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THE

INSTABILITY OF ELECTRIFIED LIQUID SURFACES.

BY JOHN ZELENY.

N a recent paper' a brief description was given of the appearance of
a liquid surface undergoing disintegration owing to instability arising

from an electric charge.
The observations recorded were made in connection with some experi-

ments on the electric discharge from liquid surfaces and the work was
confined to eye observations, through a microscope, of the surface in
question when this was illuminated by the light of a spark from a Leyden
jar. Some of the phenomena appeared to be of sufficient interest to
warrant the making of a more accurate record of them by the aid of
photography, and a few results obtained by this method are described
in this paper.
The apparatus used for getting the electrified surface was similar to

that used previously and for details reference is made to the paper men-
tioned. BrieHy, the apparatus consisted of a vertical glass tube, o.92
mm. in diameter, joined from its upper enlarged end by rubber tubing to
a reservoir of the liquid. A drop of liquid at the lower end of the small
glass tube was the part under observation. The liquid was charged to
several thousand volts from a static machine, and a grounded plate was
placed about 2 cm. below the end of the glass tube. Ethyl alcohol was
used for nearly all of the experiments inasmuch as water is not a con-
venient liquid for showing some of the phenomena, because, owing to its
high surface tension, the potential at which instability of its surface is
first obtained in air at atmospheric pressure is nearly the same as that
at which an electric discharge begins.
2. The source of light mostly employed in taking instantaneous pictures

of the liquid was a condenser discharge between magnesium electrodes in
air. For some of the exposures the spark was passed through mercury
' Proc. Camb. Philos. Soc., z8, p. 7z, xgxs.
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Instability of an electrified liquid surface 

J. Zeleny, Phys. Rev. 10, 1-6 (1917)

motivated by the analysis of Lord Rayleigh: 
an isolated charged spherical drop  
becomes unstable, when Q > QR:
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in Chemistry being awarded to Fenn [2]. The electrospray technique relies on the formation of a
thin steady jet of an electrically conducting liquid upon application of a sufficiently high voltage
to a capillary tip, as first observed by Zeleny [3]. As the voltage at the tip is increased, the liquid
meniscus progressively distorts towards a conical shape, until at a critical voltage a Taylor cone
is formed, emitting a thin liquid jet that quickly breaks into a fine mist of charged liquid droplets
[4–6]. As the resulting droplets move through the ambient gas, the solvent slowly evaporates,
pushing the droplets towards the so-called Rayleigh limit, corresponding to an instability of a
conducting spherical drop with respect to arbitrarily small elongations [7]. Upon losing stability,
the droplets undergo Coulomb fission by forming transient jets emitting tiny droplets that carry a
small fraction of the parent droplet’s mass, but a substantial fraction of its total charge [8–11]. This
process is repeated until the solvent in the daughter droplets is completely evaporated, and the
remaining ions enter into the gas phase. Under certain conditions, direct evaporation of charged
ionic species from the droplet is also possible [5,6].

The onset of the phenomena described above has long been interpreted with the help of
the basic variational model that treats the electrified liquid as a perfect conductor [4,6,7,12,13].
To describe the equilibrium configurations of a charged liquid droplet, one seeks local minimizers
of the following geometric energy functional:

E(Ω) = σP(Ω) + Q2

2C(Ω)
, |Ω| = V, (1.1)

where Ω ⊂ R3 is the spatial domain occupied by the liquid, |Ω| denotes the volume of Ω fixed to
the value V, σ is the surface tension coefficient, Q is the total electric charge on the liquid droplet,
P(Ω) is the perimeter of the set Ω understood in the sense of De Giorgi,

P(Ω) = sup
{∫

Ω
∇ · φ(y) dy : φ ∈ C1

c (R3; R3), |φ| ≤ 1
}

, (1.2)

which coincides with the surface area for regular sets [14], and C(Ω) is the electrical capacitance
of Ω , which is defined as (using the SI units)

C−1(Ω) = inf
µ(Ω)=1

∫

Ω

∫

Ω

1
4πε0|x − y|

dµ(x) dµ(y), (1.3)

where the infimum is taken over all non-negative Borel measures (charge densities) supported
on Ω , and ε0 is the permittivity of vacuum (assuming the ambient fluid has negligible dielectric
response). Note that the infimum in (1.3) is attained whenever Ω is compact, with the minimizing
measure concentrating on ∂Ω [15]. Also, C(Ω) can be equivalently expressed as [16]

C(Ω) = ε0 inf
u∈D1(R3)∩C(R3)

u≥1 in Ω

∫

R3
|∇u|2 dx, (1.4)

and the infimum is attained when Ω is a compact set with a sufficiently regular boundary.
The energy in (1.1) is the sum of the surface energy associated with the liquid–gas interface

and the electrostatic self-energy of a conducting body occupying Ω and carrying charge Q. It has
been widely assumed that this energy is locally minimized by a ball of volume V = 4

3 πR3, as long
as the charge Q does not exceed the critical charge QR given by

QR = 8π

√
ε0σR3. (1.5)

This result was obtained in the celebrated 1882 paper of Lord Rayleigh [7], who performed a
linear stability analysis of the spherical droplet with respect to small non-spherical perturbations.
Similarly, the Taylor cone at the onset of jet formation has been interpreted as a self-similar
equilibrium solution of the Euler–Lagrange equation associated with the energy in (1.1), leading
to the prediction of a unique opening half-angle of about 49.3◦ [4]. Recent experiments to
determine the instability threshold for levitating charged drops confirm the onset of instability at
the Rayleigh limit charge Q = QR [17] (for earlier studies, see [18–20]), although lower threshold
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Lord Rayleigh, Phil. Mag. 14, 184-186 (1882)



Electrospray
Electrospraying in cone-jet mode 1067 

Fig. 2. Cone-jet  and spray of methanol  with a small amount  of hydrochloric acid. The electrical 
conductivity K = 4 . 5  × 10 -3 S m  -1 was measured using a method suggested by Prof. Fenn (see 

Fernandez de la Mora, 1992). The flow rate increases from (A) to (C). 

P. Kebarle, M. Peschke / Analytica Chimica Acta 406 (2000) 11–35 13

Fig. 1. Schematic of major processes occurring in electrospray. Penetration of imposed electric field into liquid leads to the formation of
electric double layer in liquid. Enrichment of the surface of liquid by positive electrolyte ions leads to the destabilization of meniscus and
the formation of cone and jet which emit droplets with an excess of positive ions. Charged droplets shrink by evaporation and split into
smaller droplets and finally lead to gas phase ions. Reprinted with permission from P. Kebarle and L. Tang, Anal. Chem. 65 (1993) 972A.
© 1993 American Chemical Society.

cally 0.2mm o.d. and 0.1mm i.d. and located 1–3 cm
from the counter electrode. The counter electrode may
be a plate with an orifice leading to the mass spec-
trometric sampling system or a sampling capillary
mounted on a plate where the sampling capillary leads
to the vacuum chamber and mass spectrometer.
The typical solution present in the capillary consists

of a polar solvent in which electrolytes are soluble.
As an example, we can use methanol as solvent and a
simple salt like NaCl or BHCl, where B is an organic
base, as the solute. Low electrolyte concentrations,
10−5–10−3 mol l−1 (M), are typically used in ESMS.
For simplicity, we will consider only the positive ion
mode in the subsequent discussion.
The field Ec, when turned on, will penetrate the so-

lution at the capillary tip and the positive and nega-
tive electrolyte ions in the solution will move under
the influence of the field until a charge distribution
results which counteracts the imposed field and leads
to essentially field free conditions inside the solution.
When the capillary is the positive electrode, positive
ions will have drifted downfield in the solution, i.e.,
towards the meniscus of the liquid and negative ions
will have drifted away from the surface. The repulsion
between the positive ions on the surface overcomes
the surface tension of the liquid and the surface begins

to expand allowing the positive charges and liquid to
move downfield. A cone forms, the Taylor cone [4],
and if the applied field is sufficiently high, a fine jet
emerges from the cone tip which breaks up into small,
charged droplets (see Fig. 1).
The droplets are positively charged due to the ex-

cess of positive electrolyte ions on the surface of the
liquid cone and the cone jet. Thus, if the electrolyte
present in the solution was NaCl, the excess positive
ions near the surface would be Na+ ions and paired
Na+ and Cl− ions will be present inside the droplet.
The charged droplets, produced by the cone jet, drift
downfield through the air towards the counter elec-
trode. Solvent evaporation at constant charge leads to
droplet shrinkage and an increase in the electric field
normal to the surface of the droplets. At some given
radius R and charge q, the force due to the repulsion
of the surface charges becomes equal to the surface
tension force of the liquid. This condition is expressed
by Rayleigh’s stability limit [5]:

qRy = 8π(ε0γR3Ry)
1/2 (1)

where ε0 is the permitivity of vacuum and γ is the sur-
face tension of the solvent. Further evaporation leading
to a decrease in the radius below the Rayleigh value
leads to droplet fission. Droplet fission followed by

John Fenn (1917–2010)  

Nobel Prize 
Chemistry, 2002

development of methods 
for identification and 
structure analyses of 

biological macromolecules

Pantano et al., J. Aerosol Sci. 25, 1065-1077 (1994)

Kebarle et al., Anal. Chim. Acta. 406, 11-35 (2000)



Another kind of charged liquid: nuclear matter

- nucleons (protons and neutrons) are attracted by strong forces 
  and form a dense nuclear liquid

- near the nuclear liquid-vacuum interface nucleons experience 
  reduction of the binding energy, resulting in surface tension

- protons move so fast that the charge is uniformly distributed 
  throughout the nuclear liquid

- the competition of the attractive forces that tend to minimize the  
  the surface area with Coulombic repulsion leads to nuclear fission

- the same processes govern dense stellar matter

nuclear matter: consists mostly of protons and neutrons
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Gamow’s liquid drop model

in December 1928, while visiting Niels Bohr in 
Copenhagen, George Gamow conceived of the liquid 
drop model of the atomic nucleus

George Gamow (1904–1968)  
Portrait, 1932: courtesy of Elfriede and 

Igor Gamow 

the model treats nucleons as an incompressible, 
uniformly charged fluid with surface tension

warning: the original model is missing key physics 
(treats nuclear matter as a collection of alpha-
particles)

G. Gamow, Proc. R. Soc. Lond. A. 126, 632-644 (1930); 
W. Heisenberg, in: Institut International de Physique Solvay 

(Gauthier-Villars, Paris, 1934);  
C. von Weizsäcker, Z. Phys. 96, 431-458 (1935);

the model was further refined and brought to 
agreement with experiments by Heisenberg and  
Von Weizsäcker, following the discovery of neutron



Gamow’s liquid drop model

find

mathematically, the model gives rise to a geometric variational problem:

'JHVSF �� (FPSHF (BNPX 	QPSUSBJU
 ����
� "U UIF BHF
PG UXFOUZ�GPVS
 (FPSHF (BNPX JOUSPEVDFE UIF MJRVJE
ESPQ NPEFM UIBU TVDDFTTGVMMZ FYQMBJOFE UIF CBTJD
DIBSBDUFSJTUJDT PG UIF BUPNJD OVDMFJ BOE QSFEJDUFE
OVDMFBS ƌTTJPO BT B SFTVMU PG BO JOTUBCJMJUZ PG MBSHF
TQIFSJDBM OVDMFJ XJUI SFTQFDU UP OPOTQIFSJDBM
EJTUPSUJPOT�

PGNBTT PS FOFSHZ XIFO OVDMFPOT DPNF UPHFUIFS UP CJOE JO
UIF OVDMFVT BT B GVODUJPO PG UIF OVNCFS PG OVDMFPOT� 5IVT

JOEJSFDUMZ
 UIF NPEFM BMTP QSFEJDUFE UIF TQIFSJDBM TIBQF
PG NPTU OVDMFJ� 5IF NPEFMʍT VMUJNBUF USJVNQI DBNF GSPN
FYQMBJOJOH UIF QIFOPNFOPO PG OVDMFBS ʱTTJPO JO UFSNT
PG BO JOTUBCJMJUZ PG MBSHF TQIFSJDBM OVDMFJ XJUI SFTQFDU UP
OPOTQIFSJDBM EJTUPSUJPOT 	#PIS BOE 8IFFMFS
 ����
� 5IF
NPEFM IBT BMTP CFFO FYUFOTJWFMZ VTFE JO BTUSPQIZTJDT
UP EFTDSJCF FYPUJD QIBTFT PG OVDMFBS NBUUFS BU VMUSBIJHI
EFOTJUJFT GPVOE JO OFVUSPO TUBST 	#BZN
 #FUIF
 BOE 1FUIJDL

����
�

*O UIF NPEFSO SFOEJUJPO PG (BNPXʍT MJRVJE ESPQ NPEFM
UIF BUUSBDUJWF TIPSU�SBOHF OVDMFBS GPSDF HJWFT SJTF UP
FYDFTT TVSGBDF FOFSHZ EVF UP MPXFS OVDMFPO EFOTJUZ OFBS
UIF OVDMFVT CPVOEBSZ
 XIJMF UIF QSFTFODF PG QPTJUJWFMZ
DIBSHFE QSPUPOT HJWFT SJTF UP B SFQVMTJWF $PVMPNCJD GPSDF�
4JODF UIF $PVMPNC FOFSHZ PG B QSPUPO JO B OVDMFVT JT
NVDI TNBMMFS UIBO JUT BWFSBHF LJOFUJD FOFSHZ EFUFSNJOFE
CZ TUSPOH OVDMFBS GPSDFT
 UP B HPPE BQQSPYJNBUJPO UIF
TQBUJBM EJTUSJCVUJPO PG DIBSHF JO B OVDMFVT JT VOJGPSN�
5IFSFGPSF
 NBUIFNBUJDBMMZ UIF FOFSHZ PG B OVDMFVT XJUIJO
UIF NPEFM NBZ CF XSJUUFO 	VQ UP TIBQF�JOEFQFOEFOU CVML
UFSNT BOE BGUFS B TVJUBCMF OPOEJNFOTJPOBMJ[BUJPO
 BT

