
DRO with optimal transport distances:

(joint work with Jose Blanchet, Yang Kang & Fan Zhang)

Karthyek Murthy
Singapore University of Technology and Design

DRO meet, Banff

Some statistical and algorithmic advances

“With 4 parameters, I can fit an elephant,
and with 5, I can make him wiggle his trunk”

-von Neumann

“With 4 parameters, I can fit an elephant,
and with 5, I can make him wiggle his trunk”

-von Neumann

Mayer et al ‘10

inf
�

sup
P2P

EP [`(X;�)]

Pn

Specifying the set of plausible distributions :
Moment assumptions
Structural assumptions (unimodal, convex tails,…)

P

Statistical/probabilistic distances

Moment assumptions
Structural assumptions (unimodal, convex tails,…)
Statistical/probabilistic distances

Pn�

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

Specifying the set of plausible distributions : P

Moment assumptions
Structural assumptions (unimodal, convex tails,…)
Statistical/probabilistic distances

optimal transport based approach

Pn�

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

(includes Wasserstein DRO as a special case)

Specifying the set of plausible distributions : P

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a powerful & flexible tool towards introducing model ambiguity
in data-driven optimization under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a powerful & flexible tool towards introducing model ambiguity
in data-driven optimization under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a powerful & flexible tool towards introducing model ambiguity
in data-driven optimization under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a powerful & flexible tool towards introducing model ambiguity
in data-driven optimization under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

A Stochastic gradient descent scheme that
is at least “as fast”, or sometimes much
faster than the non-robust counterpart!

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a flexible & scalable approach towards data-driven optimization
under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

How do we specify the parameters for the ambiguity model?

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a flexible & scalable approach towards data-driven optimization
under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

How do we specify the parameters for the ambiguity model?
 choosing the radius

 utilising data to inform the geometry

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

of the ambiguous neighborhood

Optimal Transport Distances

Given two probability distributions and , µ ⌫

Optimal Transport Distances

x y

c(x,y)

Given two probability distributions and , µ ⌫

Optimal Transport Distances

x y

c(x,y)

Given two probability distributions and , µ ⌫

min
T (·):T (X)⇠⌫

Eµ

�
c(X,T (X))

�

Optimal Transport Distances

x y

c(x,y)

Given two probability distributions and , µ ⌫

min
T (·):T (X)⇠⌫

Eµ

�
c(X,T (X))

�

Kantorovich relaxation:

Dc(µ, ⌫) := min
⇡2⇧(µ,⌫)

E⇡

⇥
c(X,Y)

⇤

X-marginal =
Y-marginal =

µ
⌫

Optimal Transport Distances

x y

c(x,y)

Given two probability distributions and , µ ⌫

min
T (·):T (X)⇠⌫

Eµ

�
c(X,T (X))

�

Kantorovich relaxation:

Dc(µ, ⌫) := min
⇡2⇧(µ,⌫)

E⇡

⇥
c(X,Y)

⇤

X-marginal =
Y-marginal =

µ
⌫

c(x, y) = kx� ykp,If
D1/p

c (µ, ⌫) is the Wasserstein distance of order p

Why optimal transport distances?

�
P : DKL(P, Pref) �

Why optimal transport distances?

�
P : DKL(P, Pref) �

 Hansen and Sargent ’01, ’06
 Nilim and El Ghaoui ’02, ’03
 Iyengar ’05
 Lim and Shanthikumar ’04
 Lim et al ’05, ’06
 Jain, Lim and Shanthikumar ’10
 Ben-Tal et al ’13
 Lam ’13, ’16, ’17
 Csiszár and Breuer ’13
 Jiang and Guan ’12
 Hu and Hong ’13
 Wang, Glynn and Ye ’14
 Glasserman and Xu ’14
 Bayrakskan and Love ’15
 Shapiro ’15
 Duchi, Glynn and Namkoong ’16
 Dhara, Das and Natarajan ’17
 Duchi and Namkoong ‘17

Why optimal transport distances?

�
P : DKL(P, Pref) �

D

KL

(pkq) =
(R

p(x) log

p(x)
q(x)dx if p ⌧ q

1 otherwise.

x

y

p(x,y)

Baseline probability distribution p

Why optimal transport distances?

�
P : DKL(P, Pref) �

D

KL

(pkq) =
(R

p(x) log

p(x)
q(x)dx if p ⌧ q

1 otherwise.

x

y

p(x,y)

Baseline probability distribution p

x

y

q(x,y)

A KL-neighbor of p

Why optimal transport distances?

�
P : DKL(P, Pref) �

D

KL

(pkq) =
(R

p(x) log

p(x)
q(x)dx if p ⌧ q

1 otherwise.

x

y

p(x,y)

Baseline probability distribution p

x

y

q(x,y)
A Wasserstein neighbor of p

“out of sample” perturbations

DRO literature that considers optimal transport type distances

Pflug & Wozabal ‘07

Pflug & Pichler ‘14
Wozabal ‘12

DRO literature that considers optimal transport type distances

Pflug & Wozabal ‘07

Pflug & Pichler ‘14
Wozabal ‘12

Lee & Mehrotra ‘15
S-Abadeh, Esfahani & Kuhn ‘15

Esfahani & Kuhn ‘15

Blanchet & M ‘16
Gao & Kleywegt ‘16

Zhao & Guan ‘15

Blanchet, Kang & M ‘17

Luo & Mehrotra ‘17
Lee & Raginsky ‘17

Blanchet, Kang, Zhang & M ‘17

S-Abadeh, Esfahani & Kuhn ‘17
Gao, Chen & Kleywegt ’17

Hanasusanto & Kuhn ‘17

Part I: Recovering well-known regularization based ML
estimators as specific examples of DRO

Xu, Caramanis & Mannor (2009a, 2009b)
Bertsimas & Copenhaver (2017)

Part I: Recovering well-known regularization based ML
estimators as specific examples of DRO

Distributionally robust linear regression

Image source: r-bloggers.com

• Consider fitting a linear regression model

to data points
Yi = �TXi + "i

(X1, Y1), . . . , (Xn, Yn)

http://r-bloggers.com

Distributionally robust linear regression

Image source: r-bloggers.com

• Consider fitting a linear regression model

to data points
Yi = �TXi + "i

• Optimal least squares finds β that minimizes

EPn

⇥
(Y � �TX)2

⇤
=

1

n

nX

i=1

�
Yi � �TXi

�2

(X1, Y1), . . . , (Xn, Yn)

http://r-bloggers.com

Distributionally robust linear regression

Image source: r-bloggers.com

• Consider fitting a linear regression model

to data points
Yi = �TXi + "i

• Optimal least squares finds β that minimizes

EPn

⇥
(Y � �TX)2

⇤
=

1

n

nX

i=1

�
Yi � �TXi

�2

• DR linear regression: min
�

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

(X1, Y1), . . . , (Xn, Yn)

http://r-bloggers.com

Distributionally robust linear regression

Image source: r-bloggers.com

• Consider fitting a linear regression model

to data points
Yi = �TXi + "i

• DR linear regression:

Dc(µ, ⌫) := min
⇡2⇧(µ,⌫)

E⇡

⇥
c(X,Y)

⇤

min
�

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

(X1, Y1), . . . , (Xn, Yn)

http://r-bloggers.com

Distributionally robust linear regression

Image source: r-bloggers.com

• Consider fitting a linear regression model

to data points
Yi = �TXi + "i

• DR linear regression:

Theorem

Dc(µ, ⌫) := min
⇡2⇧(µ,⌫)

E⇡

⇥
c(X,Y)

⇤

(Blanchet, Kang & M ‘16)

c

�
(x, y), (x0

, y

0)
�
=

(
kx� x

0k2q if y = y

0
,

1 if y 6= y

0Suppose

min
�

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

(X1, Y1), . . . , (Xn, Yn)

http://r-bloggers.com

Distributionally robust linear regression

Image source: r-bloggers.com

• Consider fitting a linear regression model

to data points
Yi = �TXi + "i

• DR linear regression:

Theorem

Dc(µ, ⌫) := min
⇡2⇧(µ,⌫)

E⇡

⇥
c(X,Y)

⇤

(Blanchet, Kang & M ‘16)

c

�
(x, y), (x0

, y

0)
�
=

(
kx� x

0k2q if y = y

0
,

1 if y 6= y

0Suppose . Then

DR-linear regression estimator =

min
�

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

argmin
�

n

p

MSEn(�) +
p
�k�kp

o

(X1, Y1), . . . , (Xn, Yn)

http://r-bloggers.com

Distributionally robust linear regression

Image source: r-bloggers.com

• Consider fitting a linear regression model

to data points
Yi = �TXi + "i

• DR linear regression:

Theorem (Blanchet, Kang & M ‘16)

c

�
(x, y), (x0

, y

0)
�
=

(
kx� x

0k2q if y = y

0
,

1 if y 6= y

0Suppose . Then

DR-linear regression estimator =

1/p+ 1/q = 1

min
�

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

argmin
�

n

p

MSEn(�) +
p
�k�kp

o

(X1, Y1), . . . , (Xn, Yn)

http://r-bloggers.com

• DR linear regression:

