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What questions am I trying to answer?
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• I don’t have a strong theore0cal prior 
• In this case, what is the best way to maximize a discovery? 
• If we find something, what is the best set of experiments 

to build? 
• Both ques0ons come down to maximizing the the 

informa0on gain from mul0ple experiment for a large 
variety of models



Why is forecasting important
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Equivalent Counts
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Logic: 
• Signal to Noise of events in a single bin example tells us about the significance of 

the signal  
• Extend same technique to mul0-bin case 
• Not all signal events sta0s0cally contribute if they are drowned out by large 

backgrounds 
• Convenient to define significant signal and background events using the FIM
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• Maximum deviations from coverage corrected Monte Carlos up to 40%
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Increasing Exposure

= High Information = Low Information
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Visualisation
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Treat the Fisher Information 
Matrix as a local metric on 
the space of parameters

Equal Geodesic Confidence Contours
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• The distance between two parallel streamlines corresponds approximately 
to 1σ in the direction perpendicular to the streamlines. 

•  The latter condition is realized by adding or removing lines as necessary.

• Trace geodesics in different directions and connect the curves 
• Matches very accurately with traditional confidence contours
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CTA and Xenon1T
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Replicated analysis from 
Silverwood et al. Simplified 1-D Xenon1T projection
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https://arxiv.org/abs/1408.4131


Swordfish
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Counting Experiment
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= C. Weniger’s talk (later today)

Physics that you need to worry about
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Questions? - for you

• In what other ways can we develop the tool 
such that it’s useful? 

• Any other quantities we can compute from 
the fisher matrix which would be useful for 
forecasting
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Questions? - for us

• Are there other nice ways to visualize the 
parameter space? 

• Is there any additional information we can 
derive from the likelihood surface... manifold 
learning, clustering?



Backup

11
Thomas D. P. EdwardsFast forecasting for counting experiments - 01/03/18



12
Thomas D. P. EdwardsFast forecasting for counting experiments - 01/03/18

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103

Background parameter, θ2

100

101

102

E
x
p
ec
te
d
si
gn

al
co
u
n
ts
,
λ
U 1

Projected 95% CL upper limits

EC method

MLR method

10−2 10−1 100 101 102

Effective background, b1

100

101

102

E
x
p
ec
te
d
si
gn

al
co
u
n
ts
,
λ
U 1

Projected 95% CL upper limits

EC method

MLR method

Neyman belt