	�
 չ	²
 ȫ� 1FS	²
 � ߋ�� ఐ²ఐ²
ࣈ[� ȇ [ࣉ 
ࣉࢴࣈࢴ

XIFSF UIF OVDMFVT ² ɷ ű� JT B NFBTVSBCMF TFU XJUI ʱYFE
WPMVNF ]²] � �ࢽ 8F SFGFS UP ࢽ BT ʐNBTT
ʑ XIJDI JT B
QBSBNFUFS QSPQPSUJPOBM UP UIF OVNCFS PG OVDMFPOT JO
B OVDMFVT� 1FS	²
 JT UIF QFSJNFUFS PG UIF TFU ²
 J�F�
 B
TVJUBCMZ HFOFSBMJ[FE OPUJPO PG UIF TVSGBDF NFBTVSF PG²ߕ�� 5IF HSPVOE TUBUF PG B OVDMFVT XJUI B HJWFO OVNCFS
PG OVDMFPOT JT UIFO UIF NJOJNJ[FS PG չ
 J�F�
 UIF TFU ² UIBU
BDIJFWFT UIF MFBTU FOFSHZ

	�
 
ࢽ	ࢵ ȫ� JOG ईչ	²
ȫ ]²] � 
उࢽ
GPS B HJWFO NBTT �ࢽ

B NBSSJBHF 	PS
SBUIFS EJWPSDF

PG UXP PMEFS
HFPNFUSJD
QSPCMFNT

6MUJNBUFMZ
 UIF QVSQPTF PG
UIJT MJRVJE ESPQ NPEFM JT UP
QSFEJDU �
 UIF TIBQF PG OV�
DMFJ
 �
 UIF OPOFYJTUFODF PG
BSCJUSBSJMZ MBSHF OVDMFJ
 BOE
�
 UIF FYJTUFODF PG B OVDMFVT
XJUI UIF MFBTU FOFSHZ QFS OV�
DMFPO 	UIF FMFNFOU IBWJOH
UIF HSFBUFTU OVDMFBS CJOE�
JOH FOFSHZ
� *U JT QSFDJTFMZ
UIF DPNQFUJUJPO CFUXFFO UIF
GPSDFT XIJDI USZ UPNJOJNJ[F

UIF TVSGBDF BSFB PG UIF OVDMFVT BOE UIPTF XIJDI USZ UP
TQSFBE UIF OVDMFBS DIBSHFT BQBSU UIBU NBLFT BOTXFSJOH
UIFTF RVFTUJPOT OPOUSJWJBM�

(BNPXʍT MJRVJE ESPQ QSPCMFN JT B NBSSJBHF 	PS SBUIFS
EJWPSDF
 PG UXP PMEFS HFPNFUSJD QSPCMFNT�
	�
 UIF $MBTTJDBM *TPQFSJNFUSJD 1SPCMFN PG NJOJNJ[JOH

UIF QFSJNFUFS PG B CPEZ XJUI ʱYFE NBTT �ࢽ BOE
	�
 UIF 1SPCMFN PG UIF &RVJMJCSJVN 'JHVSF PG B TFMG�

HSBWJUBUJOH ʲVJE CPEZ PG NBTT �ࢽ
'PS UIF ʱSTU QSPCMFN
 XIPTF SPPUT HP CBDL UP BOUJRVJUZ

4DIXBS[ EFNPOTUSBUFE UIF NJOJNJ[JOH QSPQFSUZ PG CBMMT
JO ���� GPS QJFDFXJTF�TNPPUI TFUT JO UISFF EJNFOTJPOT�
5IF DPNQMFUF TPMVUJPO XBT HJWFO JO ���� CZ %F (JPSHJ

XIP TIPXFE UIBU UIF VOJRVF NJOJNJ[FS PG UIF QFSJNFUFS
GVODUJPOBM BNPOH BMM NFBTVSBCMF TFUT XJUI ʱYFE NBTT
JT HJWFO CZ B CBMM� 4UBSUJOH XJUI /FXUPO 	����

 UIF TFD�
POE QSPCMFN BUUSBDUFE UIF BUUFOUJPO PG NBOZ DFMFCSBUFE
NBUIFNBUJDJBOT� "TTVNJOH [FSP BOHVMBS NPNFOUVN
 UIF
UPUBM QPUFOUJBM FOFSHZ PG B TFMG�HSBWJUBUJOH ʲVJE CPEZ

SFQSFTFOUFE CZ B NFBTVSBCMF TFU ² ɷ ű�
 JT HJWFO
 VQ UP B
DPOTUBOU
 CZ

	�
 ȇఐ²ఐ²
ࣈ[� ȇ [ࣉ 
ࣉࢴࣈࢴ ]²] � 
ࢽ

XIFSF ȇ]ࣈȇࣉ]ȇ� JT UIF QPUFOUJBM SFTVMUJOH GSPN UIF HSBWJ�
UBUJPOBM BUUSBDUJPO CFUXFFO UXP QPJOU NBTTFT BU QPTJUJPOTࣈ BOE ࣉ JO UIF ʲVJE� -ZBQVOPW 	����
 NBEF UIF ʱSTU
NBUIFNBUJDBM CSFBLUISPVHI CZ FTUBCMJTIJOH UIBU FWFSZ
SFHVMBS NJOJNJ[FS PG 	�
 JT B CBMM� 1PJODBS© DPNNFOUFE
PO -ZBQVOPWʍT QSPPG JO ���� BOE XFOU PO UP NBLF UIF
QSPCMFN GBNPVT JO IJT ���� USFBUJTF 'JHVSFT Eů&RVJMJCSF
EůVOF .BTTF 'MVJEF� "MNPTU UXFOUZ ZFBST MBUFS
 $BSMFNBO
	����
 TIPXFE UIBU CBMMT BSF JOEFFE NJOJNJ[FST� :FU JU
XBT OPU VOUJM UIF XPSL PG -JFC 	����
 UIBU B DPNQMFUF
TPMVUJPO CBTFE PO TUSJDU 3JFT[ SFBSSBOHFNFOU JOFRVBMJUZ
�4FF ű8)"5 *4ŷ1FSJNFUFS Ų JO UIF 0DUPCFS ���� /PUJDFT�

���� /ƪƯƤƞƠƮ ƪơ ƯƣƠ ".4 7ƪƧưƨƠ ��
 /ưƨƝƠƭ ��

'JHVSF �� (FPSHF (BNPX 	QPSUSBJU
 ����
� "U UIF BHF
PG UXFOUZ�GPVS
 (FPSHF (BNPX JOUSPEVDFE UIF MJRVJE
ESPQ NPEFM UIBU TVDDFTTGVMMZ FYQMBJOFE UIF CBTJD
DIBSBDUFSJTUJDT PG UIF BUPNJD OVDMFJ BOE QSFEJDUFE
OVDMFBS ƌTTJPO BT B SFTVMU PG BO JOTUBCJMJUZ PG MBSHF
TQIFSJDBM OVDMFJ XJUI SFTQFDU UP OPOTQIFSJDBM
EJTUPSUJPOT�

PGNBTT PS FOFSHZ XIFO OVDMFPOT DPNF UPHFUIFS UP CJOE JO
UIF OVDMFVT BT B GVODUJPO PG UIF OVNCFS PG OVDMFPOT� 5IVT

JOEJSFDUMZ
 UIF NPEFM BMTP QSFEJDUFE UIF TQIFSJDBM TIBQF
PG NPTU OVDMFJ� 5IF NPEFMʍT VMUJNBUF USJVNQI DBNF GSPN
FYQMBJOJOH UIF QIFOPNFOPO PG OVDMFBS ʱTTJPO JO UFSNT
PG BO JOTUBCJMJUZ PG MBSHF TQIFSJDBM OVDMFJ XJUI SFTQFDU UP
OPOTQIFSJDBM EJTUPSUJPOT 	#PIS BOE 8IFFMFS
 ����
� 5IF
NPEFM IBT BMTP CFFO FYUFOTJWFMZ VTFE JO BTUSPQIZTJDT
UP EFTDSJCF FYPUJD QIBTFT PG OVDMFBS NBUUFS BU VMUSBIJHI
EFOTJUJFT GPVOE JO OFVUSPO TUBST 	#BZN
 #FUIF
 BOE 1FUIJDL

����
�

*O UIF NPEFSO SFOEJUJPO PG (BNPXʍT MJRVJE ESPQ NPEFM
UIF BUUSBDUJWF TIPSU�SBOHF OVDMFBS GPSDF HJWFT SJTF UP
FYDFTT TVSGBDF FOFSHZ EVF UP MPXFS OVDMFPO EFOTJUZ OFBS
UIF OVDMFVT CPVOEBSZ
 XIJMF UIF QSFTFODF PG QPTJUJWFMZ
DIBSHFE QSPUPOT HJWFT SJTF UP B SFQVMTJWF $PVMPNCJD GPSDF�
4JODF UIF $PVMPNC FOFSHZ PG B QSPUPO JO B OVDMFVT JT
NVDI TNBMMFS UIBO JUT BWFSBHF LJOFUJD FOFSHZ EFUFSNJOFE
CZ TUSPOH OVDMFBS GPSDFT
 UP B HPPE BQQSPYJNBUJPO UIF
TQBUJBM EJTUSJCVUJPO PG DIBSHF JO B OVDMFVT JT VOJGPSN�
5IFSFGPSF
 NBUIFNBUJDBMMZ UIF FOFSHZ PG B OVDMFVT XJUIJO
UIF NPEFM NBZ CF XSJUUFO 	VQ UP TIBQF�JOEFQFOEFOU CVML
UFSNT BOE BGUFS B TVJUBCMF OPOEJNFOTJPOBMJ[BUJPO
 BT

	�
 չ	²
 ȫ� 1FS	²
 � ߋ�� ఐ²ఐ²
ࣈ[� ȇ [ࣉ 
ࣉࢴࣈࢴ

XIFSF UIF OVDMFVT ² ɷ ű� JT B NFBTVSBCMF TFU XJUI ʱYFE
WPMVNF ]²] � �ࢽ 8F SFGFS UP ࢽ BT ʐNBTT
ʑ XIJDI JT B
QBSBNFUFS QSPQPSUJPOBM UP UIF OVNCFS PG OVDMFPOT JO
B OVDMFVT� 1FS	²
 JT UIF QFSJNFUFS PG UIF TFU ²
 J�F�
 B
TVJUBCMZ HFOFSBMJ[FE OPUJPO PG UIF TVSGBDF NFBTVSF PG²ߕ�� 5IF HSPVOE TUBUF PG B OVDMFVT XJUI B HJWFO OVNCFS
PG OVDMFPOT JT UIFO UIF NJOJNJ[FS PG չ
 J�F�
 UIF TFU ² UIBU
BDIJFWFT UIF MFBTU FOFSHZ

	�
 
ࢽ	ࢵ ȫ� JOG ईչ	²
ȫ ]²] � 
उࢽ
GPS B HJWFO NBTT �ࢽ

B NBSSJBHF 	PS
SBUIFS EJWPSDF

PG UXP PMEFS
HFPNFUSJD
QSPCMFNT

6MUJNBUFMZ
 UIF QVSQPTF PG
UIJT MJRVJE ESPQ NPEFM JT UP
QSFEJDU �
 UIF TIBQF PG OV�
DMFJ
 �
 UIF OPOFYJTUFODF PG
BSCJUSBSJMZ MBSHF OVDMFJ
 BOE
�
 UIF FYJTUFODF PG B OVDMFVT
XJUI UIF MFBTU FOFSHZ QFS OV�
DMFPO 	UIF FMFNFOU IBWJOH
UIF HSFBUFTU OVDMFBS CJOE�
JOH FOFSHZ
� *U JT QSFDJTFMZ
UIF DPNQFUJUJPO CFUXFFO UIF
GPSDFT XIJDI USZ UPNJOJNJ[F

UIF TVSGBDF BSFB PG UIF OVDMFVT BOE UIPTF XIJDI USZ UP
TQSFBE UIF OVDMFBS DIBSHFT BQBSU UIBU NBLFT BOTXFSJOH
UIFTF RVFTUJPOT OPOUSJWJBM�

(BNPXʍT MJRVJE ESPQ QSPCMFN JT B NBSSJBHF 	PS SBUIFS
EJWPSDF
 PG UXP PMEFS HFPNFUSJD QSPCMFNT�
	�
 UIF $MBTTJDBM *TPQFSJNFUSJD 1SPCMFN PG NJOJNJ[JOH

UIF QFSJNFUFS PG B CPEZ XJUI ʱYFE NBTT �ࢽ BOE
	�
 UIF 1SPCMFN PG UIF &RVJMJCSJVN 'JHVSF PG B TFMG�

HSBWJUBUJOH ʲVJE CPEZ PG NBTT �ࢽ
'PS UIF ʱSTU QSPCMFN
 XIPTF SPPUT HP CBDL UP BOUJRVJUZ

4DIXBS[ EFNPOTUSBUFE UIF NJOJNJ[JOH QSPQFSUZ PG CBMMT
JO ���� GPS QJFDFXJTF�TNPPUI TFUT JO UISFF EJNFOTJPOT�
5IF DPNQMFUF TPMVUJPO XBT HJWFO JO ���� CZ %F (JPSHJ

XIP TIPXFE UIBU UIF VOJRVF NJOJNJ[FS PG UIF QFSJNFUFS
GVODUJPOBM BNPOH BMM NFBTVSBCMF TFUT XJUI ʱYFE NBTT
JT HJWFO CZ B CBMM� 4UBSUJOH XJUI /FXUPO 	����

 UIF TFD�
POE QSPCMFN BUUSBDUFE UIF BUUFOUJPO PG NBOZ DFMFCSBUFE
NBUIFNBUJDJBOT� "TTVNJOH [FSP BOHVMBS NPNFOUVN
 UIF
UPUBM QPUFOUJBM FOFSHZ PG B TFMG�HSBWJUBUJOH ʲVJE CPEZ