Theorem (Blanchet, Kang & M ‘16)

c

�
(x, y), (x0

, y

0)
�
=

(
kx� x

0k2q if y = y

0
,

1 if y 6= y

0Suppose . Then

DR-linear regression estimator =

1/p+ 1/q = 1

min
�

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

argmin
�

n

p

MSEn(�) +
p
�k�kp

o

• DR linear regression:

Theorem (Blanchet, Kang & M ‘16)

c

�
(x, y), (x0

, y

0)
�
=

(
kx� x

0k2q if y = y

0
,

1 if y 6= y

0Suppose . Then

DR-linear regression estimator =

1/p+ 1/q = 1

min
�

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

argmin
�

n

p

MSEn(�) +
p
�k�kp

o

• DR logistic regression:

Theorem (Blanchet, Kang & M ‘16)

Suppose . Then

DR-logistic regression estimator

c

�
(x, y), (x0

, y

0)
�
=

(
kx� x

0kq if y = y

0

1 if y 6= y

0

min

�
sup

P :Dc(P,Pn)�
EP

⇥
Logistic Loss(X,Y ;�)

⇤

argmin

(
1

n

nX

i=1

Logistic loss(Xi, Yi;�) + �k�kp

)

=
�

• DR logistic regression:

Theorem (Blanchet, Kang & M ‘16)

Suppose . Then

DR-logistic regression estimator

c

�
(x, y), (x0

, y

0)
�
=

(
kx� x

0kq if y = y

0

1 if y 6= y

0

min

�
sup

P :Dc(P,Pn)�
EP

⇥
Logistic Loss(X,Y ;�)

⇤

argmin

(
1

n

nX

i=1

Logistic loss(Xi, Yi;�) + �k�kp

)

=
�

 Image from [Szegedy et al 2015]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(r
x

J(✓,x, y))
x+

✏sign(r
x

J(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Relationship with adversarial examples in deep learning. Following the intriguing
discovery in [2] that deep learning models are vulnerable to adversarial examples, there has
been a tremendous interest in identifying specific types of adversarial examples that make
machine learning models misclassify, and as well in developing training methods that utilize
these adversarial examples to generate models that are robust to adversarial attacks.

The objective of this section is to examine how a popular method to develop adversarial
examples (samples) in the so called “adversarial training” relates with the adversarial probabil-
ity distributions that optimal transport based distributionally robust optimization procedures
systematically hedge against.

To begin with, given a test sample X, [1] considers generating an adversarial example X̃
such that the inner product with the weight vector, wT X̃, di↵ers the most from wTX, while
maintaining that kX̃ � Xk1 ✏ for some small ✏ > 0. If, for example, X is an image and " is
small, the worst-case adversarial image sample X̃ = X+"sign(w) may have no visible di↵erences
from the true image; yet, the huge di↵erence in inner products, |wT X̃ � wTX| = "w̄m, where
m = #dimensions and w̄ = average weight, may tip many machine learning algorithms to
misclassify in high dimensional examples where m is large.

Now, for a model with loss functions ` that depends nonlinearly on wTX, since finding wT X̃
that maximizes loss ` while satisfying the constraint kX̃ � Xk1 ✏ may be computationally
hard, [1] considers linearizing the loss to generate adversarial images as follows: X̃ = X +
"sign (r

X

`(X, y; w)) . Setting ✏ = 0.25, it is observed in [1] that such small perturbations cause
standard shallow softmax and maxout classifiers to have error rates as high as 99.9% and
89.4%, respectively, on MNIST test set, with high degrees of confidence. Such high degrees of
misclassification are know to persist for various other classifiers and datasets as well. Figure 1
below just present an example from [1]:Published as a conference paper at ICLR 2015

+ .007 � =

x sign(rxJ(�, x, y))
x +

✏sign(rxJ(�, x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let � be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(�, x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of �, obtaining an optimal max-norm
constrained pertubation of

� = ✏sign (rxJ(�, x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y � {�1, 1} with P (y = 1) = �
�
w�x + b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y�pdata�(�y(w�x + b))

where �(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Figure 1. Misclassification due to adversarial perturbations applied to
GoogleNet (Example from [1]). While a human would classify both the fig-
ures as pandas, the adversarial perturbation makes the model misclassify the
image in the right hand side as a gibbon with high degree of confidence. See [1]
for more examples.

1

[Szegedy et al 2015]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(r
x

J(✓,x, y))
x+

✏sign(r
x

J(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Relationship with adversarial examples in deep learning. Following the intriguing
discovery in [2] that deep learning models are vulnerable to adversarial examples, there has
been a tremendous interest in identifying specific types of adversarial examples that make
machine learning models misclassify, and as well in developing training methods that utilize
these adversarial examples to generate models that are robust to adversarial attacks.

The objective of this section is to examine how a popular method to develop adversarial
examples (samples) in the so called “adversarial training” relates with the adversarial probabil-
ity distributions that optimal transport based distributionally robust optimization procedures
systematically hedge against.

To begin with, given a test sample X, [1] considers generating an adversarial example X̃
such that the inner product with the weight vector, wT X̃, di↵ers the most from wTX, while
maintaining that kX̃ � Xk1 ✏ for some small ✏ > 0. If, for example, X is an image and " is
small, the worst-case adversarial image sample X̃ = X+"sign(w) may have no visible di↵erences
from the true image; yet, the huge di↵erence in inner products, |wT X̃ � wTX| = "w̄m, where
m = #dimensions and w̄ = average weight, may tip many machine learning algorithms to
misclassify in high dimensional examples where m is large.

Now, for a model with loss functions ` that depends nonlinearly on wTX, since finding wT X̃
that maximizes loss ` while satisfying the constraint kX̃ � Xk1 ✏ may be computationally
hard, [1] considers linearizing the loss to generate adversarial images as follows: X̃ = X +
"sign (r

X

`(X, y; w)) . Setting ✏ = 0.25, it is observed in [1] that such small perturbations cause
standard shallow softmax and maxout classifiers to have error rates as high as 99.9% and
89.4%, respectively, on MNIST test set, with high degrees of confidence. Such high degrees of
misclassification are know to persist for various other classifiers and datasets as well. Figure 1
below just present an example from [1]:Published as a conference paper at ICLR 2015

+ .007 � =

x sign(rxJ(�, x, y))
x +

✏sign(rxJ(�, x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let � be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(�, x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of �, obtaining an optimal max-norm
constrained pertubation of

� = ✏sign (rxJ(�, x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y � {�1, 1} with P (y = 1) = �
�
w�x + b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y�pdata�(�y(w�x + b))

where �(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Figure 1. Misclassification due to adversarial perturbations applied to
GoogleNet (Example from [1]). While a human would classify both the fig-
ures as pandas, the adversarial perturbation makes the model misclassify the
image in the right hand side as a gibbon with high degree of confidence. See [1]
for more examples.

1

[Szegedy et al 2015]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(r
x

J(✓,x, y))
x+

✏sign(r
x

J(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Adversarial Resistance (Upper Bound) Robustness Guarantee (Lower Bound)
wrt to L2-norm wrt to L2-norm

Figure 3: Left: Adversarial resistance wrt to L2-norm on test set of CIFAR10. Right: Average robustness
guarantee on the test set wrt to L2-norm for the test set of CIFAR10 for di�erent neural networks (one hidden
layer, 1024 HU) and hyperparameters. While Cross-Lipschitz regularization yields good test errors, the guarantees
are not necessarily stronger. Top row: CIFAR10 (plain), Middle: CIFAR10 trained with data augmentation,
Bottom: Adversarial Training.

Original, Class 9 K-SVM, Pred:4, Î”Î2 = 3.4 K-CL, Pred:4, Î”Î2 = 5.9

NN-WD, Pred:4, Î”Î2 = 1.7 NN-DO, Pred:8, Î”Î2 = 1.7 NN-CL, Pred:4, Î”Î2 = 2.1
Figure 4: Top left: original test image, for each classifier we generate the corresponding adversarial sample which
changes the classifier decision (denoted as Pred). Note that for the kernel methods this new decision makes sense,
whereas for all neural network models the change is so small that the new decision is clearly wrong.

We show further examples below.

