Euclideanized Signals
Facilitating pheno-focused model exploration
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Goal: Increase lampposts for Dark Matter searches

But: How to count the experimental lampposts?



Definition of “Number of lampposts”
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Heuristic definition
* Frequentist: Number of models that can be discriminated at 1 sigma level.

* Bayesian: Jefferys prior (g) o \/detg (gj)_



Quantifying Sensitivity of DM Searches
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Questions that remain usually unanswered

* Canonediscriminate model A, B, C,...? Where do models “look the same’,
where do they differ?

* Would additional experiments break model degeneracies globally?

* What are the distinct phenomenological features of a model?



Fisher information

Log-likelihood ratio quantifies difference between parameter points
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* describes parameter uncertainties 0)

* provides a metric on the model parameter space = Information geometry!

Technical challenges
* Fisher matrix is
* ..often singular, changes rank
* ...unaware of parameter boundaries
* ..unaware of non-local model degeneracies
* Need to pair-wise compare compare (often millions of) parameter points



Isometric embedding of model parameter space

Model parameters Embedding in higher-dimensional space
7c e with unit Fisher information matrix.
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d: Number of model parameters
n: Number of experimental data bins

Likelihood ratios = Euclidean distance

TS(6:,0,) = —2In -~ [|Z(61) — F(62)])

Number of lampposts = “Volume” of projected hypersurface



Combining instruments

Each instrument has its
own embedding

CTA

ATLAS

XENON-nT

Combination of instruments is
straightfoward

TS ~ |17 — &l + 7 - B>+

Experimental design: Maximize volume of embedding



Venn diagrams for DM searches

Ouantify Venn diagrams of dark matter models
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made by Tim M.F Tait Litihest Hipgs

Volumina: Number of detectable models
Overlaps: Numer of detections that would be compatible with both models



An example implementation

The forecasting pipeline is build around the statistical model implemented in
swordfish. This is a Poisson process with Gaussian uncertainties (aka Cox-
process).
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np : Dimensionality of measurement

Covers: Indirect, direct & collider searches, various cosmology observables, ...



Motivation of embedding equations

Starting point: Fisher information matrix
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This motivates the embedding equation
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Comparison of exact and approx TS

Comparison of exact (profile likelihood) and approximate (euclideanized
signal) TS values, for randomly generated models.
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Agreement within 20%, for signal-limited, Poisson background limited

and systematics limited regions. 11



A simple example: Singlet DM

Expected confidence region around benchmark point (red cross)
(assuming some toy indirect search likelihood)
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Based on the chains from GAMBIT, Singlet DM, 2017
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CTA example (illustration)

Venn diagram for possible CTA DM detections
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Estimate number of 1-sigma regions

Npoints

reglons — E

—

N(6): Number of nearest neigbours within unit ball.
(needs to be corrected for effective dimensionality, filling factor)
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CTA example (illustration)
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Only low-significant signals contribute to overlap 15



What else?

* “Lampposts” define minimal search grid for new physics searches
(information geometry already used in, e.g., pulsar searches)

* Dimensionality of euclideanized signal manifold is proxy for effective degrees
of freedom of model
— Frequentist p-values

* Euclideanized signals can be used to estimate for Fisher information matrix
in original model parameter space
— Can be used to optimize parameter scans? (e.g. optimal kernal for
distributed Gaussian processes)

* Euclideanized signals can be used as starting point for dimensionality
reduction (manifold learning)

— Automatic feature extraction i : .
\ " log(M/GeV)
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Automatic feature classification?
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Manifold learning (here MDS)
applied to spectral shape
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MDS performs dimensionality reduction
(here into 2-dim) while preserving
distances.
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MDS figures out that there is only one
relevant parameter (mass) that determines
the spectral shape.
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