SFQSFTFOUFE CZ B NFBTVSBCMF TFU ² ɷ ű�
 JT HJWFO
 VQ UP B
DPOTUBOU
 CZ

	�
 ȇఐ²ఐ²
ࣈ[� ȇ [ࣉ 
ࣉࢴࣈࢴ ]²] � 
ࢽ

XIFSF ȇ]ࣈȇࣉ]ȇ� JT UIF QPUFOUJBM SFTVMUJOH GSPN UIF HSBWJ�
UBUJPOBM BUUSBDUJPO CFUXFFO UXP QPJOU NBTTFT BU QPTJUJPOTࣈ BOE ࣉ JO UIF ʲVJE� -ZBQVOPW 	����
 NBEF UIF ʱSTU
NBUIFNBUJDBM CSFBLUISPVHI CZ FTUBCMJTIJOH UIBU FWFSZ
SFHVMBS NJOJNJ[FS PG 	�
 JT B CBMM� 1PJODBS© DPNNFOUFE
PO -ZBQVOPWʍT QSPPG JO ���� BOE XFOU PO UP NBLF UIF
QSPCMFN GBNPVT JO IJT ���� USFBUJTF 'JHVSFT Eů&RVJMJCSF
EůVOF .BTTF 'MVJEF� "MNPTU UXFOUZ ZFBST MBUFS
 $BSMFNBO
	����
 TIPXFE UIBU CBMMT BSF JOEFFE NJOJNJ[FST� :FU JU
XBT OPU VOUJM UIF XPSL PG -JFC 	����
 UIBU B DPNQMFUF
TPMVUJPO CBTFE PO TUSJDU 3JFT[ SFBSSBOHFNFOU JOFRVBMJUZ
�4FF ű8)"5 *4ŷ1FSJNFUFS Ų JO UIF 0DUPCFS ���� /PUJDFT�

���� /ƪƯƤƞƠƮ ƪơ ƯƣƠ ".4 7ƪƧưƨƠ ��
 /ưƨƝƠƭ ��

here             is the perimeter of the set  Ω , a suitable generalization of surface area
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in Chemistry being awarded to Fenn [2]. The electrospray technique relies on the formation of a
thin steady jet of an electrically conducting liquid upon application of a sufficiently high voltage
to a capillary tip, as first observed by Zeleny [3]. As the voltage at the tip is increased, the liquid
meniscus progressively distorts towards a conical shape, until at a critical voltage a Taylor cone
is formed, emitting a thin liquid jet that quickly breaks into a fine mist of charged liquid droplets
[4–6]. As the resulting droplets move through the ambient gas, the solvent slowly evaporates,
pushing the droplets towards the so-called Rayleigh limit, corresponding to an instability of a
conducting spherical drop with respect to arbitrarily small elongations [7]. Upon losing stability,
the droplets undergo Coulomb fission by forming transient jets emitting tiny droplets that carry a
small fraction of the parent droplet’s mass, but a substantial fraction of its total charge [8–11]. This
process is repeated until the solvent in the daughter droplets is completely evaporated, and the
remaining ions enter into the gas phase. Under certain conditions, direct evaporation of charged
ionic species from the droplet is also possible [5,6].

The onset of the phenomena described above has long been interpreted with the help of
the basic variational model that treats the electrified liquid as a perfect conductor [4,6,7,12,13].
To describe the equilibrium configurations of a charged liquid droplet, one seeks local minimizers
of the following geometric energy functional:

E(Ω) = σP(Ω) + Q2

2C(Ω)
, |Ω| = V, (1.1)

where Ω ⊂ R3 is the spatial domain occupied by the liquid, |Ω| denotes the volume of Ω fixed to
the value V, σ is the surface tension coefficient, Q is the total electric charge on the liquid droplet,
P(Ω) is the perimeter of the set Ω understood in the sense of De Giorgi,

P(Ω) = sup
{∫

Ω
∇ · φ(y) dy : φ ∈ C1

c (R3; R3), |φ| ≤ 1
}

, (1.2)

which coincides with the surface area for regular sets [14], and C(Ω) is the electrical capacitance
of Ω , which is defined as (using the SI units)

C−1(Ω) = inf
µ(Ω)=1

∫

Ω

∫

Ω

1
4πε0|x − y|

dµ(x) dµ(y), (1.3)

where the infimum is taken over all non-negative Borel measures (charge densities) supported
on Ω , and ε0 is the permittivity of vacuum (assuming the ambient fluid has negligible dielectric
response). Note that the infimum in (1.3) is attained whenever Ω is compact, with the minimizing
measure concentrating on ∂Ω [15]. Also, C(Ω) can be equivalently expressed as [16]

C(Ω) = ε0 inf
u∈D1(R3)∩C(R3)

u≥1 in Ω

∫

R3
|∇u|2 dx, (1.4)

and the infimum is attained when Ω is a compact set with a sufficiently regular boundary.
The energy in (1.1) is the sum of the surface energy associated with the liquid–gas interface

and the electrostatic self-energy of a conducting body occupying Ω and carrying charge Q. It has
been widely assumed that this energy is locally minimized by a ball of volume V = 4

3 πR3, as long
as the charge Q does not exceed the critical charge QR given by

QR = 8π

√
ε0σR3. (1.5)

This result was obtained in the celebrated 1882 paper of Lord Rayleigh [7], who performed a
linear stability analysis of the spherical droplet with respect to small non-spherical perturbations.
Similarly, the Taylor cone at the onset of jet formation has been interpreted as a self-similar
equilibrium solution of the Euler–Lagrange equation associated with the energy in (1.1), leading
to the prediction of a unique opening half-angle of about 49.3◦ [4]. Recent experiments to
determine the instability threshold for levitating charged drops confirm the onset of instability at
the Rayleigh limit charge Q = QR [17] (for earlier studies, see [18–20]), although lower threshold
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The purpose of the liquid drop model is to predict:

- the shape of nuclei 
- non-existence of arbitrarily large nuclei 
- existence of a nucleus with the largest binding energy

The ultimate triumph of the model was to explain the phenomenon of nuclear fission 

Meitner and Frisch, 1939; Bohr and Wheeler, 1939; Feenberg, 1939; Frenkel, 1939
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Gamow’s model puts the two terms in the 
energy into a direct opposition:

- the perimeter is minimized by a ball
- the Coulombic energy is maximized  
  by a ball

the relative strength of surface tension vs. 
Coulomb repulsion is measured by m

energy per unit mass under rescalings, λ > 0:
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- for m << 1, surface tension dominates: expect minimizers to be balls
- for m >> 1, Coulomb energy dominates: expect minimizers not to exist

it is precisely the competition of these two terms that makes the problem highly non-trivial

Review: R. Choksi, C. B. Muratov, I. Topaloglu, Notices AMS 64, 1275-1283 (2017)

A marriage of two older variational problems



Gamow’s model: current status
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FWFSZ NJOJNJ[JOH TFRVFODF DBO CF SFQMBDFE CZ BOPUIFS
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OVDMFBS ƌTTJPO BT B SFTVMU PG BO JOTUBCJMJUZ PG MBSHF
TQIFSJDBM OVDMFJ XJUI SFTQFDU UP OPOTQIFSJDBM
EJTUPSUJPOT�
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PG NPTU OVDMFJ� 5IF NPEFMʍT VMUJNBUF USJVNQI DBNF GSPN
FYQMBJOJOH UIF QIFOPNFOPO PG OVDMFBS ʱTTJPO JO UFSNT
PG BO JOTUBCJMJUZ PG MBSHF TQIFSJDBM OVDMFJ XJUI SFTQFDU UP
OPOTQIFSJDBM EJTUPSUJPOT 	#PIS BOE 8IFFMFS
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 XIJMF UIF QSFTFODF PG QPTJUJWFMZ
DIBSHFE QSPUPOT HJWFT SJTF UP B SFQVMTJWF $PVMPNCJD GPSDF�
4JODF UIF $PVMPNC FOFSHZ PG B QSPUPO JO B OVDMFVT JT
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CZ TUSPOH OVDMFBS GPSDFT
 UP B HPPE BQQSPYJNBUJPO UIF
TQBUJBM EJTUSJCVUJPO PG DIBSHF JO B OVDMFVT JT VOJGPSN�
5IFSFGPSF
 NBUIFNBUJDBMMZ UIF FOFSHZ PG B OVDMFVT XJUIJO
UIF NPEFM NBZ CF XSJUUFO 	VQ UP TIBQF�JOEFQFOEFOU CVML
UFSNT BOE BGUFS B TVJUBCMF OPOEJNFOTJPOBMJ[BUJPO
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DIBSHFE QSPUPOT HJWFT SJTF UP B SFQVMTJWF $PVMPNCJD GPSDF�
4JODF UIF $PVMPNC FOFSHZ PG B QSPUPO JO B OVDMFVT JT
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the result of this theorem, in this form, was obtained in Knüpfer and M, 2014
some earlier existence results can be found in Choksi and Peletier, 2010

an independent proof of non-existence can be found in Lu and Otto, 2014
an independent proof of radial symmetry is in Julin, 2014
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? ?
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Fig. 1. Nuclear pasta phases in a relativistic mean-field model of low density nuclear matter. The panels show
a progression from “meatball” (a) to “spaghetti” (b) to “lasagna” (c) to “macaroni” (d) to “swiss cheese”
(e) phases, which are the numerically obtained candidates for the ground state at different nuclear densities.
Reproduced from Ref. [55], with permission

the neutralizing uniform background density of electrons, and G is the Green’s function
of the Laplacian, which in the case of Neumann boundary conditions for the electrostatic
potential solves

− !xG(x, y) = δ(x − y) − 1
|#| , (1.2)

where δ(x) is the Dirac delta-function. The nuclear fluid density must also satisfy the
global electroneutrality constraint:

1
|#|

∫

#
u dx = ū. (1.3)

In writing (1.1) we took into account that because of the scaling properties of the Green’s
function one can eliminate all the physical constants appearing in (1.1) by choosing the
appropriate energy and length scales.

It is notable that the model in (1.1)–(1.3) also appears in a completely different
physical context, namely, in the studies of mesoscopic phases of diblock copolymer
melts, where it is referred to as the Ohta–Kawasaki model [14,54,60]. This is, of course,
not surprising, considering the fundamental nature of Coulomb forces. In fact, the range
of applications of the energy in (1.1) goes far beyond the systems mentioned above
(for an overview, see [48] and references therein). Importantly, the model in (1.1) is a

Generalized minimizers

what happens when minimizers fail to exist?
define generalized minimizers: finite collections of minimizers “infinitely far apart”
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u −χF0 +χF̃0 , where χF̃0 is a minimizer of Ẽ R
∞ overA∞(m0) translated sufficiently far

from the support of u would lower the energy, contradicting theminimizing property of u .
Wemay assumewithout loss of generality that R ≥ 2 and diam F0 ≥ 2. Then there is

N ∈ N such that 2N ≤ diam F0 < 2(N + 1). In particular there exist x0, . . . , xN ∈ F0
such that |xk − x0| = 2k for every 1 ≤ k ≤ N and, therefore, the balls B1(xk) are
mutually disjoint. If m0 ≤ 1, then by Lemma 4.1 we have |F0 ∩ Br (xk)| ≥ cm0 for
r = m1/3

0 ≤ 1 and some universal c > 0. Therefore,

m0 ≥
N∑

k=1

|F0 ∩ Br (xk)| ≥ cm0N , (4.4)

implying that N ≤ N0 for some universal N0 ≥ 1 and, hence, diam F0 ≤ 2(N0 + 1).
If, on the other hand, m0 > 1, then by Lemma 4.1 we have |F0 ∩ B1(xk)| ≥ c for some
universal c > 0. By monotonicity of the kernel in |x − y|, we get
∫

F0∩B1(x0)

∫

F0\B1(x0)

ηR(x − y)
|x − y| dx dy ≥ c2

N∑

k=1

ηR(2k + 2)
2k + 2

≥ C min{log N , log R},

for some universal C > 0. Hence, if R and N are sufficiently large, then it is energeti-
cally preferable to move the charge in B1(x0) sufficiently far from the remaining charge.
More precisely, consider ũ = u − χF0∩B1(x0) + χF0∩B1(x0)(· + b), for some b∈ R3 with
|b| sufficiently large. Then ũ ∈ A∞(m0) and

Ẽ R
∞(ũ) ≤ Ẽ R

∞(u) + 4π − 1
2C min{log N , log R} < 0, (4.5)

for all R ≥ R0 and N > N0 for some universal constants R0 ≥ 2 and N0 ≥ 1. Therefore,
minimality of u implies that N ≤ N0 whenever R ≥ R0 and hence diam F0 ≤ 2(N0+1).

⊓(

4.2. Generalized minimizers of Ẽ∞. We begin our analysis of Ẽ∞ by introducing the
notion of generalized minimizers of the non-local isoperimetric problem.

Definition 4.3 (Generalized minimizers). Givenm > 0, we call a generalized minimizer
of Ẽ∞ in Ã∞(m) a collection of functions (u1, . . . , u N ) for some N ∈ N such that u i
is a minimizer of Ẽ∞ over Ã∞(mi ) with mi =

∫
T u i dx for all i ∈ {1, . . . , N }, and

m =
N∑

i=1

mi and e(m) =
N∑

i=1

e(mi ). (4.6)

Clearly, everyminimizer of Ẽ∞ in Ã∞(m) is also a generalizedminimizer (with N = 1).
As was shown in [40], however, minimizers of Ẽ∞ in Ã∞(m)may not exist for a given
m > 0 because of the possibility of splitting their support into several connected com-
ponents and moving those components far apart. As we will show below, this possible
loss of compactness of minimizing sequences can be compensated by considering char-
acteristic functions of sets whose connected components are “infinitely far apart” and
among which the minimum of the energy is attained (by a generalized minimizer with
some N > 1). We also remark that, if (u1, . . . , u N ) is a generalized minimizer, then, as

Per(⌦0)  Per(⌦) + ⇤|⌦4⌦0| 8⌦0 ⇢ R3 : |⌦0| = m

Per(F)

Theorem 2 (Existence of generalized minimizers). For any m 2 (0,1) there exists a
generalized minimizer (⌦1, . . . ,⌦N ) of E with total mass m. Moreover, after a possible
modification on a set of Lebesgue measure zero, the support of each component ⌦i is
bounded, connected and has analytic boundary.

1

Knüpfer, M, Novaga, 2016

independently obtained by Frank and Lieb, 2015
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from compactness of generalized minimizers and Lipschitz continuity of e(m), we obtain 
that      is compact ⇒ together with universal estimates on the components, this yields: 
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lim
h→0+

e(m + h) − e(m)

h
= λ−

m . (4.28)

This is the first equality in (4.21). The last equality in (4.21) follows analogously by
taking the limit from the other side. ⊓$
Remark 4.12. From the proof of Lemma 4.11 it follows that λ±m are in fact the maximum
and the minimum (not only the supremum and the infimum) of the Lagrange multipliers
in (4.9), i.e., that λ±m are attained by some generalized minimizers with mass m.

Corollary 4.13. The function e(m) is Lipschitz continuous on [m0,∞) for any m0 > 0.