15

S-Abadeh, Esfahani & Kuhn (2015)

S-Abadeh, Esfahani & Kuhn (2015)

S-Abadeh, Esfahani & Kuhn ’17
Gao, Chen & Kleywegt ‘17

Blanchet, Kang & M ‘16
Blanchet, Kang, Zhang & M ‘17

Theorem (Blanchet, Kang & M ‘16)

c

�
(x, y), (x0

, y

0)
�
=

(
kx� x

0k2q if y = y

0
,

1 if y 6= y

0Suppose . Then

DR-linear regression estimator =

1/p+ 1/q = 1

argmin
�

n

p

MSEn(�) +
p
�k�kp

o

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

min
�

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤
• DR linear regression:

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

Duality Theorem (Blanchet & M ‘16)

Esfahani & Kuhn ’15, Zhao & Guan ‘15
Gao & Kleywegt ’16

sup
P :Dc(P,Pref)�

Z
fdP = inf

��0

⇢
�� + EPref

sup
�

f(X +�)� c(X +�, X)

��

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

Duality Theorem (Blanchet & M ‘16)

Esfahani & Kuhn ’15, Zhao & Guan ‘15
Gao & Kleywegt ’16

General assumption:
cost c is lower semicontinuous

f is upper semicontinuous
cost can be infinity

sup
P :Dc(P,Pref)�

Z
fdP = inf

��0

⇢
�� + EPref

sup
�

f(X +�)� c(X +�, X)

��

sup
P :Dc(P,Pn)�

EP

⇥
(Y � �TX)2

⇤

Duality Theorem (Blanchet & M ‘16)

Esfahani & Kuhn ’15, Zhao & Guan ‘15
Gao & Kleywegt ’16

Applications in risk analysis
data driven optimization

machine learning, ….
stochastic control

General assumption:
cost c is lower semicontinuous

f is upper semicontinuous
cost can be infinity

sup
P :Dc(P,Pref)�

Z
fdP = inf

��0

⇢
�� + EPref

sup
�

f(X +�)� c(X +�, X)

��

• DR-linear regression (with q -norm cost) = -regularized linear regression`p

• DR-logistic regression (with q -norm cost) = -reg. logistic regression

• q=1 case exactly recovers
p
Lasso

`p

• q=2 case recovers ridge regression

• DR-linear regression (with q -norm cost) = -regularized linear regression`p

• DR-logistic regression (with q -norm cost) = -reg. logistic regression

`p

• DR-hinge loss minimization = Support Vector Machines

• q=1 case exactly recovers
p
Lasso

• DR-quantile regression (with q -norm cost) = -reg. quantile regression

`p

• Group lasso, LAD-Lasso

• q=2 case recovers ridge regression

• Generalized adaptive ridge regression

DRO with optimal transport costs recovers many other regularized
estimators….

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a flexible & scalable approach towards data-driven optimization
under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

A number of popular ML algorithms can be exactly recast as
particular examples of (OT-DRO)

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

✔

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a flexible & scalable approach towards data-driven optimization
under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

A number of popular ML algorithms can be exactly recast as
particular examples of (OT-DRO)

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

✔

 [Esfahani & Kuhn ’15]
 [Kuhn & Hanasusanto ’17]

 [Luo & Mehrotra ’17]
 [Sinha, Namkoong & Duchi ’17]

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a flexible & scalable approach towards data-driven optimization
under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

✔

`(�TX) max

i=1,...,K
`i
�
�TX

�
orconvex

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a flexible & scalable approach towards data-driven optimization
under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

✔

Linear, Logistic, Poisson regression…
Multi-task learning
Kernel-based algorithms
Multinomial logit models

Utility maximization
Newsvendor models

`(�TX) max

i=1,...,K
`i
�
�TX

�
orconvex

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

Part II: Fast iterative schemes for optimal transport DRO
(work in progress)

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

ERM: OT-DRO:

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

ERM: OT-DRO:

c(x, y) = (x� y)TA(x� y)

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

ERM: OT-DRO:

c(x, y) = (x� y)TA(x� y)

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

ERM: OT-DRO:

c(x, y) = (x� y)TA(x� y)

rf1, rf2, . . . , rfn�1, rfn

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

�k+1

�k+1

�
=

�k

�k

�
� ↵k

@fI/@�
@fI/@�

�
(�k,�k), k = 1, 2, . . . ,

ERM: OT-DRO:

• SGD scheme:

c(x, y) = (x� y)TA(x� y)

rf1, rf2, . . . , rfn�1, rfn

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

�k+1

�k+1

�
=

�k

�k

�
� ↵k

@fI/@�
@fI/@�

�
(�k,�k), k = 1, 2, . . . ,

ERM: OT-DRO:

• SGD scheme:

c(x, y) = (x� y)TA(x� y)

• After T iterations, error = if F is strongly convex
error = if F is convex

O(1/T)

O(1/
p
T)

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

ERM: OT-DRO:

c(x, y) = (x� y)TA(x� y)

fi(�,�) := sup
�i2R

n

`
⇣

Yi,�
TXi + �i

p
��TA�1�

⌘

� �
p
�
�

�2
i �

TA�1� � 1
�

o

.

First order oracle information can be evaluated just with function
evaluations of , which is what ERM also requires`(·) and `0(·)

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

ERM: OT-DRO:

c(x, y) = (x� y)TA(x� y)

fi(�,�) := sup
�i2R

n

`
⇣

Yi,�
TXi + �i

p
��TA�1�

⌘

� �
p
�
�

�2
i �

TA�1� � 1
�

o

.

@fi
@�

= `0(Yi,�
T X̃i)X̃i

@fi
@�

= �
p
�
�
�2
i �

TA�1� � 1
�

First order oracle information can be evaluated just with function
evaluations of , which is what ERM also requires`(·) and `0(·)

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

�k+1

�k+1

�
=

�k

�k

�
� ↵k

@fI/@�
@fI/@�

�
(�k,�k), k = 1, 2, . . . ,

ERM: OT-DRO:

• SGD scheme:

ERM DRO
Per-iteration
complexity
Iterations

Complexity

O(d) O(Ld)

c(x, y) = (x� y)TA(x� y)

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

ERM: OT-DRO:

Theorem
Suppose , where are locally strongly convex. `(X;�) = max

i=1,...,K
`i(�

TX) `i 2 C2

= c
p
�Then for all , the function F is strongly convex with parameter .

.

c(x, y) = (x� y)TA(x� y)

� < �0

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

ERM: OT-DRO:

Theorem
Suppose , where are locally strongly convex. `(X;�) = max

i=1,...,K
`i(�

TX) `i 2 C2

= c
p
�Then for all , the function F is strongly convex with parameter .

.

c(x, y) = (x� y)TA(x� y)

Further, F is strongly convex in as long as are convex.� `i 2 C2

� < �0

min
�2B

1

n

nX

i=1

`(Yi,�
TXi) min

�2B
sup

P :Dc(P,Pn)�
EP

⇥
`(Yi,�

TXi)
⇤

• Take

• Applying the Duality theorem, inf
�,�

(
F (�,�) :=

1

n

nX

i=1

fi(�,�)

)

�k+1

�k+1

�
=

�k

�k

�
� ↵k

@fI/@�
@fI/@�

�
(�k,�k), k = 1, 2, . . . ,

ERM: OT-DRO:

• SGD scheme:

ERM DRO
Per-iteration
complexity
Iterations

Complexity

O("�2) O("�1��1/2)

O(d) O(Ld)

O(d"�2) O(Ld"�1��2)

c(x, y) = (x� y)TA(x� y)

when strong
convexity holds

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a flexible & scalable approach towards data-driven optimization
under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

✔

✔

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a flexible & scalable approach towards data-driven optimization
under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

How do we specify the parameters for the ambiguity model?

✔

✔

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

As a flexible & scalable approach towards data-driven optimization
under uncertainty

(OT-DRO)

Optimal mass transportation based DRO:

Can we utilise (OT-DRO) for larger class of models with the ability
to handle large data sets?

How do we specify the parameters for the ambiguity model?
 choosing the radius

 utilising data to inform the geometry of the ambiguity region

✔

✔

A number of popular ML algorithms that employ regularization
can be exactly recast as particular examples of (OT-DRO)

Part III: Specifying parameters of the optimal transport
neighborhood

Specifying radius of the ambiguity models
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR linear regression:
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2

i

How do we choose �?

P (Dc(Ptrue ,Pn) �) � 1 � "

See Fournier and Guillin (2015)

Lee and Mehrotra (2013), Kuhn et al (2015), O(n�1/d) rate

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

�

Specifying radius of the ambiguity models
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR linear regression:
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2

i

How do we choose �?

P (Dc(Ptrue ,Pn) �) � 1 � "

See Fournier and Guillin (2015)

Lee and Mehrotra (2013), Kuhn et al (2015), O(n�1/d) rate

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

�

Concentration inequalities by Fournier & Guillin (2015)
S-Abadeh, Esfahani & Kuhn ‘15, Lee and Mehrotra ’15, Gao and Kleywegt ‘16

Specifying radius of the ambiguity models
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR linear regression:

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Specifying radius of the ambiguity models
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR linear regression:

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

�⇤ is the optimal �

satisfying

EPtrue

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Specifying radius of the ambiguity models
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR linear regression:

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

�⇤ is the optimal �

satisfying

EPtrue

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Criteria for optimal selection:

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Specifying radius of the ambiguity models

Criteria for optimal selection:

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

�⇤ is the optimal �

satisfying

EPtrue

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

⇢

Q : EQ

�

(Y � �T
� X)X

�

= 0
�

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR linear regression:

Specifying radius of the ambiguity models

Criteria for optimal selection:

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

�⇤ is the optimal �

satisfying

EPtrue

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

⇢

Q : EQ

�

(Y � �T
� X)X

�

= 0
�

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Rn(�⇤) = inf

⇢

Dc

�

P , Pn

�

: EP

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR linear regression:

Specifying radius of the ambiguity models

Criteria for optimal selection:

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

�⇤ is the optimal �

satisfying

EPtrue

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

⇢

Q : EQ

�

(Y � �T
� X)X

�

= 0
�

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Rn(�⇤) = inf

⇢

Dc

�

P , Pn

�

: EP

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Choose � =
⌘

n
where ⌘ is such that P

�

R̄ ⌘

� 0.95

Theorem: [Blanchet, Kang & M ’16]

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR linear regression:

Specifying radius of the ambiguity models
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

�⇤ is the optimal �

satisfying

EPtrue

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

⇢

Q : EQ

�

(Y � �T
� X)X

�

= 0
�

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Rn(�⇤) = inf

⇢

Dc

�

P , Pn

�

: EP

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

�

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Choose � =
⌘

n
where ⌘ is such that P

�

R̄ ⌘

� 0.95

Theorem: [Blanchet, Kang & M ’16]

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Choose � =
⌘↵

n
where ⌘↵ is such that P

�

R̄ ⌘↵

= 1 � ↵.

