovian Traffic Assignment

e Markovian traffic assignment can be considered as a special case of
a dynamic discrete choice model for route choice.

e Each route choice is defined as a sequence of link choices, where p,fj-

is the probability of choosing link (7, /) at node i if destination is d.

e Link choice at a particular node is independent of the previous
choices (Markovian property).



(Link-based) Markovian Traffic Assignment
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Me=(1- Qd']'1: fundamental matrix

Q. is equal to pd if (i,)) € Ag and zero otherwise.

Mg- is the expected number of times a user entering the system at node i

visits node j before reaching the destination.
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(Link-based) Markovian Traffic Assignment with RUM

e Link cost of arc (7,/) is defined as t; — ’gz’._

o Let Wjd denote the expected minimum cost from node j to
destination d.

e A Markovian choice model for destination d solves:

wi = Ey, T\,Ln( {t; - E,-dj—i- Wjd} , Vi € Ng,and w =0,
j€

where 0,4 is the joint distribution of the error terms {e Lje NS(i)}

N (D)
NG ()
5 s
O
w

,,,,,,,, F

40 /51



Markovian Traffic Equilibrium with RUM

The MTE (defined by Baillon and Cominetti, 2008) is the solution to the

fixed point problem:

tj = 7 (fy),
d
w; = Ep,, | min {t,j —EU—|—W }
JENJr
wj =0,
d_ 4d d
nj = hj + Z Xki»
kENS (i)

x,-j-'_n, Po,, {J—argmln{t,k 1k+Wg}}7

keNt

2 : d
ﬂj: XU7

deD:(i,j)EAy

v(i,j) € A,
Vie Ng,d e D,

Vd € D,
Vie Ng,d e D,

v(i,j) € Ag,d € D,

V(i,j) € A.
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Markovian Traffic Equilibrium with RUM

/‘ fi= Z nd pﬁi
€.
‘ E[j B rj}(ﬁ‘) ‘

wi' = kg, Lgﬂ%‘g‘.,{ﬁ; — & +wf]|iwi =0

ps— = Prg,, {I € argrpin{tm =&y + Wf}]
KEN (i)

utinally Robust Markovisn Traffic Equ
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Markovian Traffic Equilibrium with RUM

Under mild assumptions on 8 and 7, the MTE exists and is unique.

Link costs at equilibrium solve an unconstrained convex optimization;

Z(0) = max Z Z A wi(t) — Z /tij T,-;l(w)dw,

deDieNy (i.j)EA

Only used for the MNL since computing the choice probabilities under RUM is
not trivial.
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Markovian Traffic Equilibrium with RUM

We can also calculate MTE from a constrained convex optimization
problem:

Z (8) = max SN hwf - Z/ “1(

deD ieNy (l,j)EA

st.owi < B, anvm( {ti =5+ w/}

wd =0, vd € D.

, VieNg,deD,
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Semiparametric Markovian Traffic Equilibrium

MTE with semiparametric choice model is defined as:

max > ) hf-wf = ) /Otijﬂfl(w)dw

deDieN, (i,j)eA

st. w? < By, [ min {t; —Efj. + Wjd} , V04 €0iy,Yie Ng,de D,

JENZ (i)

wi =0, vd € D,

45 /51



Markovian Traffic Equilibrium with MDM

MTE-MDM uses the MDM choice model for link choice.
MTE-MDM exists and is unique when MDM probabilities are unique.

It provides a distributionally robust optimization perspective on the
MTE from the system planner’s view.

Using the equivalent RAM, we propose equivalent convex
optimization formulations to obtain the equilibrium flows.

The model is flexible in capturing a wide range of user choice
behavior and can be calculated efficiently even for large networks.
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Numerical results - Winnipeg Network?

Figure: 1040 nodes (138 destinations), 2836 links, 4344 OD pairs

2from Bar-Gera's Traffic Assignment Test Problem website:See
https://github.com/bstabler/TransportationNetworks
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Numerical results - Real Network

Table: MDM-SUE with exponential marginals

Sioux Falls Winnipeg Winnipeg (NRL)
o az | Iter.  Time(s) | Iter. Time(m) Time(m)
2.00 -1.0 | 255 8.19 | 117 10.88
-0.5 | 530 20.21 | 154 14.63
0.0 | 430 19.78 | 188 16.37 12.07
0.5 | 357 20.73 | 229 23.15
1.75 -1.0 | 450 16.85 | 152 11.27
-0.5 | 480 20.25 | 175 15.16
0.0 | 363 17.42 | 194 16.96 11.35
0.5 | 327 19.29 | 218 23.99
1.50 -1.0 | 567 22.41 | 168 11.32
-0.5 | 356 16.27 | 174 15.23
0.0 | 319 16.99 | 206 17.03 12.50
0.5 | 288 17.26 | 223 24.10
1.25 -1.0 | 280 12,71 | 185 11.09
-0.5 | 308 15.71 | 194 1491
0.0 | 273 14.87 | 204 16.68 13.71
0.5 | 264 16.69 | 223 23.59




Summary: Software

An extensive sofware package that can calculate (almost) all equilibrium
models in the literature!

A = 9) vker
) = (O (A = O = A1)

where A, 501ves Ziex, (e (A = O = Au)) = 1. Vor € W.
PMEM (scaing factor)

A (50 () .

http://people.sutd.edu.sg/~ugur_arikan/seSue/
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Future Work

Dynamic equilibrium

Congestion pricing

Sensitivity analysis

Price of anarchy

Parameter estimation (Software package for MDM estimation)

Richer models: multiple vehicle types, elastic demand, etc.
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