Proof. This follows from (4.21), noticing that for all m ≥ m0 there holds

− ∞ < inf
m′∈[m0,M]

λ−
m′ ≤ λ−

m ≤ λ+m ≤ sup
m′∈[m0,M]

λ+m′ < +∞, (4.29)

where M > 0 is such that I ⊂ [0,M], and we used (4.9) together with the uniform
regularity from Lemma 4.4 for the components of the generalized minimizers. ⊓$

4.4. Proof of Theorem 3.2. In lieu of a complete characterization of the function f (m)
and the set I, we show that f (m) is continuous and attains its infimum on I.

The next result follows directly from Theorem 4.5, Theorem 4.7 and [40, Theo-
rem 3.2].

Lemma 4.14. There exists a universal constant δ0 > 0 such that for any m ∈ (0,∞)
there exist N ≥ 1 and m1, . . . ,mN ∈ I such that mi ≥ min{δ0,m} for all i = 1, . . . , N
and

m =
N∑

i=1

mi and f (m) =
N∑

i=1

mi

m
f (mi ). (4.30)

Theorem 3.2 is a corollary of the following result.

Theorem 4.15. The function f (m) is Lipschitz continuous on [m0,∞) for any m0 > 0.
Furthermore, f (m) attains its minimum, i.e.,

I∗ :=
{
m∗ ∈ I : f (m∗) = inf

m∈I
f (m)

}
̸= ∅. (4.31)

Furthermore, we have f (m) ≥ f ∗ for all m > 0 and

lim
m→0

f (m) = ∞, lim
m→∞ f (m) = f ∗, lim

m→∞ ∥ f ′∥L∞(m,∞) = 0. (4.32)

Proof. Since f (m) = e(m)/m, we have that f (m) is Lipschitz continuous by Corol-
lary 4.13. By the continuity of f (m) and since I is compact, it then follows that there
exists a (possibly non-unique) minimizer m∗ > 0 of f (m) over I. On the other hand,
since f (m∗) ≤ f (m) for all m ∈ I, by Lemma 4.14 we obtain

f (m) =
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mi

m
f (mi ) ≥

N∑

i=1

mi

m
f (m∗) = f (m∗) ∀m > 0. (4.33)
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lim
h→0+

e(m + h) − e(m)

h
= λ−

m . (4.28)
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Theminimization problem associated with (2.14) and (2.15) was recently studied by two
of the authors in [40]. In particular, by [40, Theorem 3.3] the set I is bounded, and by [40,
Theorems 3.1 and 3.2] the set I is non-empty and contains an interval around the origin.

For m ≥ 0, we also define the quantity (with the convention that f (0) := +∞)

f (m) := e(m)

m
, (2.18)

which represents the minimal energy for (2.14) and (2.15) per unit mass. By [40, The-
orem 3.2] there is a universal m̃0 > 0 such that f (m) is obtained by evaluating Ẽ∞ on
a ball of mass m for all m ≤ m̃0. After a simple computation, this yields

f (m) = 62/3π1/3m−1/3 + 32/3 · 2−1/3 · 10−1 · π−2/3m2/3 for all 0 < m ≤ m̃0.

(2.19)

Note that obviously this expression also gives an a priori upper bound for f (m) for all
m > 0. In addition, by [40, Theorem 3.4] there exist universal constants C, c > 0 such
that

c ≤ f (m) ≤ C for all m ≥ m̃0. (2.20)

It was conjectured in [13] that I = [0, m̃0] and that m̃0 = mc1, where

mc1 :=
40π
3

(
21/3 + 2−1/3 − 1

)
≈ 44.134. (2.21)

The quantity mc1 is the maximum value of m for which a ball of mass m has less energy
than twice the energy of a ball with mass 1

2m. However, such a result is not available
at present and remains an important challenge for the considered class of variational
problems (for several related results see [7,39,50]).

Finally, we define

f ∗ := inf
m∈I

f (m) and I∗ :=
{
m∗ ∈ I : f (m∗) = f ∗} . (2.22)

Observe that in view of (2.19) and (2.20) we have f ∗ ∈ (0,∞). Also, as we will show
in Theorem 3.2, the set I∗ is non-empty, i.e., the minimum of f (m) over I is attained.
In fact, the minimum of f (m) over I is also the minimum over all m ∈ (0,∞) (see
Theorem 4.15). Note that this result was also independently obtained by Frank and Lieb
in their recent work [26]. The set I∗ of masses that minimize the energy Ẽ∞ per unit
mass and the associated minimizers (which in general may not be unique) will play a
key role in the analysis of the limit behavior of the minimizers of Eε. Note that if f (m)
were given by (2.19) and I = [0,mc1], then we would have explicitly I∗ = {10π} and
f ∗ = 35/3·2−2/3·5−1/3 ≈ 2.29893.On the other hand, in viewof the statement following
(2.19), this value provides an a priori upper bound on the optimal energy density.

Macroscopic limit and heuristics The limit ε → 0 with λ > 0 fixed is equivalent to
the limit of the energy in (1.1) with $ = Tℓ, where Tℓ := R3/(ℓZ)3 is the torus with
sidelength ℓ > 0, as ℓ → ∞. Indeed, introducing the notation

Ẽℓ(ũ) :=
∫

Tℓ

|∇ũ| dx +
1
2

∫

Tℓ

(ũ − ¯̃uℓ)(−&)−1(ũ − ¯̃uℓ) dx, (2.23)
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a ball of mass m for all m ≤ m̃0. After a simple computation, this yields

f (m) = 62/3π1/3m−1/3 + 32/3 · 2−1/3 · 10−1 · π−2/3m2/3 for all 0 < m ≤ m̃0.

(2.19)

Note that obviously this expression also gives an a priori upper bound for f (m) for all
m > 0. In addition, by [40, Theorem 3.4] there exist universal constants C, c > 0 such
that

c ≤ f (m) ≤ C for all m ≥ m̃0. (2.20)

It was conjectured in [13] that I = [0, m̃0] and that m̃0 = mc1, where

mc1 :=
40π
3

(
21/3 + 2−1/3 − 1

)
≈ 44.134. (2.21)

The quantity mc1 is the maximum value of m for which a ball of mass m has less energy
than twice the energy of a ball with mass 1

2m. However, such a result is not available
at present and remains an important challenge for the considered class of variational
problems (for several related results see [7,39,50]).

Finally, we define

f ∗ := inf
m∈I

f (m) and I∗ :=
{
m∗ ∈ I : f (m∗) = f ∗} . (2.22)

Observe that in view of (2.19) and (2.20) we have f ∗ ∈ (0,∞). Also, as we will show
in Theorem 3.2, the set I∗ is non-empty, i.e., the minimum of f (m) over I is attained.
In fact, the minimum of f (m) over I is also the minimum over all m ∈ (0,∞) (see
Theorem 4.15). Note that this result was also independently obtained by Frank and Lieb
in their recent work [26]. The set I∗ of masses that minimize the energy Ẽ∞ per unit
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Perfectly conducting liquid drops

first treated by Lord Rayleigh, 1882, assuming the liquid is a perfect conductor
stable equilibrium shapes are local minimizers of the following energy:
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in Chemistry being awarded to Fenn [2]. The electrospray technique relies on the formation of a
thin steady jet of an electrically conducting liquid upon application of a sufficiently high voltage
to a capillary tip, as first observed by Zeleny [3]. As the voltage at the tip is increased, the liquid
meniscus progressively distorts towards a conical shape, until at a critical voltage a Taylor cone
is formed, emitting a thin liquid jet that quickly breaks into a fine mist of charged liquid droplets
[4–6]. As the resulting droplets move through the ambient gas, the solvent slowly evaporates,
pushing the droplets towards the so-called Rayleigh limit, corresponding to an instability of a
conducting spherical drop with respect to arbitrarily small elongations [7]. Upon losing stability,
the droplets undergo Coulomb fission by forming transient jets emitting tiny droplets that carry a
small fraction of the parent droplet’s mass, but a substantial fraction of its total charge [8–11]. This
process is repeated until the solvent in the daughter droplets is completely evaporated, and the
remaining ions enter into the gas phase. Under certain conditions, direct evaporation of charged
ionic species from the droplet is also possible [5,6].

The onset of the phenomena described above has long been interpreted with the help of
the basic variational model that treats the electrified liquid as a perfect conductor [4,6,7,12,13].
To describe the equilibrium configurations of a charged liquid droplet, one seeks local minimizers
of the following geometric energy functional:

E(Ω) = σP(Ω) + Q2

2C(Ω)
, |Ω| = V, (1.1)

where Ω ⊂ R3 is the spatial domain occupied by the liquid, |Ω| denotes the volume of Ω fixed to
the value V, σ is the surface tension coefficient, Q is the total electric charge on the liquid droplet,
P(Ω) is the perimeter of the set Ω understood in the sense of De Giorgi,

P(Ω) = sup
{∫

Ω
∇ · φ(y) dy : φ ∈ C1

c (R3; R3), |φ| ≤ 1
}

, (1.2)

which coincides with the surface area for regular sets [14], and C(Ω) is the electrical capacitance
of Ω , which is defined as (using the SI units)

C−1(Ω) = inf
µ(Ω)=1

∫

Ω

∫

Ω

1
4πε0|x − y|

dµ(x) dµ(y), (1.3)

where the infimum is taken over all non-negative Borel measures (charge densities) supported
on Ω , and ε0 is the permittivity of vacuum (assuming the ambient fluid has negligible dielectric
response). Note that the infimum in (1.3) is attained whenever Ω is compact, with the minimizing
measure concentrating on ∂Ω [15]. Also, C(Ω) can be equivalently expressed as [16]

C(Ω) = ε0 inf
u∈D1(R3)∩C(R3)

u≥1 in Ω

∫

R3
|∇u|2 dx, (1.4)

and the infimum is attained when Ω is a compact set with a sufficiently regular boundary.
The energy in (1.1) is the sum of the surface energy associated with the liquid–gas interface

and the electrostatic self-energy of a conducting body occupying Ω and carrying charge Q. It has
been widely assumed that this energy is locally minimized by a ball of volume V = 4

3 πR3, as long
as the charge Q does not exceed the critical charge QR given by

QR = 8π

√
ε0σR3. (1.5)

This result was obtained in the celebrated 1882 paper of Lord Rayleigh [7], who performed a
linear stability analysis of the spherical droplet with respect to small non-spherical perturbations.
Similarly, the Taylor cone at the onset of jet formation has been interpreted as a self-similar
equilibrium solution of the Euler–Lagrange equation associated with the energy in (1.1), leading
to the prediction of a unique opening half-angle of about 49.3◦ [4]. Recent experiments to
determine the instability threshold for levitating charged drops confirm the onset of instability at
the Rayleigh limit charge Q = QR [17] (for earlier studies, see [18–20]), although lower threshold
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values of Q have also been reported in the literature [8,9,21– 23]. The latter could be attributed
to the presence of an unstable prolate spheroid equilibrium state bifurcating from the ball at the
Rayleigh limit, which may serve as a transition state for the spherical droplet agitated by the
motion of the surrounding gas or thermal noise [4,12,13,17]. The agreement between the predicted
Taylor cone angle and those observed in experiments has been found to be less satisfactory [6].

2. Ill-posedness of the variational model of a perfectly conducting liquid drop
The overall consistency of the classical model describing the equilibrium charged droplet
configurations presented in the introduction has recently been put into question by the work
of Goldman, Novaga and Ruffini [24], in which it was noted that, surprisingly, the energy in
(1.1) admits neither global nor local minimizers in the natural admissible classes of sets. Specifically,
the following result was established for minimizers of the energy in (1.1) (in what follows, all
the physical and material constants are assumed to be fixed, leaving V and Q as the only free
parameters).

Theorem 2.1 ([24], theorems 1.1 and 1.3). For every V > 0 and Q > 0, the following statements
are true:

(i) There is no global minimizer of the energy E defined in (1.1) among sets of finite perimeter.
(ii) The ball of volume V is not a local minimizer of E defined in (1.1) with respect to perturbations

that are arbitrarily close to it in Hausdorff distance.

Recall that the Hausdorff distance dH between sets A and B is defined as

dH(A, B) = max

{

sup
x∈A

inf
y∈B

|x− y|, sup
y∈B

inf
x∈A

|x− y|
}

, (2.1)

where | · | is the Euclidian distance, and measures the closeness of their boundaries.
Non-existence of global minimizers in theorem 2.1 has to do with the fact that one can construct

a minimizing sequence for the energy in (1.1) that consists of one big ball carrying no charge and
many tiny balls carrying all the charge Q off to infinity. Furthermore, confining the support of the
minimizing sequence to a ball of slightly bigger radius than that of the original spherical droplet,
one can still produce a sequence of competitor sets whose energy is strictly lower than that of a
single ball. These sets again consist of a single large uncharged ball and a cloud of tiny, but highly
charged balls within an arbitrarily small distance from the original spherical droplet’s surface (for
details, see [24]). These observations put into serious question the validity of the conducting drop
model.

An objection to the above criticisms of the classical model is that all the competitor
configurations considered in [24] consist of disconnected sets. Thus, in order for such a competitor
to be realized in a physical system, highly charged tiny droplets need to be detached from
the surface of the parent droplet, leading effectively to charge evaporation. The latter has been the
subject of many works by the modelling community (see, for example, [5] and references therein),
and the basic finding has been that the thermal activation barriers typically appear to be too high
for such a process to be significant. In particular, within the continuum model governed by (1.1),
barrier heights have been estimated using an ansatz-based approach, predicting the prohibitively
high values in the range of several electronvolts [25].

Nevertheless, in what follows we demonstrate that an assumption of connectedness does not
invalidate the conclusions of theorem 2.1. Namely, we show that there exist competitor sets that
are homeomorphic to a ball and are arbitrarily close to it in Hausdorff distance that have strictly
lower energy than that of a single spherical droplet. Thus, we establish that the spherical droplet
with volume V is nonlinearly unstable for all values of 0 < Q < QR, contrary to the prediction of
the linear theory [7], even for local perturbations that smoothly distort a small portion of the
boundary of the spherical droplet along the normal. We note that this implies that within the
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the droplets undergo Coulomb fission by forming transient jets emitting tiny droplets that carry a
small fraction of the parent droplet’s mass, but a substantial fraction of its total charge [8–11]. This
process is repeated until the solvent in the daughter droplets is completely evaporated, and the
remaining ions enter into the gas phase. Under certain conditions, direct evaporation of charged
ionic species from the droplet is also possible [5,6].