DR linear regression:
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Specifying radius of the ambiguity models

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

�⇤ is the optimal �

satisfying

EPtrue

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

⇢

Q : EQ

�

(Y � �T
� X)X

�

= 0
�

�

Specifying radius of the ambiguity models
DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Choose � =
⌘↵

n
where ⌘↵ is such that P

�

R̄ ⌘↵

= 1 � ↵.

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2
�

�(P) : Dc(P , Pn) �

�⇤ is the optimal �

satisfying

EPtrue

⇥�

Y � �T
⇤ X

�

X
⇤

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

Ptrue

Pn

⇢

Q : EQ

�

(Y � �T
� X)X

�

= 0
�

�

Theorem: [Blanchet, Kang & M ’16]

If we take

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Specifying radius of the ambiguity models

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem: [Blanchet, Kang & M ’16]

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Specifying radius of the ambiguity models

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem: [Blanchet, Kang & M ’16]

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

If we take

Specifying radius of the ambiguity models

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem: [Blanchet, Kang & M ’16]

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

nRn(�⇤) ⇡

⇡ � 2

��1 (1 � ↵/2d)p
n

= O

r

log d

n

!

Specifying radius of the ambiguity models

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem: [Blanchet, Kang & M ’16]

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

R̄ = sup
⇣2Rr

n

⇢⇣TZ � (⇢ � 1)E
�

�⇣TDwh (W , �⇤)
�

�

⇢/(⇢�1)

p

o

If we take

Optimality condition:

RWP function:

E [h(W ; �⇤)] = 0

Rn(�) = inf
�

Dc(P , Pn) : EP

⇥

h(W , �)
⇤

= 0

Theorem

If we let c(u, v) = ku � vk⇢
q,

n⇢/2Rn (�⇤)
D�! R̄ ,

`p�lin reg: ⇢ = 2

R̄
D
 ⇡

⇡ � 2
kZk2

q,

`p�log reg: ⇢ = 1

R̄
D
 kZkq,

where Z ⇠ N (0, E [XXT]).

nRn(�⇤) ⇡

⇡ � 2

��1 (1 � ↵/2d)p
n

= O

r

log d

n

!

A snapshot of main results

Application 1: DR linear regression

If c(u, v) = ku � vk2
q,

arg min
�

sup
Q:Dc (Q,Pn)��

EP

⇥

(Y � �TX)2
⇤

= arg min
�

n

�

MSEn(�) +
p

�k�kp

o

Application 2: DR logistic regression

If c(u, v) = ku � vkq,

arg min
�

sup
Q:Dc (Q,Pn)��

EP [Logistic loss(X ; �)]

= arg min
�

�

1

n

n
�

i=1

Logistic loss(Xi ; �) + �k�kp

�

I Scalability: Similar equivalences with SVM, LAD-regression

I Xu, Caramanis & Mannor (2009)

20 / 21

r

⇡

⇡ � 2

kZkqp
n

kZkqp
n

Application to machine learning: No cross-validation!

DR Linear

Regression: min
�2Rd

max
P:Dc (P,Pn)�

EP

h

�

Y � �TX
�2
i

Plausible �’s:

�⇤ 2

�

�(P) : Dc(P , Pn) �

Given P ,

�(P) := optimal � satisfying

EP

h

�

Y � �T
(P)X

�

X
i

= 0

Theorem

If Y = �T
⇤ X + ✏,

nRn(�⇤)
D�! R̄

DR linear regression:

RWPI Linear

Regression: min
�2Rd

max
P:D(P,Pn)�

EP

h

�

Y � �TX
�2

i

0

0.35

0.7

1.05

1.4

OLS CV-Lasso RWPI-Lasso

Training
MSE Test

MSE

RWPI based tuning parameter selection against cross-validated Lasso and

OLS in the diabetes data set of 142 training samples with 64 predictors
Limit result based radius choice vs cross-validation vs zero radius (OLS)

in diabetic data set of 142 training samples with 64 predictors

Informing the geometry from data: Toy examples with classification

4 BLANCHET, J., KANG, Y., ZHANG, F., AND MURTHY, K.

et al. (2016), that �⇤(n) ! 0 at a suitable rate. For instance, in the linear regression setting corre-
sponding to (2), if the data is i.i.d. with finite variance and the linear regression model holds then
�⇤(n) = �1�↵ (1 + o (1)) /n as n ! 1 (where �↵ is the ↵ quantile of an explicitly characterized
distribution).

In practice, one can also choose � by cross-validation. The work of Blanchet et al. (2016) compares
the asymptotically optimal choice �⇤(n) against cross-validation, concluding that the performance
is comparable in the experiments performed. In this paper, we use cross validation to choose �, but
the insights behind the limiting behavior of (5) are useful, as we shall see, to inform the design of
our algorithms.

More generally, the DRO formulation (1) is appealing because the distributional uncertainty endows
the estimation of � directly with a mechanism to enhance generalization properties. To wit, we
can interpret (1) as a game in which we (the outer player) choose a decision �, while the adversary
(the inner player) selects a model which is a perturbation, P , of the data (encoded by Pn). The
amount of the perturbation is dictated by the size of � which, as discussed earlier, is data driven.
But the type of perturbation and how the perturbation is measured is dictated by Dc(P, Pn). It
makes sense to inform the design of Dc(·) using a data-driven mechanism, which is our goal in this
paper. The intuition is to allow the types of perturbations which focus the e↵ort and budget of
the adversary mostly on out-of-sample exploration over regions of relevance.

The type of benefit that is obtained by informing Dc (P, Pn) with data is illustrated in Figure 1(a)
below. Figure 1(a) illustrates a classification task. The data roughly lies on a lower dimensional

Figure 1. Stylized examples illustrating the need for data-driven cost function.

non-linear manifold. Some data which is classified with a negative label is seen to be “close” to
data which is classified with a positive label when seeing the whole space (i.e. R2) as the natural
ambient domain of the data. However, if we use a distance similar to the geodesic distance intrinsic
to the manifold we would see that the negative instances are actually far from the positive instances.
So, the generalization properties of the algorithm would be enhanced relative to using a standard
metric in the ambient space, because with a given budget � the adversarial player would be allowed
perturbations mostly along the intrinsic manifold where the data lies and instances which are
surrounded (in the intrinsic metric) by similarly classified examples will naturally carry significant
impact in testing performance. A quantitative example to illustrate this point will be discussed in
the sequel.

Informing the geometry from data: Toy examples with classification

4 BLANCHET, J., KANG, Y., ZHANG, F., AND MURTHY, K.

et al. (2016), that �⇤(n) ! 0 at a suitable rate. For instance, in the linear regression setting corre-
sponding to (2), if the data is i.i.d. with finite variance and the linear regression model holds then
�⇤(n) = �1�↵ (1 + o (1)) /n as n ! 1 (where �↵ is the ↵ quantile of an explicitly characterized
distribution).

In practice, one can also choose � by cross-validation. The work of Blanchet et al. (2016) compares
the asymptotically optimal choice �⇤(n) against cross-validation, concluding that the performance
is comparable in the experiments performed. In this paper, we use cross validation to choose �, but
the insights behind the limiting behavior of (5) are useful, as we shall see, to inform the design of
our algorithms.

More generally, the DRO formulation (1) is appealing because the distributional uncertainty endows
the estimation of � directly with a mechanism to enhance generalization properties. To wit, we
can interpret (1) as a game in which we (the outer player) choose a decision �, while the adversary
(the inner player) selects a model which is a perturbation, P , of the data (encoded by Pn). The
amount of the perturbation is dictated by the size of � which, as discussed earlier, is data driven.
But the type of perturbation and how the perturbation is measured is dictated by Dc(P, Pn). It
makes sense to inform the design of Dc(·) using a data-driven mechanism, which is our goal in this
paper. The intuition is to allow the types of perturbations which focus the e↵ort and budget of
the adversary mostly on out-of-sample exploration over regions of relevance.