The onset of the phenomena described above has long been interpreted with the help of
the basic variational model that treats the electrified liquid as a perfect conductor [4,6,7,12,13].
To describe the equilibrium configurations of a charged liquid droplet, one seeks local minimizers
of the following geometric energy functional:

E(Ω) = σP(Ω) + Q2

2C(Ω)
, |Ω| = V, (1.1)

where Ω ⊂ R3 is the spatial domain occupied by the liquid, |Ω| denotes the volume of Ω fixed to
the value V, σ is the surface tension coefficient, Q is the total electric charge on the liquid droplet,
P(Ω) is the perimeter of the set Ω understood in the sense of De Giorgi,

P(Ω) = sup
{∫

Ω
∇ · φ(y) dy : φ ∈ C1

c (R3; R3), |φ| ≤ 1
}

, (1.2)

which coincides with the surface area for regular sets [14], and C(Ω) is the electrical capacitance
of Ω , which is defined as (using the SI units)

C−1(Ω) = inf
µ(Ω)=1

∫

Ω

∫

Ω

1
4πε0|x − y|

dµ(x) dµ(y), (1.3)

where the infimum is taken over all non-negative Borel measures (charge densities) supported
on Ω , and ε0 is the permittivity of vacuum (assuming the ambient fluid has negligible dielectric
response). Note that the infimum in (1.3) is attained whenever Ω is compact, with the minimizing
measure concentrating on ∂Ω [15]. Also, C(Ω) can be equivalently expressed as [16]

C(Ω) = ε0 inf
u∈D1(R3)∩C(R3)

u≥1 in Ω

∫

R3
|∇u|2 dx, (1.4)

and the infimum is attained when Ω is a compact set with a sufficiently regular boundary.
The energy in (1.1) is the sum of the surface energy associated with the liquid–gas interface

and the electrostatic self-energy of a conducting body occupying Ω and carrying charge Q. It has
been widely assumed that this energy is locally minimized by a ball of volume V = 4

3 πR3, as long
as the charge Q does not exceed the critical charge QR given by

QR = 8π

√
ε0σR3. (1.5)

This result was obtained in the celebrated 1882 paper of Lord Rayleigh [7], who performed a
linear stability analysis of the spherical droplet with respect to small non-spherical perturbations.
Similarly, the Taylor cone at the onset of jet formation has been interpreted as a self-similar
equilibrium solution of the Euler–Lagrange equation associated with the energy in (1.1), leading
to the prediction of a unique opening half-angle of about 49.3◦ [4]. Recent experiments to
determine the instability threshold for levitating charged drops confirm the onset of instability at
the Rayleigh limit charge Q = QR [17] (for earlier studies, see [18–20]), although lower threshold
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in Chemistry being awarded to Fenn [2]. The electrospray technique relies on the formation of a
thin steady jet of an electrically conducting liquid upon application of a sufficiently high voltage
to a capillary tip, as first observed by Zeleny [3]. As the voltage at the tip is increased, the liquid
meniscus progressively distorts towards a conical shape, until at a critical voltage a Taylor cone
is formed, emitting a thin liquid jet that quickly breaks into a fine mist of charged liquid droplets
[4–6]. As the resulting droplets move through the ambient gas, the solvent slowly evaporates,
pushing the droplets towards the so-called Rayleigh limit, corresponding to an instability of a
conducting spherical drop with respect to arbitrarily small elongations [7]. Upon losing stability,
the droplets undergo Coulomb fission by forming transient jets emitting tiny droplets that carry a
small fraction of the parent droplet’s mass, but a substantial fraction of its total charge [8–11]. This
process is repeated until the solvent in the daughter droplets is completely evaporated, and the
remaining ions enter into the gas phase. Under certain conditions, direct evaporation of charged
ionic species from the droplet is also possible [5,6].

The onset of the phenomena described above has long been interpreted with the help of
the basic variational model that treats the electrified liquid as a perfect conductor [4,6,7,12,13].
To describe the equilibrium configurations of a charged liquid droplet, one seeks local minimizers
of the following geometric energy functional:

E(Ω) = σP(Ω) + Q2

2C(Ω)
, |Ω| = V, (1.1)

where Ω ⊂ R3 is the spatial domain occupied by the liquid, |Ω| denotes the volume of Ω fixed to
the value V, σ is the surface tension coefficient, Q is the total electric charge on the liquid droplet,
P(Ω) is the perimeter of the set Ω understood in the sense of De Giorgi,

P(Ω) = sup
{∫

Ω
∇ · φ(y) dy : φ ∈ C1

c (R3; R3), |φ| ≤ 1
}

, (1.2)

which coincides with the surface area for regular sets [14], and C(Ω) is the electrical capacitance
of Ω , which is defined as (using the SI units)

C−1(Ω) = inf
µ(Ω)=1

∫

Ω

∫

Ω

1
4πε0|x − y|

dµ(x) dµ(y), (1.3)

where the infimum is taken over all non-negative Borel measures (charge densities) supported
on Ω , and ε0 is the permittivity of vacuum (assuming the ambient fluid has negligible dielectric
response). Note that the infimum in (1.3) is attained whenever Ω is compact, with the minimizing
measure concentrating on ∂Ω [15]. Also, C(Ω) can be equivalently expressed as [16]

C(Ω) = ε0 inf
u∈D1(R3)∩C(R3)

u≥1 in Ω

∫

R3
|∇u|2 dx, (1.4)

and the infimum is attained when Ω is a compact set with a sufficiently regular boundary.
The energy in (1.1) is the sum of the surface energy associated with the liquid–gas interface

and the electrostatic self-energy of a conducting body occupying Ω and carrying charge Q. It has
been widely assumed that this energy is locally minimized by a ball of volume V = 4

3 πR3, as long
as the charge Q does not exceed the critical charge QR given by

QR = 8π

√
ε0σR3. (1.5)

This result was obtained in the celebrated 1882 paper of Lord Rayleigh [7], who performed a
linear stability analysis of the spherical droplet with respect to small non-spherical perturbations.
Similarly, the Taylor cone at the onset of jet formation has been interpreted as a self-similar
equilibrium solution of the Euler–Lagrange equation associated with the energy in (1.1), leading
to the prediction of a unique opening half-angle of about 49.3◦ [4]. Recent experiments to
determine the instability threshold for levitating charged drops confirm the onset of instability at
the Rayleigh limit charge Q = QR [17] (for earlier studies, see [18–20]), although lower threshold
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Instability of a charged conducting drop
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from Giglio et al., Phys Rev. E 77, 036319 (2008)

- as the solvent evaporates, the instability threshold is reached at a critical value of R
- the droplet elongates until a cone-like singularity appears at the top and the bottom
- immediately after the appearance of sharp tips a thin liquid jet issues from the tips
- the jet carries away a significant portion of the charge, but very small portion of mass

- the drop then returns to the equilibrium spherical shape 



Taylor cone

the appearance of a cone-like singularity can also be seen in the equilibrium meniscus
Taylor Proc. Roy. Soc. A, volume 280, plate 22 
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FIGURE 1. Jet of glycerine from an electrified drop (Zeleny 19I7). 

FIGuRE 6. Soap film. Exposure time 1-6 ms. Broken lines at angle 98.60. (a) Before 
oscillation; (b) oscillation beginning; (c) exposure covering time of jet formation. 
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G. I. Taylor, Proc. R. Soc. Lond. A 280, 383-397 (1964)

Taylor, 1964, constructed a self-similar solution of the EL equation in the form of a cone
the mechanical equilibrium between the capillary and Coulomb forces dictates the cone 
half-angle of ~49.3 degrees
below the critical voltage the interface attains a convex equilibrium shape



Are equilibrium drops minimizers of the energy?

surprisingly, Goldman, Novaga and Ruffini, 2015, showed that the minimum of
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in Chemistry being awarded to Fenn [2]. The electrospray technique relies on the formation of a
thin steady jet of an electrically conducting liquid upon application of a sufficiently high voltage
to a capillary tip, as first observed by Zeleny [3]. As the voltage at the tip is increased, the liquid
meniscus progressively distorts towards a conical shape, until at a critical voltage a Taylor cone
is formed, emitting a thin liquid jet that quickly breaks into a fine mist of charged liquid droplets
[4–6]. As the resulting droplets move through the ambient gas, the solvent slowly evaporates,
pushing the droplets towards the so-called Rayleigh limit, corresponding to an instability of a
conducting spherical drop with respect to arbitrarily small elongations [7]. Upon losing stability,
the droplets undergo Coulomb fission by forming transient jets emitting tiny droplets that carry a
small fraction of the parent droplet’s mass, but a substantial fraction of its total charge [8–11]. This
process is repeated until the solvent in the daughter droplets is completely evaporated, and the
remaining ions enter into the gas phase. Under certain conditions, direct evaporation of charged
ionic species from the droplet is also possible [5,6].

The onset of the phenomena described above has long been interpreted with the help of
the basic variational model that treats the electrified liquid as a perfect conductor [4,6,7,12,13].
To describe the equilibrium configurations of a charged liquid droplet, one seeks local minimizers
of the following geometric energy functional:

E(Ω) = σP(Ω) + Q2

2C(Ω)
, |Ω| = V, (1.1)

where Ω ⊂ R3 is the spatial domain occupied by the liquid, |Ω| denotes the volume of Ω fixed to
the value V, σ is the surface tension coefficient, Q is the total electric charge on the liquid droplet,
P(Ω) is the perimeter of the set Ω understood in the sense of De Giorgi,

P(Ω) = sup
{∫

Ω
∇ · φ(y) dy : φ ∈ C1

c (R3; R3), |φ| ≤ 1
}

, (1.2)

which coincides with the surface area for regular sets [14], and C(Ω) is the electrical capacitance
of Ω , which is defined as (using the SI units)

C−1(Ω) = inf
µ(Ω)=1

∫

Ω

∫

Ω

1
4πε0|x − y|

dµ(x) dµ(y), (1.3)

where the infimum is taken over all non-negative Borel measures (charge densities) supported
on Ω , and ε0 is the permittivity of vacuum (assuming the ambient fluid has negligible dielectric
response). Note that the infimum in (1.3) is attained whenever Ω is compact, with the minimizing
measure concentrating on ∂Ω [15]. Also, C(Ω) can be equivalently expressed as [16]

C(Ω) = ε0 inf
u∈D1(R3)∩C(R3)

u≥1 in Ω

∫

R3
|∇u|2 dx, (1.4)

and the infimum is attained when Ω is a compact set with a sufficiently regular boundary.
The energy in (1.1) is the sum of the surface energy associated with the liquid–gas interface

and the electrostatic self-energy of a conducting body occupying Ω and carrying charge Q. It has
been widely assumed that this energy is locally minimized by a ball of volume V = 4

3 πR3, as long
as the charge Q does not exceed the critical charge QR given by

QR = 8π

√
ε0σR3. (1.5)

This result was obtained in the celebrated 1882 paper of Lord Rayleigh [7], who performed a
linear stability analysis of the spherical droplet with respect to small non-spherical perturbations.
Similarly, the Taylor cone at the onset of jet formation has been interpreted as a self-similar
equilibrium solution of the Euler–Lagrange equation associated with the energy in (1.1), leading
to the prediction of a unique opening half-angle of about 49.3◦ [4]. Recent experiments to
determine the instability threshold for levitating charged drops confirm the onset of instability at
the Rayleigh limit charge Q = QR [17] (for earlier studies, see [18–20]), although lower threshold

 on March 24, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

is not attained for any V > 0 and Q > 0

2

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150808

...................................................

in Chemistry being awarded to Fenn [2]. The electrospray technique relies on the formation of a
thin steady jet of an electrically conducting liquid upon application of a sufficiently high voltage
to a capillary tip, as first observed by Zeleny [3]. As the voltage at the tip is increased, the liquid
meniscus progressively distorts towards a conical shape, until at a critical voltage a Taylor cone
is formed, emitting a thin liquid jet that quickly breaks into a fine mist of charged liquid droplets
[4–6]. As the resulting droplets move through the ambient gas, the solvent slowly evaporates,
pushing the droplets towards the so-called Rayleigh limit, corresponding to an instability of a
conducting spherical drop with respect to arbitrarily small elongations [7]. Upon losing stability,
the droplets undergo Coulomb fission by forming transient jets emitting tiny droplets that carry a
small fraction of the parent droplet’s mass, but a substantial fraction of its total charge [8–11]. This
process is repeated until the solvent in the daughter droplets is completely evaporated, and the
remaining ions enter into the gas phase. Under certain conditions, direct evaporation of charged
ionic species from the droplet is also possible [5,6].

The onset of the phenomena described above has long been interpreted with the help of
the basic variational model that treats the electrified liquid as a perfect conductor [4,6,7,12,13].
To describe the equilibrium configurations of a charged liquid droplet, one seeks local minimizers
of the following geometric energy functional:

E(Ω) = σP(Ω) + Q2

2C(Ω)
, |Ω| = V, (1.1)

where Ω ⊂ R3 is the spatial domain occupied by the liquid, |Ω| denotes the volume of Ω fixed to
the value V, σ is the surface tension coefficient, Q is the total electric charge on the liquid droplet,
P(Ω) is the perimeter of the set Ω understood in the sense of De Giorgi,

P(Ω) = sup
{∫

Ω
∇ · φ(y) dy : φ ∈ C1

c (R3; R3), |φ| ≤ 1
}

, (1.2)

which coincides with the surface area for regular sets [14], and C(Ω) is the electrical capacitance
of Ω , which is defined as (using the SI units)

C−1(Ω) = inf
µ(Ω)=1

∫

Ω

∫

Ω

1
4πε0|x − y|

dµ(x) dµ(y), (1.3)

where the infimum is taken over all non-negative Borel measures (charge densities) supported
on Ω , and ε0 is the permittivity of vacuum (assuming the ambient fluid has negligible dielectric
response). Note that the infimum in (1.3) is attained whenever Ω is compact, with the minimizing
measure concentrating on ∂Ω [15]. Also, C(Ω) can be equivalently expressed as [16]

C(Ω) = ε0 inf
u∈D1(R3)∩C(R3)

u≥1 in Ω

∫

R3
|∇u|2 dx, (1.4)

and the infimum is attained when Ω is a compact set with a sufficiently regular boundary.
The energy in (1.1) is the sum of the surface energy associated with the liquid–gas interface

and the electrostatic self-energy of a conducting body occupying Ω and carrying charge Q. It has
been widely assumed that this energy is locally minimized by a ball of volume V = 4

3 πR3, as long
as the charge Q does not exceed the critical charge QR given by

QR = 8π

√
ε0σR3. (1.5)

This result was obtained in the celebrated 1882 paper of Lord Rayleigh [7], who performed a
linear stability analysis of the spherical droplet with respect to small non-spherical perturbations.
Similarly, the Taylor cone at the onset of jet formation has been interpreted as a self-similar
equilibrium solution of the Euler–Lagrange equation associated with the energy in (1.1), leading
to the prediction of a unique opening half-angle of about 49.3◦ [4]. Recent experiments to
determine the instability threshold for levitating charged drops confirm the onset of instability at
the Rayleigh limit charge Q = QR [17] (for earlier studies, see [18–20]), although lower threshold
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3. Non-Existence of Minimizers

Definition 3.1. Let d ≥ 2 and α > 0. For every Q > 0 and every open set E ⊂ Rd

we define the functionals

Fα,Q(E) := P(E)+ Q2Iα(E) (3.1)

and
Gα,Q(E) := P(E)+ Q2Iα(∂E). (3.2)

Notice that by Lemma 2.15, for α ∈ (0, d − 2] the functionals Fα,Q and Gα,Q
coincide. Notice also that Fα,Q(E) ≡ +∞ if α ≥ d, and Gα,Q(E) ≡ +∞ if
α ≥ d − 1.