The type of benefit that is obtained by informing Dc (P, Pn) with data is illustrated in Figure 1(a)
below. Figure 1(a) illustrates a classification task. The data roughly lies on a lower dimensional

Figure 1. Stylized examples illustrating the need for data-driven cost function.

non-linear manifold. Some data which is classified with a negative label is seen to be “close” to
data which is classified with a positive label when seeing the whole space (i.e. R2) as the natural
ambient domain of the data. However, if we use a distance similar to the geodesic distance intrinsic
to the manifold we would see that the negative instances are actually far from the positive instances.
So, the generalization properties of the algorithm would be enhanced relative to using a standard
metric in the ambient space, because with a given budget � the adversarial player would be allowed
perturbations mostly along the intrinsic manifold where the data lies and instances which are
surrounded (in the intrinsic metric) by similarly classified examples will naturally carry significant
impact in testing performance. A quantitative example to illustrate this point will be discussed in
the sequel.

4 BLANCHET, J., KANG, Y., ZHANG, F., AND MURTHY, K.

et al. (2016), that �⇤(n) ! 0 at a suitable rate. For instance, in the linear regression setting corre-
sponding to (2), if the data is i.i.d. with finite variance and the linear regression model holds then
�⇤(n) = �1�↵ (1 + o (1)) /n as n ! 1 (where �↵ is the ↵ quantile of an explicitly characterized
distribution).

In practice, one can also choose � by cross-validation. The work of Blanchet et al. (2016) compares
the asymptotically optimal choice �⇤(n) against cross-validation, concluding that the performance
is comparable in the experiments performed. In this paper, we use cross validation to choose �, but
the insights behind the limiting behavior of (5) are useful, as we shall see, to inform the design of
our algorithms.

More generally, the DRO formulation (1) is appealing because the distributional uncertainty endows
the estimation of � directly with a mechanism to enhance generalization properties. To wit, we
can interpret (1) as a game in which we (the outer player) choose a decision �, while the adversary
(the inner player) selects a model which is a perturbation, P , of the data (encoded by Pn). The
amount of the perturbation is dictated by the size of � which, as discussed earlier, is data driven.
But the type of perturbation and how the perturbation is measured is dictated by Dc(P, Pn). It
makes sense to inform the design of Dc(·) using a data-driven mechanism, which is our goal in this
paper. The intuition is to allow the types of perturbations which focus the e↵ort and budget of
the adversary mostly on out-of-sample exploration over regions of relevance.

The type of benefit that is obtained by informing Dc (P, Pn) with data is illustrated in Figure 1(a)
below. Figure 1(a) illustrates a classification task. The data roughly lies on a lower dimensional

Figure 1. Stylized examples illustrating the need for data-driven cost function.

non-linear manifold. Some data which is classified with a negative label is seen to be “close” to
data which is classified with a positive label when seeing the whole space (i.e. R2) as the natural
ambient domain of the data. However, if we use a distance similar to the geodesic distance intrinsic
to the manifold we would see that the negative instances are actually far from the positive instances.
So, the generalization properties of the algorithm would be enhanced relative to using a standard
metric in the ambient space, because with a given budget � the adversarial player would be allowed
perturbations mostly along the intrinsic manifold where the data lies and instances which are
surrounded (in the intrinsic metric) by similarly classified examples will naturally carry significant
impact in testing performance. A quantitative example to illustrate this point will be discussed in
the sequel.

Informing the geometry from data: Toy examples with classification

4 BLANCHET, J., KANG, Y., ZHANG, F., AND MURTHY, K.

et al. (2016), that �⇤(n) ! 0 at a suitable rate. For instance, in the linear regression setting corre-
sponding to (2), if the data is i.i.d. with finite variance and the linear regression model holds then
�⇤(n) = �1�↵ (1 + o (1)) /n as n ! 1 (where �↵ is the ↵ quantile of an explicitly characterized
distribution).

In practice, one can also choose � by cross-validation. The work of Blanchet et al. (2016) compares
the asymptotically optimal choice �⇤(n) against cross-validation, concluding that the performance
is comparable in the experiments performed. In this paper, we use cross validation to choose �, but
the insights behind the limiting behavior of (5) are useful, as we shall see, to inform the design of
our algorithms.

More generally, the DRO formulation (1) is appealing because the distributional uncertainty endows
the estimation of � directly with a mechanism to enhance generalization properties. To wit, we
can interpret (1) as a game in which we (the outer player) choose a decision �, while the adversary
(the inner player) selects a model which is a perturbation, P , of the data (encoded by Pn). The
amount of the perturbation is dictated by the size of � which, as discussed earlier, is data driven.
But the type of perturbation and how the perturbation is measured is dictated by Dc(P, Pn). It
makes sense to inform the design of Dc(·) using a data-driven mechanism, which is our goal in this
paper. The intuition is to allow the types of perturbations which focus the e↵ort and budget of
the adversary mostly on out-of-sample exploration over regions of relevance.

The type of benefit that is obtained by informing Dc (P, Pn) with data is illustrated in Figure 1(a)
below. Figure 1(a) illustrates a classification task. The data roughly lies on a lower dimensional

Figure 1. Stylized examples illustrating the need for data-driven cost function.

non-linear manifold. Some data which is classified with a negative label is seen to be “close” to
data which is classified with a positive label when seeing the whole space (i.e. R2) as the natural
ambient domain of the data. However, if we use a distance similar to the geodesic distance intrinsic
to the manifold we would see that the negative instances are actually far from the positive instances.
So, the generalization properties of the algorithm would be enhanced relative to using a standard
metric in the ambient space, because with a given budget � the adversarial player would be allowed
perturbations mostly along the intrinsic manifold where the data lies and instances which are
surrounded (in the intrinsic metric) by similarly classified examples will naturally carry significant
impact in testing performance. A quantitative example to illustrate this point will be discussed in
the sequel.

4 BLANCHET, J., KANG, Y., ZHANG, F., AND MURTHY, K.

et al. (2016), that �⇤(n) ! 0 at a suitable rate. For instance, in the linear regression setting corre-
sponding to (2), if the data is i.i.d. with finite variance and the linear regression model holds then
�⇤(n) = �1�↵ (1 + o (1)) /n as n ! 1 (where �↵ is the ↵ quantile of an explicitly characterized
distribution).

In practice, one can also choose � by cross-validation. The work of Blanchet et al. (2016) compares
the asymptotically optimal choice �⇤(n) against cross-validation, concluding that the performance
is comparable in the experiments performed. In this paper, we use cross validation to choose �, but
the insights behind the limiting behavior of (5) are useful, as we shall see, to inform the design of
our algorithms.

More generally, the DRO formulation (1) is appealing because the distributional uncertainty endows
the estimation of � directly with a mechanism to enhance generalization properties. To wit, we
can interpret (1) as a game in which we (the outer player) choose a decision �, while the adversary
(the inner player) selects a model which is a perturbation, P , of the data (encoded by Pn). The
amount of the perturbation is dictated by the size of � which, as discussed earlier, is data driven.
But the type of perturbation and how the perturbation is measured is dictated by Dc(P, Pn). It
makes sense to inform the design of Dc(·) using a data-driven mechanism, which is our goal in this
paper. The intuition is to allow the types of perturbations which focus the e↵ort and budget of
the adversary mostly on out-of-sample exploration over regions of relevance.

The type of benefit that is obtained by informing Dc (P, Pn) with data is illustrated in Figure 1(a)
below. Figure 1(a) illustrates a classification task. The data roughly lies on a lower dimensional

Figure 1. Stylized examples illustrating the need for data-driven cost function.

non-linear manifold. Some data which is classified with a negative label is seen to be “close” to
data which is classified with a positive label when seeing the whole space (i.e. R2) as the natural
ambient domain of the data. However, if we use a distance similar to the geodesic distance intrinsic
to the manifold we would see that the negative instances are actually far from the positive instances.
So, the generalization properties of the algorithm would be enhanced relative to using a standard
metric in the ambient space, because with a given budget � the adversarial player would be allowed
perturbations mostly along the intrinsic manifold where the data lies and instances which are
surrounded (in the intrinsic metric) by similarly classified examples will naturally carry significant
impact in testing performance. A quantitative example to illustrate this point will be discussed in
the sequel.

6 BLANCHET, J., KANG, Y., ZHANG, F., AND MURTHY, K.

the k-NN criterion), Yi = Yj . If Yi 6= Yj , then we have that (Xi, Xj) 2 N .
The work of Xing et al. (2002), one of the earlier reference on the subject, suggests considering

min
⇤2PSD

X

(Xi,Xj)2M

d

2
⇤ (Xi, Xj)(7)

s.t.

X

(Xi,Xj)2N

d

2
⇤ (Xi, Xj) � �̄.(8)

In words, the previous optimization problem minimizes the total distance between pairs that should
be connect, while keeping the pairs that should not connect well separated. The constant �̄ > 0 is
somewhat arbitrary (given that ⇤ can be normalized by �̄, we can choose �̄ = 1).

The optimization problem (8) is an LP problem on the convex cone PSD and it has been widely
studied. Since ⇤ 2 PSD, we can always write ⇤ = LL

T , and therefore d⇤(Xi, Xj) = kXi �Xjk⇤ :=
kLXi � LXjk2 . There are various techniques which can be used to exploit the PSD structure to
e�ciently solve (8); see, for example, Xing et al. (2002) for a projection-based algorithm; or Schultz
and Joachims (2004), which uses a factorization-based procedure; or the survey paper Bellet et al.
(2013) for the discussion of a wide range of techniques.

We have chosen formulation (8) to estimate ⇤ because it is intuitive and easy to state, but the topic
of learning Mahalanobis distances is an active area of research and there are di↵erent algorithms
which can be implemented (see Li et al. (2016)).

3.2.2. Using Mahalanobis Distance in Data-Driven DRO . Let us assume that the underlying data
takes the form Dn = {(Xi, Yi)}ni=1, where Xi 2 R

d and Yi 2 R and the loss function, depending on a
decision variable � 2 R

m, is given by l(x, y,�). Note that we are not imposing any linear structure
on the underlying model or in the loss function. Then, motivated by the cost function (4), we may
consider

(9) c⇤

�

(x, y), (x0, y0)
�

= d

2
⇤

�

x, x

0�
I

�

y = y

0�+1I

�

y 6= y

0�
,

for ⇤ 2 PSD. The infinite contribution in the definition of c⇤ (i.e. 1 · I (y 6= y

0)) indicates that
the adversarial player in the DRO formulation is not allowed to perturb the response variable.
Even in this case, since the definitions of M and N depend on Wi = (Xi, Yi) (in particular, on
the response variable), cost function c⇤(·) (once ⇤ is calibrated using, for example, the method
discussed in the previous subsection), will be informed by the Yis. Then, we estimate � via

(10) min
�

sup
P :Dc⇤ (P,Pn)�

E[l(X,Y,�)].

It is important to note that ⇤ has been applied only to the definition of the cost function.

The intuition behind the formulation can be gained in the context of a logistic regression setting,
see the example in Figure 1(b): Suppose that d = 2, and that Y depends only on X(1) (i.e.
the first coordinate of X). Then, the metric learning procedure in (8) will induce a relatively
low transportation cost across the X(2) direction and a relatively high transportation cost in the
X(1) direction, whose contribution, being highly informative, is reasonably captured by the metric
learning mechanism. Since the X(1) direction is most impactful, from the standpoint of expected
loss estimation, the adversarial player will reach a compromise, between transporting (which is
relatively expensive) and increasing the expected loss (which is the adversary’s objective). Out of
this compromise the DRO procedure localizes the out-of-sample enhancement, and yet improves
generalization.

Informing the geometry from data: Toy examples with classification

4 BLANCHET, J., KANG, Y., ZHANG, F., AND MURTHY, K.

et al. (2016), that �⇤(n) ! 0 at a suitable rate. For instance, in the linear regression setting corre-
sponding to (2), if the data is i.i.d. with finite variance and the linear regression model holds then
�⇤(n) = �1�↵ (1 + o (1)) /n as n ! 1 (where �↵ is the ↵ quantile of an explicitly characterized
distribution).

In practice, one can also choose � by cross-validation. The work of Blanchet et al. (2016) compares
the asymptotically optimal choice �⇤(n) against cross-validation, concluding that the performance
is comparable in the experiments performed. In this paper, we use cross validation to choose �, but
the insights behind the limiting behavior of (5) are useful, as we shall see, to inform the design of
our algorithms.

More generally, the DRO formulation (1) is appealing because the distributional uncertainty endows
the estimation of � directly with a mechanism to enhance generalization properties. To wit, we
can interpret (1) as a game in which we (the outer player) choose a decision �, while the adversary
(the inner player) selects a model which is a perturbation, P , of the data (encoded by Pn). The
amount of the perturbation is dictated by the size of � which, as discussed earlier, is data driven.
But the type of perturbation and how the perturbation is measured is dictated by Dc(P, Pn). It
makes sense to inform the design of Dc(·) using a data-driven mechanism, which is our goal in this
paper. The intuition is to allow the types of perturbations which focus the e↵ort and budget of
the adversary mostly on out-of-sample exploration over regions of relevance.

The type of benefit that is obtained by informing Dc (P, Pn) with data is illustrated in Figure 1(a)
below. Figure 1(a) illustrates a classification task. The data roughly lies on a lower dimensional

Figure 1. Stylized examples illustrating the need for data-driven cost function.

non-linear manifold. Some data which is classified with a negative label is seen to be “close” to
data which is classified with a positive label when seeing the whole space (i.e. R2) as the natural
ambient domain of the data. However, if we use a distance similar to the geodesic distance intrinsic
to the manifold we would see that the negative instances are actually far from the positive instances.
So, the generalization properties of the algorithm would be enhanced relative to using a standard
metric in the ambient space, because with a given budget � the adversarial player would be allowed
perturbations mostly along the intrinsic manifold where the data lies and instances which are
surrounded (in the intrinsic metric) by similarly classified examples will naturally carry significant
impact in testing performance. A quantitative example to illustrate this point will be discussed in
the sequel.

4 BLANCHET, J., KANG, Y., ZHANG, F., AND MURTHY, K.

et al. (2016), that �⇤(n) ! 0 at a suitable rate. For instance, in the linear regression setting corre-
sponding to (2), if the data is i.i.d. with finite variance and the linear regression model holds then
�⇤(n) = �1�↵ (1 + o (1)) /n as n ! 1 (where �↵ is the ↵ quantile of an explicitly characterized
distribution).

In practice, one can also choose � by cross-validation. The work of Blanchet et al. (2016) compares
the asymptotically optimal choice �⇤(n) against cross-validation, concluding that the performance
is comparable in the experiments performed. In this paper, we use cross validation to choose �, but
the insights behind the limiting behavior of (5) are useful, as we shall see, to inform the design of
our algorithms.

More generally, the DRO formulation (1) is appealing because the distributional uncertainty endows
the estimation of � directly with a mechanism to enhance generalization properties. To wit, we
can interpret (1) as a game in which we (the outer player) choose a decision �, while the adversary
(the inner player) selects a model which is a perturbation, P , of the data (encoded by Pn). The
amount of the perturbation is dictated by the size of � which, as discussed earlier, is data driven.
But the type of perturbation and how the perturbation is measured is dictated by Dc(P, Pn). It
makes sense to inform the design of Dc(·) using a data-driven mechanism, which is our goal in this
paper. The intuition is to allow the types of perturbations which focus the e↵ort and budget of
the adversary mostly on out-of-sample exploration over regions of relevance.

The type of benefit that is obtained by informing Dc (P, Pn) with data is illustrated in Figure 1(a)
below. Figure 1(a) illustrates a classification task. The data roughly lies on a lower dimensional

Figure 1. Stylized examples illustrating the need for data-driven cost function.

non-linear manifold. Some data which is classified with a negative label is seen to be “close” to
data which is classified with a positive label when seeing the whole space (i.e. R2) as the natural
ambient domain of the data. However, if we use a distance similar to the geodesic distance intrinsic
to the manifold we would see that the negative instances are actually far from the positive instances.
So, the generalization properties of the algorithm would be enhanced relative to using a standard
metric in the ambient space, because with a given budget � the adversarial player would be allowed
perturbations mostly along the intrinsic manifold where the data lies and instances which are
surrounded (in the intrinsic metric) by similarly classified examples will naturally carry significant
impact in testing performance. A quantitative example to illustrate this point will be discussed in
the sequel.

6 BLANCHET, J., KANG, Y., ZHANG, F., AND MURTHY, K.

the k-NN criterion), Yi = Yj . If Yi 6= Yj , then we have that (Xi, Xj) 2 N .
The work of Xing et al. (2002), one of the earlier reference on the subject, suggests considering

min
⇤2PSD

X

(Xi,Xj)2M

d

2
⇤ (Xi, Xj)(7)

s.t.

X

(Xi,Xj)2N

d

2
⇤ (Xi, Xj) � �̄.(8)

In words, the previous optimization problem minimizes the total distance between pairs that should
be connect, while keeping the pairs that should not connect well separated. The constant �̄ > 0 is
somewhat arbitrary (given that ⇤ can be normalized by �̄, we can choose �̄ = 1).

The optimization problem (8) is an LP problem on the convex cone PSD and it has been widely
studied. Since ⇤ 2 PSD, we can always write ⇤ = LL

T , and therefore d⇤(Xi, Xj) = kXi �Xjk⇤ :=
kLXi � LXjk2 . There are various techniques which can be used to exploit the PSD structure to
e�ciently solve (8); see, for example, Xing et al. (2002) for a projection-based algorithm; or Schultz
and Joachims (2004), which uses a factorization-based procedure; or the survey paper Bellet et al.
(2013) for the discussion of a wide range of techniques.

We have chosen formulation (8) to estimate ⇤ because it is intuitive and easy to state, but the topic
of learning Mahalanobis distances is an active area of research and there are di↵erent algorithms
which can be implemented (see Li et al. (2016)).