In this section we consider a closed, connected, regular set # ⊂ Rd (not nec-
essarily bounded) of measure |#| > m and address the following problems:

inf
|E |=m, E⊂#

Fα,Q(E) (3.3)

and
inf

|E |=m, E⊂#
Gα,Q(E), (3.4)

where the (implicit) parameter α belongs to (0, d).

Theorem 3.2. For every α ∈ (0, d − 1), there holds

inf
|E |=m

Fα,Q(E) = inf
|E |=m

Gα,Q(E) = min
|E |=m

P(E) =
(
m
ωd

) d− 1
d

P(B).

In particular, problems (3.3) and (3.4) do not admit minimizers when # = Rd .

Proof. Let N ∈ N and consider a numberβ whichwill be fixed later on.Consider N
balls of radius rN = N−β whichwe can considermutually infinitely far away (since
sending them away leaves unchanged the perimeter and decreases the potential
interaction energy), and put on each of these balls a charge 1

N . Let VN = NrdNωd
be their total volume and consider the set E to be given by the union of these balls
with a (non-charged) ball of volume m − VN . If we choose β ∈ (1/(d − 1), 1/α),
then we get

lim
N→+∞

Nrd− 1
N = 0 and lim

N→+∞
1
N

1
rα
N

= 0, (3.5)

which implies that VN → 0 and

(
m
ωd

) d− 1
d

P(B) ≤ P(E)+ Q2Iα(E) ≤
(
m − VN

ωd

) d− 1
d

P(B)

+C
(
Nrd− 1

N + Q2

N
1
rα
N

)
.

Since the right-hand side converges to
(

m
ωd

)
d− 1
d P(B), as N tends to+∞, the claim

follows. ⊓*
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⇒ the infimum of the energy is given by surface energy alone

However, minimizer exists for all V > 0 and Q > 0 among convex sets

- also in a container
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again, surprisingly, balls are never local minimizers in any reasonable sense: M, Novaga, 2016
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Theorem 3. For any V > 0 and Q > 0 there exists a smooth map �� : S2 ! (��, �) such
that if

⌦R,� = {x 2 R3 : |x |  R + ��(x/|x |)},

then |⌦R,� | = V and E(⌦R,�) < E(BR), where R > 0 is such that V = 4
3⇡R

3, for all � > 0
su�ciently small. Moreover, one can choose supp �� ⇢ B�/R(⌫0) for some ⌫0 2 S2.
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Figure 1. Different choices of perturbations of BR that may lower the energy in (1.1): (a) a small smooth localized distortion of
the interface; (b) a long tentacle; and (c) a prolate spheroid joined to a shrunk ball.

We also note that choosing a configuration Ωh,r shown in figure 1b, which consists of a smooth
approximation to the union of a ball of radius R′ and a long cylindrical ‘tentacle’ of radius r ≪ R
and height h ≫ R, provided that 4

3 πR′3 = 4
3 πR3 −πr2h, one can see that by spreading the charge

Q over the surface of the tentacle the energy of such a configuration can be made arbitrarily close
to that of an uncharged ball. Indeed, for r ≪ h one can write

E(Ωh,r) ≤ 4πσR2 + 2πσ rh + Q2

4πε0h

{
ln
(

2h
r

)
−1

}
+ o(1), (2.8)

where we used an asymptotic formula for the capacitance of a slender cylinder [26]. Therefore,
optimizing this expression in r for fixed h, we get r(h) = 8Q2R3/(Q2

Rh2) and

E(Ωh,r(h)) ≤ E(BR) − Q2

4πε0h

{
h

2R
−ln

(
h3Q2

R
4R3Q2

)}

+ o(1). (2.9)
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classical theory (which also ignores discreteness of charges) there is no energy barrier to evaporate
a small highly charged droplet. This result also implies that, surprisingly, the variational problem
governed by the energy in (1.1) is ill-posed, and thus the classical model of conducting drops
presents a picture that is physically incomplete. Some regularizing physical mechanisms are
needed at short length scales to make it a physically valid model.

Theorem 2.2. For any V > 0 and Q > 0, there exists a smooth map φδ : S2 → (−δ, δ) such that if

ΩR,δ =
{

x ∈ R3 : |x| ≤ R + φδ

(
x
|x|

)}
, (2.2)

then |ΩR,δ | = V and E(ΩR,δ) < E(BR), where R > 0 is such that V = 4
3 πR3, for all δ > 0 sufficiently small.

Moreover, one can choose supp φδ ⊂ Bδ/R(ν0) for some ν0 ∈ S2.

Here BR denotes the ball of radius R centred at the origin in R3 and Bδ(ν0) denotes a ball
of radius δ centred at ν0 on S2. The set ΩR,δ is the subgraph of the function r = R + φδ(ν) in
spherical coordinates. The perturbation φδ is illustrated in figure 1a and has the form of a slender
axially-symmetric protrusion from the sphere, with a small indentation around to conserve
volume.

Proof. Let η ∈ C∞(R) be a cut-off function such that η′(t) ≤ 0 for all t ∈ R, η(t) = 1 for t ≤ 1 and
η(t) = 0 for t ≥ 2. We introduce

r = δe−R/δ , r′ = (rRδ2)1/4, (2.3)

and note that r ≪ r′ ≪ δ for δ ≪ R. We then define the function φδ in (2.2) as follows:

φδ(ν) = δη

(
R|ν −ν0|

r

)
−hη

(
2R|ν −ν0|

r′

){
1 −η

(
2R|ν −ν0|

r′

)}
, (2.4)

where ν0 is some fixed point on S2 and h ∼r2δ/r′2 is chosen so that |ΩR,δ | = V (here and in the
rest of the proof the symbol ‘∼’ indicates asymptotic equivalence as δ → 0 up to a universal
positive constant, term-wise for sums). The latter is always possible when δ ≪ R, and under this
assumption we also have h ≪ r′.

We next estimate from above the energy difference 'E = E(ΩR,δ) −E(BR). In doing so, we can
choose a suitable measure µ in the right-hand side of (1.3). We take

dµ = 1
4πR2 χ∂BR\Br′ (Rν0) dS + q

Q|Cr,δ |
χCr,δ dx, (2.5)

where χA denotes the characteristic function of the set A, dS stands for the surface measure
concentrated on ∂BR, q = Qr′2/(4R2) ≪ Q is the charge in the spherical cap of radius r′ and
Cr,δ = {x ∈ R3 : R < |x| < R + δ, x/|x| ∈ Br/R(ν0)} ⊂ ΩR,δ is a truncated cone. Namely, we transfer
the charge q contained in the spherical cap of radius r′ and spread it uniformly into a set which
for δ ≪ R is essentially a straight cylinder of radius r and height δ above ∂BR and below ∂ΩR,δ . It
is not difficult to see that with this configuration we have 'E ≤ 'E0, where

'E0 ∼σ (rδ + h2) + q2

ε0δ
ln
(

δ

r

)
− qQ

ε0R2 δ. (2.6)

With our choices of r and r′, (2.6) and (1.5) yield

'E0 ∼ Q2

ε0R

{(
δQ2

R
RQ2 + 1

)(
δ

R

)
e−R/δ −

(
δ

R

)5/2
e−R/(2δ)

}

. (2.7)

Thus, 'E0 < 0 for all sufficiently small δ. !
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classical theory (which also ignores discreteness of charges) there is no energy barrier to evaporate
a small highly charged droplet. This result also implies that, surprisingly, the variational problem
governed by the energy in (1.1) is ill-posed, and thus the classical model of conducting drops
presents a picture that is physically incomplete. Some regularizing physical mechanisms are
needed at short length scales to make it a physically valid model.

Theorem 2.2. For any V > 0 and Q > 0, there exists a smooth map φδ : S2 → (−δ, δ) such that if

ΩR,δ =
{

x ∈ R3 : |x| ≤ R + φδ

(
x
|x|

)}
, (2.2)

then |ΩR,δ | = V and E(ΩR,δ) < E(BR), where R > 0 is such that V = 4
3 πR3, for all δ > 0 sufficiently small.

Moreover, one can choose supp φδ ⊂ Bδ/R(ν0) for some ν0 ∈ S2.

Here BR denotes the ball of radius R centred at the origin in R3 and Bδ(ν0) denotes a ball
of radius δ centred at ν0 on S2. The set ΩR,δ is the subgraph of the function r = R + φδ(ν) in
spherical coordinates. The perturbation φδ is illustrated in figure 1a and has the form of a slender
axially-symmetric protrusion from the sphere, with a small indentation around to conserve
volume.

Proof. Let η ∈ C∞(R) be a cut-off function such that η′(t) ≤ 0 for all t ∈ R, η(t) = 1 for t ≤ 1 and
η(t) = 0 for t ≥ 2. We introduce

r = δe−R/δ , r′ = (rRδ2)1/4, (2.3)

and note that r ≪ r′ ≪ δ for δ ≪ R. We then define the function φδ in (2.2) as follows:
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(
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)
−hη

(
2R|ν −ν0|

r′

){
1 −η
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r′

)}
, (2.4)

where ν0 is some fixed point on S2 and h ∼r2δ/r′2 is chosen so that |ΩR,δ | = V (here and in the
rest of the proof the symbol ‘∼’ indicates asymptotic equivalence as δ → 0 up to a universal
positive constant, term-wise for sums). The latter is always possible when δ ≪ R, and under this
assumption we also have h ≪ r′.

We next estimate from above the energy difference 'E = E(ΩR,δ) −E(BR). In doing so, we can
choose a suitable measure µ in the right-hand side of (1.3). We take

dµ = 1
4πR2 χ∂BR\Br′ (Rν0) dS + q

Q|Cr,δ |
χCr,δ dx, (2.5)

where χA denotes the characteristic function of the set A, dS stands for the surface measure
concentrated on ∂BR, q = Qr′2/(4R2) ≪ Q is the charge in the spherical cap of radius r′ and
Cr,δ = {x ∈ R3 : R < |x| < R + δ, x/|x| ∈ Br/R(ν0)} ⊂ ΩR,δ is a truncated cone. Namely, we transfer
the charge q contained in the spherical cap of radius r′ and spread it uniformly into a set which
for δ ≪ R is essentially a straight cylinder of radius r and height δ above ∂BR and below ∂ΩR,δ . It
is not difficult to see that with this configuration we have 'E ≤ 'E0, where

'E0 ∼σ (rδ + h2) + q2

ε0δ
ln
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δ
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− qQ

ε0R2 δ. (2.6)

With our choices of r and r′, (2.6) and (1.5) yield
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ε0R

{(
δQ2

R
RQ2 + 1

)(
δ

R

)
e−R/δ −

(
δ

R

)5/2
e−R/(2δ)

}

. (2.7)

Thus, 'E0 < 0 for all sufficiently small δ. !

 on March 24, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

choosing                                               we get

4

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150808

...................................................

classical theory (which also ignores discreteness of charges) there is no energy barrier to evaporate
a small highly charged droplet. This result also implies that, surprisingly, the variational problem
governed by the energy in (1.1) is ill-posed, and thus the classical model of conducting drops
presents a picture that is physically incomplete. Some regularizing physical mechanisms are
needed at short length scales to make it a physically valid model.

Theorem 2.2. For any V > 0 and Q > 0, there exists a smooth map φδ : S2 → (−δ, δ) such that if

ΩR,δ =
{

x ∈ R3 : |x| ≤ R + φδ

(
x
|x|

)}
, (2.2)

then |ΩR,δ | = V and E(ΩR,δ) < E(BR), where R > 0 is such that V = 4
3 πR3, for all δ > 0 sufficiently small.

Moreover, one can choose supp φδ ⊂ Bδ/R(ν0) for some ν0 ∈ S2.

Here BR denotes the ball of radius R centred at the origin in R3 and Bδ(ν0) denotes a ball
of radius δ centred at ν0 on S2. The set ΩR,δ is the subgraph of the function r = R + φδ(ν) in
spherical coordinates. The perturbation φδ is illustrated in figure 1a and has the form of a slender
axially-symmetric protrusion from the sphere, with a small indentation around to conserve
volume.

Proof. Let η ∈ C∞(R) be a cut-off function such that η′(t) ≤ 0 for all t ∈ R, η(t) = 1 for t ≤ 1 and
η(t) = 0 for t ≥ 2. We introduce

r = δe−R/δ , r′ = (rRδ2)1/4, (2.3)

and note that r ≪ r′ ≪ δ for δ ≪ R. We then define the function φδ in (2.2) as follows:
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where ν0 is some fixed point on S2 and h ∼r2δ/r′2 is chosen so that |ΩR,δ | = V (here and in the
rest of the proof the symbol ‘∼’ indicates asymptotic equivalence as δ → 0 up to a universal
positive constant, term-wise for sums). The latter is always possible when δ ≪ R, and under this
assumption we also have h ≪ r′.