3.2.2. Using Mahalanobis Distance in Data-Driven DRO . Let us assume that the underlying data
takes the form Dn = {(Xi, Yi)}ni=1, where Xi 2 R

d and Yi 2 R and the loss function, depending on a
decision variable � 2 R

m, is given by l(x, y,�). Note that we are not imposing any linear structure
on the underlying model or in the loss function. Then, motivated by the cost function (4), we may
consider

(9) c⇤

�

(x, y), (x0, y0)
�

= d

2
⇤

�

x, x

0�
I

�

y = y

0�+1I

�

y 6= y

0�
,

for ⇤ 2 PSD. The infinite contribution in the definition of c⇤ (i.e. 1 · I (y 6= y

0)) indicates that
the adversarial player in the DRO formulation is not allowed to perturb the response variable.
Even in this case, since the definitions of M and N depend on Wi = (Xi, Yi) (in particular, on
the response variable), cost function c⇤(·) (once ⇤ is calibrated using, for example, the method
discussed in the previous subsection), will be informed by the Yis. Then, we estimate � via

(10) min
�

sup
P :Dc⇤ (P,Pn)�

E[l(X,Y,�)].

It is important to note that ⇤ has been applied only to the definition of the cost function.

The intuition behind the formulation can be gained in the context of a logistic regression setting,
see the example in Figure 1(b): Suppose that d = 2, and that Y depends only on X(1) (i.e.
the first coordinate of X). Then, the metric learning procedure in (8) will induce a relatively
low transportation cost across the X(2) direction and a relatively high transportation cost in the
X(1) direction, whose contribution, being highly informative, is reasonably captured by the metric
learning mechanism. Since the X(1) direction is most impactful, from the standpoint of expected
loss estimation, the adversarial player will reach a compromise, between transporting (which is
relatively expensive) and increasing the expected loss (which is the adversary’s objective). Out of
this compromise the DRO procedure localizes the out-of-sample enhancement, and yet improves
generalization.

Take

min
�2B

sup
P :Dc(P,Pn)�

EP

⇥
`(Yi,�

TXi)
⇤

c(x, y) = (x� y)T⇤(x� y)

Comparison of test error performance between L1-regularized logistic
regression and metric-learning DRO

0

0.25

0.5

0.75

1

Breast cancer QSAR Magic telescope Molecular biology Spambase

L1-reg. Metric learning DRO

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

A flexible & attractive approach that allows

(OT-DRO)

Optimal mass transportation based DRO:

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

A flexible & attractive approach that allows

(OT-DRO)

Optimal mass transportation based DRO:

to recast useful machine learning algorithms exactly as
specific instances of (OT-DRO)

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

A flexible & attractive approach that allows

(OT-DRO)

Optimal mass transportation based DRO:

to recast useful machine learning algorithms exactly as
specific instances of (OT-DRO)

a statistically principled approach towards selecting the
radius of ambiguity region

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

A flexible & attractive approach that allows

(OT-DRO)

Optimal mass transportation based DRO:

to recast useful machine learning algorithms exactly as
specific instances of (OT-DRO)

a statistically principled approach towards selecting the
radius of ambiguity region

scalable iterative schemes that are “at least as fast’’, or
“even faster” than the non-robust counterpart

inf
�

sup
P :D(P,Pn)�

EP [`(X;�)]

A flexible & attractive approach that allows

(OT-DRO)

Optimal mass transportation based DRO:

to recast useful machine learning algorithms exactly as
specific instances of (OT-DRO)

a statistically principled approach towards selecting the
radius of ambiguity region

scalable iterative schemes that are “at least as fast’’, or
“even faster” than the non-robust counterpart

the flexibility to inform the geometry of the ambiguity region
from data and the improved performance it offers!

Relationship with adversarial examples in deep learning. Following the intriguing
discovery in [2] that deep learning models are vulnerable to adversarial examples, there has
been a tremendous interest in identifying specific types of adversarial examples that make
machine learning models misclassify, and as well in developing training methods that utilize
these adversarial examples to generate models that are robust to adversarial attacks.

The objective of this section is to examine how a popular method to develop adversarial
examples (samples) in the so called “adversarial training” relates with the adversarial probabil-
ity distributions that optimal transport based distributionally robust optimization procedures
systematically hedge against.

To begin with, given a test sample X, [1] considers generating an adversarial example X̃
such that the inner product with the weight vector, wT X̃, di↵ers the most from wTX, while
maintaining that kX̃ � Xk1 ✏ for some small ✏ > 0. If, for example, X is an image and " is
small, the worst-case adversarial image sample X̃ = X+"sign(w) may have no visible di↵erences
from the true image; yet, the huge di↵erence in inner products, |wT X̃ � wTX| = "w̄m, where
m = #dimensions and w̄ = average weight, may tip many machine learning algorithms to
misclassify in high dimensional examples where m is large.

Now, for a model with loss functions ` that depends nonlinearly on wTX, since finding wT X̃
that maximizes loss ` while satisfying the constraint kX̃ � Xk1 ✏ may be computationally
hard, [1] considers linearizing the loss to generate adversarial images as follows: X̃ = X +
"sign (r

X

`(X, y; w)) . Setting ✏ = 0.25, it is observed in [1] that such small perturbations cause
standard shallow softmax and maxout classifiers to have error rates as high as 99.9% and
89.4%, respectively, on MNIST test set, with high degrees of confidence. Such high degrees of
misclassification are know to persist for various other classifiers and datasets as well. Figure 1
below just present an example from [1]:Published as a conference paper at ICLR 2015

+ .007 � =

x sign(rxJ(�, x, y))
x +

✏sign(rxJ(�, x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let � be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(�, x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of �, obtaining an optimal max-norm
constrained pertubation of

� = ✏sign (rxJ(�, x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y � {�1, 1} with P (y = 1) = �
�
w�x + b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y�pdata�(�y(w�x + b))

where �(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Figure 1. Misclassification due to adversarial perturbations applied to
GoogleNet (Example from [1]). While a human would classify both the fig-
ures as pandas, the adversarial perturbation makes the model misclassify the
image in the right hand side as a gibbon with high degree of confidence. See [1]
for more examples.

1

[Szegedy et al ’15]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(r
x

J(✓,x, y))
x+

✏sign(r
x

J(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Relationship with adversarial examples in deep learning. Following the intriguing
discovery in [2] that deep learning models are vulnerable to adversarial examples, there has
been a tremendous interest in identifying specific types of adversarial examples that make
machine learning models misclassify, and as well in developing training methods that utilize
these adversarial examples to generate models that are robust to adversarial attacks.

The objective of this section is to examine how a popular method to develop adversarial
examples (samples) in the so called “adversarial training” relates with the adversarial probabil-
ity distributions that optimal transport based distributionally robust optimization procedures
systematically hedge against.

To begin with, given a test sample X, [1] considers generating an adversarial example X̃
such that the inner product with the weight vector, wT X̃, di↵ers the most from wTX, while
maintaining that kX̃ � Xk1 ✏ for some small ✏ > 0. If, for example, X is an image and " is
small, the worst-case adversarial image sample X̃ = X+"sign(w) may have no visible di↵erences
from the true image; yet, the huge di↵erence in inner products, |wT X̃ � wTX| = "w̄m, where
m = #dimensions and w̄ = average weight, may tip many machine learning algorithms to
misclassify in high dimensional examples where m is large.

Now, for a model with loss functions ` that depends nonlinearly on wTX, since finding wT X̃
that maximizes loss ` while satisfying the constraint kX̃ � Xk1 ✏ may be computationally
hard, [1] considers linearizing the loss to generate adversarial images as follows: X̃ = X +
"sign (r

X

`(X, y; w)) . Setting ✏ = 0.25, it is observed in [1] that such small perturbations cause
standard shallow softmax and maxout classifiers to have error rates as high as 99.9% and
89.4%, respectively, on MNIST test set, with high degrees of confidence. Such high degrees of
misclassification are know to persist for various other classifiers and datasets as well. Figure 1
below just present an example from [1]:Published as a conference paper at ICLR 2015

+ .007 � =

x sign(rxJ(�, x, y))
x +

✏sign(rxJ(�, x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let � be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(�, x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of �, obtaining an optimal max-norm
constrained pertubation of

� = ✏sign (rxJ(�, x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y � {�1, 1} with P (y = 1) = �
�
w�x + b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y�pdata�(�y(w�x + b))

where �(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Figure 1. Misclassification due to adversarial perturbations applied to
GoogleNet (Example from [1]). While a human would classify both the fig-
ures as pandas, the adversarial perturbation makes the model misclassify the
image in the right hand side as a gibbon with high degree of confidence. See [1]
for more examples.

1

[Szegedy et al ’15]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(r
x

J(✓,x, y))
x+

✏sign(r
x

J(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Adversarial Resistance (Upper Bound) Robustness Guarantee (Lower Bound)
wrt to L2-norm wrt to L2-norm

Figure 3: Left: Adversarial resistance wrt to L2-norm on test set of CIFAR10. Right: Average robustness
guarantee on the test set wrt to L2-norm for the test set of CIFAR10 for di�erent neural networks (one hidden
layer, 1024 HU) and hyperparameters. While Cross-Lipschitz regularization yields good test errors, the guarantees
are not necessarily stronger. Top row: CIFAR10 (plain), Middle: CIFAR10 trained with data augmentation,
Bottom: Adversarial Training.

Original, Class 9 K-SVM, Pred:4, Î”Î2 = 3.4 K-CL, Pred:4, Î”Î2 = 5.9

NN-WD, Pred:4, Î”Î2 = 1.7 NN-DO, Pred:8, Î”Î2 = 1.7 NN-CL, Pred:4, Î”Î2 = 2.1
Figure 4: Top left: original test image, for each classifier we generate the corresponding adversarial sample which
changes the classifier decision (denoted as Pred). Note that for the kernel methods this new decision makes sense,
whereas for all neural network models the change is so small that the new decision is clearly wrong.

We show further examples below.

15

“With 4 parameters, I can fit an elephant,
and with 5, I can make him wiggle his trunk”

-von Neumann

Mayer et al ‘10

Robust Physical Perturbation Lab (Stationary) Test Field (Drive-By) Test

Sequence of physical road signs
under different conditions

Physical road signs with adversarial
perturbation under different conditions

Video sequences taken under
different driving speeds

RP2,
Resizing

Different types of physical
adversarial examples

Stop Sign → Speed Limit Sign Stop Sign → Speed Limit Sign

Cropping,
Resizing

Sample Per
K Frames,
Cropping,
Resizing

Fig. 2: Pipeline for generating and evaluating physical adversarial perturbations in real world.

4) Given the lack of a standardized methodology in evalu-
ating physical adversarial perturbation, we propose an
evaluation methodology to study the effectiveness of
physical perturbations in real world scenarios. For the
road sign recognition system, the methodology consists
of two stages: a stationary test, and a drive-by test using
a vehicle. The tests aim to capture dynamic real-world
conditions which an autonomous vehicle might experience
(Section V).

5) We provide a thorough evaluation of our physical adver-
sarial examples against LISA-CNN and GTSRB*-CNN
using the proposed methodology. We find that:

LISA-CNN In a stationary test: a subtle poster attack
causes a Stop sign to be misclassified as a Speed Limit
45 sign in 100% of the testing conditions (15 out of 15
images); a camouflage graffiti attack and an abstract art
attack cause a Stop sign to be misclassified as a Speed
Limit 45 sign in 66.67% (10 out of 15) and 100% (15 out
of 15) of the test cases, respectively.
LISA-CNN In a drive-by test: a subtle poster attack causes
a Stop sign to be misclassified as a Speed Limit 45 sign
in 100% of the extracted video frames (37 out of 37
frames); a camouflage abstract art attack has the same
misclassification effect in 84.8% of the extracted video
frames (28 out of 33 frames; we sampled every 10 frames
in both cases).
GTSRB*-CNN In a stationary test: a camouflage abstract
art attack causes a Stop sign to be misclassified as a
Speed Limit 80 sign in 80% of all test cases (12 out of
15 images).
GTSRB*-CNN In a drive-by test: a camouflage abstract
art attack causes a Stop sign to be misclassified as a Speed
Limit 80 sign in 87.5% of the extracted video frames (28
out of 32 frames; we sampled every 10 frames).

These results provide a strong case for the potential

consequences of adversarial attacks on deep learning models
that interact with the physical world. We believe this work can
serve to inform future defense research and raise awareness
on risks that physical learning systems might face. Please visit
https://iotsecurity.eecs.umich.edu/#roadsigns for sample images,
videos, and other resources..

II. RELATED WORK

We survey the related work in generating adversarial
examples and note that most of these works assume digital
access to the input vectors. Specifically, given a classifier f✓(·)
with parameters ✓ and an input x with ground truth label y
for x, it is possible to generate an adversarial example x

0 that
is close to x but causes the classifier to output f✓(x0) 6= y

(in untargeted attacks), or for a specific y

0, f✓(x0) = y

0 (in
targeted attacks). We also provide a discussion of recent efforts
at making adversarial examples work in the physical world.

A. Adversarial Examples

Adversarial examples are an active area of research. Good-
fellow et al. proposed the fast gradient sign (FGS) method
to add small magnitude perturbations that fool classifiers by
calculating the gradient once, leading to untargeted attacks [5].
The generated adversarial instance x

0 is computed as follows:

x

0 = P (x+ ✏ sign(5✓J(x, y))), (1)

where sign is a function that outputs the sign of its operand, ✏
is a parameter controlling the magnitude of the perturbation,
5✓ is the gradient with respect to the model parameters, and
P (·) is a projection function that maps each dimension of the
feature vector x to the valid range of pixel values, i.e. [0, 255].
The loss function J(x, y) computes the classification loss based
on the feature vector x and the corresponding label y.

Another approach for generating adversarial perturbations
uses an iterative optimization-based algorithm to search for

3

[Evtimov et al 2015]

Robust Physical Perturbation Lab (Stationary) Test Field (Drive-By) Test

Sequence of physical road signs
under different conditions

Physical road signs with adversarial
perturbation under different conditions

Video sequences taken under
different driving speeds

RP2,
Resizing

Different types of physical
adversarial examples

Stop Sign → Speed Limit Sign Stop Sign → Speed Limit Sign

Cropping,
Resizing

Sample Per
K Frames,
Cropping,
Resizing

Fig. 2: Pipeline for generating and evaluating physical adversarial perturbations in real world.

4) Given the lack of a standardized methodology in evalu-
ating physical adversarial perturbation, we propose an
evaluation methodology to study the effectiveness of
physical perturbations in real world scenarios. For the
road sign recognition system, the methodology consists
of two stages: a stationary test, and a drive-by test using
a vehicle. The tests aim to capture dynamic real-world
conditions which an autonomous vehicle might experience
(Section V).

5) We provide a thorough evaluation of our physical adver-
sarial examples against LISA-CNN and GTSRB*-CNN
using the proposed methodology. We find that:

LISA-CNN In a stationary test: a subtle poster attack
causes a Stop sign to be misclassified as a Speed Limit
45 sign in 100% of the testing conditions (15 out of 15
images); a camouflage graffiti attack and an abstract art
attack cause a Stop sign to be misclassified as a Speed
Limit 45 sign in 66.67% (10 out of 15) and 100% (15 out
of 15) of the test cases, respectively.
LISA-CNN In a drive-by test: a subtle poster attack causes
a Stop sign to be misclassified as a Speed Limit 45 sign
in 100% of the extracted video frames (37 out of 37
frames); a camouflage abstract art attack has the same
misclassification effect in 84.8% of the extracted video
frames (28 out of 33 frames; we sampled every 10 frames
in both cases).
GTSRB*-CNN In a stationary test: a camouflage abstract
art attack causes a Stop sign to be misclassified as a
Speed Limit 80 sign in 80% of all test cases (12 out of
15 images).
GTSRB*-CNN In a drive-by test: a camouflage abstract
art attack causes a Stop sign to be misclassified as a Speed
Limit 80 sign in 87.5% of the extracted video frames (28
out of 32 frames; we sampled every 10 frames).

These results provide a strong case for the potential

consequences of adversarial attacks on deep learning models
that interact with the physical world. We believe this work can
serve to inform future defense research and raise awareness
on risks that physical learning systems might face. Please visit
https://iotsecurity.eecs.umich.edu/#roadsigns for sample images,
videos, and other resources..

II. RELATED WORK

We survey the related work in generating adversarial
examples and note that most of these works assume digital
access to the input vectors. Specifically, given a classifier f✓(·)
with parameters ✓ and an input x with ground truth label y
for x, it is possible to generate an adversarial example x

0 that
is close to x but causes the classifier to output f✓(x0) 6= y

(in untargeted attacks), or for a specific y

0, f✓(x0) = y

0 (in
targeted attacks). We also provide a discussion of recent efforts
at making adversarial examples work in the physical world.

A. Adversarial Examples

Adversarial examples are an active area of research. Good-
fellow et al. proposed the fast gradient sign (FGS) method
to add small magnitude perturbations that fool classifiers by
calculating the gradient once, leading to untargeted attacks [5].
The generated adversarial instance x

0 is computed as follows:

x

0 = P (x+ ✏ sign(5✓J(x, y))), (1)

where sign is a function that outputs the sign of its operand, ✏
is a parameter controlling the magnitude of the perturbation,
5✓ is the gradient with respect to the model parameters, and
P (·) is a projection function that maps each dimension of the
feature vector x to the valid range of pixel values, i.e. [0, 255].
The loss function J(x, y) computes the classification loss based
on the feature vector x and the corresponding label y.

Another approach for generating adversarial perturbations
uses an iterative optimization-based algorithm to search for

3

[Evtimov et al 2015]

Some preprints

Quantifying distributional model risk via optimal transport
J Blanchet and K Murthy
2016 - https://arxiv.org/abs/1604.01446

Robust Wasserstein Profile Inference and its applications to Machine learning
J Blanchet, Y Kang and K Murthy
2016 - https://arxiv.org/abs/1610.05627

Data-driven optimal cost selection for Distributionally Robust Optimization
J Blanchet, Y Kang, F Zhang and K Murthy
2017 - https://arxiv.org/pdf/1705.07152.pdf

Stochastic gradient descent for Optimal transport DRO
J Blanchet, K Murthy and F Zhang
(To be available soon)

https://arxiv.org/abs/1610.05627
https://arxiv.org/pdf/1705.07152.pdf