We next estimate from above the energy difference 'E = E(ΩR,δ) −E(BR). In doing so, we can
choose a suitable measure µ in the right-hand side of (1.3). We take

dµ = 1
4πR2 χ∂BR\Br′ (Rν0) dS + q

Q|Cr,δ |
χCr,δ dx, (2.5)

where χA denotes the characteristic function of the set A, dS stands for the surface measure
concentrated on ∂BR, q = Qr′2/(4R2) ≪ Q is the charge in the spherical cap of radius r′ and
Cr,δ = {x ∈ R3 : R < |x| < R + δ, x/|x| ∈ Br/R(ν0)} ⊂ ΩR,δ is a truncated cone. Namely, we transfer
the charge q contained in the spherical cap of radius r′ and spread it uniformly into a set which
for δ ≪ R is essentially a straight cylinder of radius r and height δ above ∂BR and below ∂ΩR,δ . It
is not difficult to see that with this configuration we have 'E ≤ 'E0, where
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classical theory (which also ignores discreteness of charges) there is no energy barrier to evaporate
a small highly charged droplet. This result also implies that, surprisingly, the variational problem
governed by the energy in (1.1) is ill-posed, and thus the classical model of conducting drops
presents a picture that is physically incomplete. Some regularizing physical mechanisms are
needed at short length scales to make it a physically valid model.

Theorem 2.2. For any V > 0 and Q > 0, there exists a smooth map φδ : S2 → (−δ, δ) such that if

ΩR,δ =
{

x ∈ R3 : |x| ≤ R + φδ

(
x
|x|

)}
, (2.2)

then |ΩR,δ | = V and E(ΩR,δ) < E(BR), where R > 0 is such that V = 4
3 πR3, for all δ > 0 sufficiently small.

Moreover, one can choose supp φδ ⊂ Bδ/R(ν0) for some ν0 ∈ S2.

Here BR denotes the ball of radius R centred at the origin in R3 and Bδ(ν0) denotes a ball
of radius δ centred at ν0 on S2. The set ΩR,δ is the subgraph of the function r = R + φδ(ν) in
spherical coordinates. The perturbation φδ is illustrated in figure 1a and has the form of a slender
axially-symmetric protrusion from the sphere, with a small indentation around to conserve
volume.

Proof. Let η ∈ C∞(R) be a cut-off function such that η′(t) ≤ 0 for all t ∈ R, η(t) = 1 for t ≤ 1 and
η(t) = 0 for t ≥ 2. We introduce

r = δe−R/δ , r′ = (rRδ2)1/4, (2.3)

and note that r ≪ r′ ≪ δ for δ ≪ R. We then define the function φδ in (2.2) as follows:
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where ν0 is some fixed point on S2 and h ∼r2δ/r′2 is chosen so that |ΩR,δ | = V (here and in the
rest of the proof the symbol ‘∼’ indicates asymptotic equivalence as δ → 0 up to a universal
positive constant, term-wise for sums). The latter is always possible when δ ≪ R, and under this
assumption we also have h ≪ r′.

We next estimate from above the energy difference 'E = E(ΩR,δ) −E(BR). In doing so, we can
choose a suitable measure µ in the right-hand side of (1.3). We take

dµ = 1
4πR2 χ∂BR\Br′ (Rν0) dS + q

Q|Cr,δ |
χCr,δ dx, (2.5)

where χA denotes the characteristic function of the set A, dS stands for the surface measure
concentrated on ∂BR, q = Qr′2/(4R2) ≪ Q is the charge in the spherical cap of radius r′ and
Cr,δ = {x ∈ R3 : R < |x| < R + δ, x/|x| ∈ Br/R(ν0)} ⊂ ΩR,δ is a truncated cone. Namely, we transfer
the charge q contained in the spherical cap of radius r′ and spread it uniformly into a set which
for δ ≪ R is essentially a straight cylinder of radius r and height δ above ∂BR and below ∂ΩR,δ . It
is not difficult to see that with this configuration we have 'E ≤ 'E0, where
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classical theory (which also ignores discreteness of charges) there is no energy barrier to evaporate
a small highly charged droplet. This result also implies that, surprisingly, the variational problem
governed by the energy in (1.1) is ill-posed, and thus the classical model of conducting drops
presents a picture that is physically incomplete. Some regularizing physical mechanisms are
needed at short length scales to make it a physically valid model.

Theorem 2.2. For any V > 0 and Q > 0, there exists a smooth map φδ : S2 → (−δ, δ) such that if

ΩR,δ =
{

x ∈ R3 : |x| ≤ R + φδ

(
x
|x|

)}
, (2.2)

then |ΩR,δ | = V and E(ΩR,δ) < E(BR), where R > 0 is such that V = 4
3 πR3, for all δ > 0 sufficiently small.

Moreover, one can choose supp φδ ⊂ Bδ/R(ν0) for some ν0 ∈ S2.

Here BR denotes the ball of radius R centred at the origin in R3 and Bδ(ν0) denotes a ball
of radius δ centred at ν0 on S2. The set ΩR,δ is the subgraph of the function r = R + φδ(ν) in
spherical coordinates. The perturbation φδ is illustrated in figure 1a and has the form of a slender
axially-symmetric protrusion from the sphere, with a small indentation around to conserve
volume.

Proof. Let η ∈ C∞(R) be a cut-off function such that η′(t) ≤ 0 for all t ∈ R, η(t) = 1 for t ≤ 1 and
η(t) = 0 for t ≥ 2. We introduce

r = δe−R/δ , r′ = (rRδ2)1/4, (2.3)

and note that r ≪ r′ ≪ δ for δ ≪ R. We then define the function φδ in (2.2) as follows:
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where ν0 is some fixed point on S2 and h ∼r2δ/r′2 is chosen so that |ΩR,δ | = V (here and in the
rest of the proof the symbol ‘∼’ indicates asymptotic equivalence as δ → 0 up to a universal
positive constant, term-wise for sums). The latter is always possible when δ ≪ R, and under this
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We next estimate from above the energy difference 'E = E(ΩR,δ) −E(BR). In doing so, we can
choose a suitable measure µ in the right-hand side of (1.3). We take
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Thus, 'E0 < 0 for all sufficiently small δ. !
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classical theory (which also ignores discreteness of charges) there is no energy barrier to evaporate
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governed by the energy in (1.1) is ill-posed, and thus the classical model of conducting drops
presents a picture that is physically incomplete. Some regularizing physical mechanisms are
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The variational problem is ill-posed

there is an intrinsic incompatibility between the perimeter and the capacitary energy:

- the perimeter functional does not see sets of zero Lebesgue measure

- the capacitary energy does not see sets of zero harmonic capacity
the charges may concentrate on sets of zero Lebesgue measure 

a possible way out is to strengthen the definition of the surface measure

still does not work for 3-d electrostatic problems:

- the 2-d Hausdorff surface measure does not see sets of Hausdorff dimension s < 2

- the 3-d harmonic capacity is positive for sets of Hausdorff dimension s > 1
thus, there is a gap 1 < s < 2 between the two

the classical variational model does not describe the physics of conducting charged drops

more physics needs to be incorporated to restore well-posedness (surface tension insufficient)

possible remedies: finite screening length, discreteness of charges, etc.
M, Novaga, 2016

2 C. B. MURATOV, M. NOVAGA, B. RUFFINI

Mathematically, this problem is interesting because the interplay between the cap-
illary and Coulombic forces produces a competition that makes prediction of the
energy minimizing configurations a highly non-trivial task.

The equilibrium configurations of electrified conducting liquids may be stud-
ied with the help of a basic variational model that goes back all the way to Lord
Rayleigh [48]. Let K ⇢R3 be a compact set with smooth boundary. If s is the sur-
face tension, e is the relative permittivity of the surrounding medium and e0 is the
permittivity of vacuum, then the energy of a charged, perfectly conducting liquid
drop occupying K, with volume V and the total charge Q, is given by [39]

EQ
3d(K) = sH

2(∂K)+
Q2

2C(K)
,(1.1)

where H
s denotes the s-dimensional Hausdorff measure, with H

2(∂K) repre-
senting the surface area of the liquid, and

1
C(K)

:=
1

4pee0
inf

µ(K)=1

Z

K

Z

K

dµ(x)dµ(y)
|x� y| ,(1.2)

is the inverse electric capacitance of K in the SI units. Here µ is a probability
measure supported on K, and the infimum in (1.2) is attained by a unique measure
that concentrates on ∂K [40]. If instead the voltage U on the drop is prescribed,
then the total energy (including that of the charge reservoir) is

EU
3d(K) := sH

2(∂K)� 1
2

C(K)U2.(1.3)

For flat drops, this model can be reformulated as follows. Let d be the distance
between the plates and assume that K = W⇥ [0,d], where W ⇢ R2 is a compact
set with smooth boundary which represents the shape of the flat drop. Note that
this means that we are assuming the contact angle q = p

2 , corresponding to a flat
meniscus. For a general contact angle q 2 [0,p] the set K may be similarly defined
in terms of W, with the shape of the meniscus determined by balancing the capillary
forces locally. In this case the meniscus cross-section will have the shape of a
circular arc of length ` = p�2q

2cosq d, with ` = d if q = p
2 . Then, to the leading order

in d ⌧ L, where L is the characteristic dimension of the drop, the energy EQ
3d(K) is

given by

EQ
2d(W) := s`H 1(∂W)+

Q2

8pee0
I1(W),(1.4)

where we introduced the Riesz capacitary energy of a set:

(1.5) Ia(W) := inf
⇢Z

W

Z

W

dµ(x)dµ(y)
|x� y|a : µ(W) = 1

�
,



The model with finite screening

in a perfect conductor the charges go to the boundary

in reality, thermal effects cause finite penetration length +
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the following, we show that one such mechanism is provided by the finite screening length in the
conducting liquid.

To proceed, we need to incorporate the entropic effects associated with the presence of free ions
in the liquid. We start with the free energy of a dilute strong electrolyte containing, for simplicity,
only two monovalent ionic species [38,39]:

F(Ω , n+, n−) = σP(Ω) + ε0

2

∫

R3
aΩ (x)|∇v|2 dx + kB T

∫

Ω

(
n+ ln

n+
n0

+ n− ln
n−
n0

)
dx. (3.2)

Here aΩ (x) = 1 + (ε − 1)χΩ (x), where ε ≥ 1 is the dielectric constant of the liquid and χΩ is the
characteristic function of Ω , kBT is the temperature in the energy units, n+ and n− are the number
densities of the positive and negative ions, respectively, n0 = (1/2V)

∫
Ω (n+ + n−) dx is the average

free ion density per species, v is the electrostatic potential solving

− ε0∇ · (aΩ (x)∇v) = ρ in D′(R3), (3.3)

where the charge density ρ = e(n+ − n−) in Ω and zero outside Ω , and e is the elementary charge.
We next assume that |ρ| ≪ en0, i.e. that the deviations from the mean for each ionic component are
small, and expand the entropy term in ρ, with n± ≃n0 ± ρ/2e. This yields a Debye–Hückel-type
free energy

F (Ω , v) = σP(Ω) + ε0

2

∫

R3
aΩ (x)|∇v|2 dx + kBT

4e2n0

∫

Ω
ρ2 dx, (3.4)

where now ρ is assumed to be defined by v via (3.3).
As we are interested in the local well-posedness of the variational problem governed by F ,

we are further going to assume that the set Ω is confined to a spherical container BR such that
|BR| > V, so that the possibility of connected components of Ω escaping to infinity is precluded.
Under this assumption, we show that minimizers of the energy F exist for all values of Q > 0.
More precisely, let us define an admissible class

A=
{

(Ω , v) : Ω ⊂BR, |Ω| = V,
∫

Ω
ρ dx = Q, ρ = 0 in R3\Ω

}
, (3.5)

where Ω ⊂R3 is a set of finite perimeter and v ∈ D1(R3) is such that ρ defined by (3.3) belongs to
L2(R3). Then we have the following result.

Theorem 3.1. For any V > 0, Q > 0 and R > 0 such that |BR| > V there exists a minimizer of F in A.

Proof. We follow the approach of [40,41] developed for purely dielectric problems and apply the
direct method of calculus of variations. We consider a minimizing sequence (Ωn, vn) for F in A.
By the energy bound, up to extracting a subsequence, there exist (Ω , v) such that χΩn ⇀ χΩ in
BV(R3) and vn ⇀ v in D1(R3). Up to extracting a further subsequence, we have that the functions
ρn defined by (3.3) with v replaced by vn converge weakly in L2(R3) to a function ρ, which also
solves (3.3) with the limit function v.

By the semicontinuity of the perimeter [14] and Ioffe semicontinuity result [42], we get that

F (Ω , v) ≤ lim inf
n→∞

F (Ωn, vn) = inf
A

F . (3.6)

It remains to prove that (Ω , v) ∈A. The fact that Ω ⊂BR and |Ω| = V follows from the convergence
of χΩn to χΩ in L1(R3). The conditions

∫
Ω ρ dx =

∫
R3 ρχΩ dx = Q and ρ = 0 on R3\Ω , which can

be written as
∫

ρ(1 − χΩ )φ dx = 0, for any φ ∈D(R3), follows from the strong convergence of χΩn

to χΩ in L2(R3) and the weak convergence of ρn to ρ in L2(R3). We thus proved that (Ω , v) ∈A
and hence is a minimizer of F . !

This result is again in sharp contrast to the one in theorem 2.1. Further results concerning
the minimizers of F such as the regularity of their interfaces and the shape and connectedness of
minimizers are expected to follow. In particular, in the special case of ε = 1, i.e. when the dielectric
polarizability of the liquid could be neglected (or in the case of a dielectrically matched ambient
fluid), one should be able to proceed along the lines of the arguments in [31,43] to establish the
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By the semicontinuity of the perimeter [14] and Ioffe semicontinuity result [42], we get that

F (Ω , v) ≤ lim inf
n→∞

F (Ωn, vn) = inf
A

F . (3.6)

It remains to prove that (Ω , v) ∈A. The fact that Ω ⊂BR and |Ω| = V follows from the convergence
of χΩn to χΩ in L1(R3). The conditions

∫
Ω ρ dx =

∫
R3 ρχΩ dx = Q and ρ = 0 on R3\Ω , which can

be written as
∫

ρ(1 − χΩ )φ dx = 0, for any φ ∈D(R3), follows from the strong convergence of χΩn

to χΩ in L2(R3) and the weak convergence of ρn to ρ in L2(R3). We thus proved that (Ω , v) ∈A
and hence is a minimizer of F . !

This result is again in sharp contrast to the one in theorem 2.1. Further results concerning
the minimizers of F such as the regularity of their interfaces and the shape and connectedness of
minimizers are expected to follow. In particular, in the special case of ε = 1, i.e. when the dielectric
polarizability of the liquid could be neglected (or in the case of a dielectrically matched ambient
fluid), one should be able to proceed along the lines of the arguments in [31,43] to establish the
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the following, we show that one such mechanism is provided by the finite screening length in the
conducting liquid.

To proceed, we need to incorporate the entropic effects associated with the presence of free ions
in the liquid. We start with the free energy of a dilute strong electrolyte containing, for simplicity,
only two monovalent ionic species [38,39]:

F(Ω , n+, n−) = σP(Ω) + ε0

2

∫

R3
aΩ (x)|∇v|2 dx + kB T

∫

Ω

(
n+ ln

n+
n0

+ n− ln
n−
n0

)
dx. (3.2)

Here aΩ (x) = 1 + (ε − 1)χΩ (x), where ε ≥ 1 is the dielectric constant of the liquid and χΩ is the
characteristic function of Ω , kBT is the temperature in the energy units, n+ and n− are the number
densities of the positive and negative ions, respectively, n0 = (1/2V)

∫
Ω (n+ + n−) dx is the average

free ion density per species, v is the electrostatic potential solving

− ε0∇ · (aΩ (x)∇v) = ρ in D′(R3), (3.3)

where the charge density ρ = e(n+ − n−) in Ω and zero outside Ω , and e is the elementary charge.
We next assume that |ρ| ≪ en0, i.e. that the deviations from the mean for each ionic component are
small, and expand the entropy term in ρ, with n± ≃n0 ± ρ/2e. This yields a Debye–Hückel-type
free energy

F (Ω , v) = σP(Ω) + ε0

2

∫

R3
aΩ (x)|∇v|2 dx + kBT

4e2n0

∫

Ω
ρ2 dx, (3.4)

where now ρ is assumed to be defined by v via (3.3).
As we are interested in the local well-posedness of the variational problem governed by F ,

we are further going to assume that the set Ω is confined to a spherical container BR such that
|BR| > V, so that the possibility of connected components of Ω escaping to infinity is precluded.
Under this assumption, we show that minimizers of the energy F exist for all values of Q > 0.
More precisely, let us define an admissible class

A=
{

(Ω , v) : Ω ⊂BR, |Ω| = V,
∫

Ω
ρ dx = Q, ρ = 0 in R3\Ω

}
, (3.5)

where Ω ⊂R3 is a set of finite perimeter and v ∈ D1(R3) is such that ρ defined by (3.3) belongs to
L2(R3). Then we have the following result.

Theorem 3.1. For any V > 0, Q > 0 and R > 0 such that |BR| > V there exists a minimizer of F in A.

Proof. We follow the approach of [40,41] developed for purely dielectric problems and apply the
direct method of calculus of variations. We consider a minimizing sequence (Ωn, vn) for F in A.
By the energy bound, up to extracting a subsequence, there exist (Ω , v) such that χΩn ⇀ χΩ in
BV(R3) and vn ⇀ v in D1(R3). Up to extracting a further subsequence, we have that the functions
ρn defined by (3.3) with v replaced by vn converge weakly in L2(R3) to a function ρ, which also
solves (3.3) with the limit function v.

By the semicontinuity of the perimeter [14] and Ioffe semicontinuity result [42], we get that

F (Ω , v) ≤ lim inf
n→∞

F (Ωn, vn) = inf
A

F . (3.6)

It remains to prove that (Ω , v) ∈A. The fact that Ω ⊂BR and |Ω| = V follows from the convergence
of χΩn to χΩ in L1(R3). The conditions

∫
Ω ρ dx =

∫
R3 ρχΩ dx = Q and ρ = 0 on R3\Ω , which can

be written as
∫

ρ(1 − χΩ )φ dx = 0, for any φ ∈D(R3), follows from the strong convergence of χΩn

to χΩ in L2(R3) and the weak convergence of ρn to ρ in L2(R3). We thus proved that (Ω , v) ∈A
and hence is a minimizer of F . !

This result is again in sharp contrast to the one in theorem 2.1. Further results concerning
the minimizers of F such as the regularity of their interfaces and the shape and connectedness of
minimizers are expected to follow. In particular, in the special case of ε = 1, i.e. when the dielectric
polarizability of the liquid could be neglected (or in the case of a dielectrically matched ambient
fluid), one should be able to proceed along the lines of the arguments in [31,43] to establish the
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the following, we show that one such mechanism is provided by the finite screening length in the
conducting liquid.

To proceed, we need to incorporate the entropic effects associated with the presence of free ions
in the liquid. We start with the free energy of a dilute strong electrolyte containing, for simplicity,
only two monovalent ionic species [38,39]:

F(Ω , n+, n−) = σP(Ω) + ε0

2

∫

R3
aΩ (x)|∇v|2 dx + kB T

∫

Ω

(
n+ ln

n+
n0

+ n− ln
n−
n0

)
dx. (3.2)

Here aΩ (x) = 1 + (ε − 1)χΩ (x), where ε ≥ 1 is the dielectric constant of the liquid and χΩ is the
characteristic function of Ω , kBT is the temperature in the energy units, n+ and n− are the number
densities of the positive and negative ions, respectively, n0 = (1/2V)

∫
Ω (n+ + n−) dx is the average

free ion density per species, v is the electrostatic potential solving

− ε0∇ · (aΩ (x)∇v) = ρ in D′(R3), (3.3)

where the charge density ρ = e(n+ − n−) in Ω and zero outside Ω , and e is the elementary charge.
We next assume that |ρ| ≪ en0, i.e. that the deviations from the mean for each ionic component are
small, and expand the entropy term in ρ, with n± ≃n0 ± ρ/2e. This yields a Debye–Hückel-type
free energy

F (Ω , v) = σP(Ω) + ε0

2

∫

R3
aΩ (x)|∇v|2 dx + kBT

4e2n0

∫

Ω
ρ2 dx, (3.4)

where now ρ is assumed to be defined by v via (3.3).
As we are interested in the local well-posedness of the variational problem governed by F ,

we are further going to assume that the set Ω is confined to a spherical container BR such that
|BR| > V, so that the possibility of connected components of Ω escaping to infinity is precluded.
Under this assumption, we show that minimizers of the energy F exist for all values of Q > 0.
More precisely, let us define an admissible class

A=
{

(Ω , v) : Ω ⊂BR, |Ω| = V,
∫

Ω
ρ dx = Q, ρ = 0 in R3\Ω

}
, (3.5)

where Ω ⊂R3 is a set of finite perimeter and v ∈ D1(R3) is such that ρ defined by (3.3) belongs to
L2(R3). Then we have the following result.

Theorem 3.1. For any V > 0, Q > 0 and R > 0 such that |BR| > V there exists a minimizer of F in A.

Proof. We follow the approach of [40,41] developed for purely dielectric problems and apply the
direct method of calculus of variations. We consider a minimizing sequence (Ωn, vn) for F in A.
By the energy bound, up to extracting a subsequence, there exist (Ω , v) such that χΩn ⇀ χΩ in
BV(R3) and vn ⇀ v in D1(R3). Up to extracting a further subsequence, we have that the functions
ρn defined by (3.3) with v replaced by vn converge weakly in L2(R3) to a function ρ, which also
solves (3.3) with the limit function v.

By the semicontinuity of the perimeter [14] and Ioffe semicontinuity result [42], we get that

F (Ω , v) ≤ lim inf
n→∞

F (Ωn, vn) = inf
A

F . (3.6)

It remains to prove that (Ω , v) ∈A. The fact that Ω ⊂BR and |Ω| = V follows from the convergence
of χΩn to χΩ in L1(R3). The conditions

∫
Ω ρ dx =

∫
R3 ρχΩ dx = Q and ρ = 0 on R3\Ω , which can

be written as
∫

ρ(1 − χΩ )φ dx = 0, for any φ ∈D(R3), follows from the strong convergence of χΩn

to χΩ in L2(R3) and the weak convergence of ρn to ρ in L2(R3). We thus proved that (Ω , v) ∈A
and hence is a minimizer of F . !

This result is again in sharp contrast to the one in theorem 2.1. Further results concerning
the minimizers of F such as the regularity of their interfaces and the shape and connectedness of
minimizers are expected to follow. In particular, in the special case of ε = 1, i.e. when the dielectric
polarizability of the liquid could be neglected (or in the case of a dielectrically matched ambient
fluid), one should be able to proceed along the lines of the arguments in [31,43] to establish the
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the following, we show that one such mechanism is provided by the finite screening length in the
conducting liquid.

To proceed, we need to incorporate the entropic effects associated with the presence of free ions
in the liquid. We start with the free energy of a dilute strong electrolyte containing, for simplicity,
only two monovalent ionic species [38,39]:

F(Ω , n+, n−) = σP(Ω) + ε0

2

∫

R3
aΩ (x)|∇v|2 dx + kB T

∫

Ω

(
n+ ln

n+
n0

+ n− ln
n−
n0

)
dx. (3.2)

Here aΩ (x) = 1 + (ε − 1)χΩ (x), where ε ≥ 1 is the dielectric constant of the liquid and χΩ is the
characteristic function of Ω , kBT is the temperature in the energy units, n+ and n− are the number
densities of the positive and negative ions, respectively, n0 = (1/2V)

∫
Ω (n+ + n−) dx is the average

free ion density per species, v is the electrostatic potential solving

− ε0∇ · (aΩ (x)∇v) = ρ in D′(R3), (3.3)

where the charge density ρ = e(n+ − n−) in Ω and zero outside Ω , and e is the elementary charge.
We next assume that |ρ| ≪ en0, i.e. that the deviations from the mean for each ionic component are
small, and expand the entropy term in ρ, with n± ≃n0 ± ρ/2e. This yields a Debye–Hückel-type
free energy

F (Ω , v) = σP(Ω) + ε0

2

∫

R3
aΩ (x)|∇v|2 dx + kBT

4e2n0

∫

Ω
ρ2 dx, (3.4)

where now ρ is assumed to be defined by v via (3.3).
As we are interested in the local well-posedness of the variational problem governed by F ,

we are further going to assume that the set Ω is confined to a spherical container BR such that
|BR| > V, so that the possibility of connected components of Ω escaping to infinity is precluded.
Under this assumption, we show that minimizers of the energy F exist for all values of Q > 0.
More precisely, let us define an admissible class

A=
{

(Ω , v) : Ω ⊂BR, |Ω| = V,
∫

Ω
ρ dx = Q, ρ = 0 in R3\Ω

}
, (3.5)

where Ω ⊂R3 is a set of finite perimeter and v ∈ D1(R3) is such that ρ defined by (3.3) belongs to
L2(R3). Then we have the following result.

Theorem 3.1. For any V > 0, Q > 0 and R > 0 such that |BR| > V there exists a minimizer of F in A.

Proof. We follow the approach of [40,41] developed for purely dielectric problems and apply the
direct method of calculus of variations. We consider a minimizing sequence (Ωn, vn) for F in A.
By the energy bound, up to extracting a subsequence, there exist (Ω , v) such that χΩn ⇀ χΩ in
BV(R3) and vn ⇀ v in D1(R3). Up to extracting a further subsequence, we have that the functions
ρn defined by (3.3) with v replaced by vn converge weakly in L2(R3) to a function ρ, which also
solves (3.3) with the limit function v.

By the semicontinuity of the perimeter [14] and Ioffe semicontinuity result [42], we get that

F (Ω , v) ≤ lim inf
n→∞

F (Ωn, vn) = inf
A

F . (3.6)

It remains to prove that (Ω , v) ∈A. The fact that Ω ⊂BR and |Ω| = V follows from the convergence
of χΩn to χΩ in L1(R3). The conditions

∫
Ω ρ dx =

∫
R3 ρχΩ dx = Q and ρ = 0 on R3\Ω , which can

be written as
∫

ρ(1 − χΩ )φ dx = 0, for any φ ∈D(R3), follows from the strong convergence of χΩn

to χΩ in L2(R3) and the weak convergence of ρn to ρ in L2(R3). We thus proved that (Ω , v) ∈A
and hence is a minimizer of F . !

This result is again in sharp contrast to the one in theorem 2.1. Further results concerning
the minimizers of F such as the regularity of their interfaces and the shape and connectedness of
minimizers are expected to follow. In particular, in the special case of ε = 1, i.e. when the dielectric
polarizability of the liquid could be neglected (or in the case of a dielectrically matched ambient
fluid), one should be able to proceed along the lines of the arguments in [31,43] to establish the

 on March 24, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

M, Novaga, 2016

Per(⌦)  Per(⌦0) + ⇤|⌦4⌦0| 8⌦0 ⇢ R3 : |⌦0| = m

Per(F) m0 = m1 = m2 = mc1 m  4⇡ ' 12.57 f
⇤ � 35/3 · 4�1 ⇡ 1.56

m
⇤ � 10⇡ and f

⇤  35/3 · 2�2/3 · 5�1/3 ⇡ 2.299 mc2 = 40⇡ ⇡ 125.66 I = [0,mc1]

I⇤ = {10⇡} 2�H =
"0
2 |r�|2 + � � 2 (1

2, 1) R ⌧ rD =

s
"0kBT

n0e2

�P(B0)  E(⌦)  �P(BN

0 ) + 4�⇡r2
N

N +
Q

2

8⇡"0rN N
|BN

0 | = V � 4
3⇡r

3
N

N

⌦ ⇢ R2 closed

Theorem 2 (Existence of generalized minimizers). For any m 2 (0,1) there exists a
generalized minimizer (⌦1, . . . ,⌦N ) of E with total mass m. Moreover, after a possible
modification on a set of Lebesgue measure zero, the support of each component ⌦i is
bounded, connected and has analytic boundary.

Theorem 3. For any V > 0 and Q > 0 there exists a smooth map �� : S2 ! (��, �) such
that if

⌦R,� = {x 2 R3 : |x |  R + ��(x/|x |)},

then |⌦R,� | = V and E(⌦R,�) < E(BR), where R > 0 is such that V = 4
3⇡R

3, for all � > 0
su�ciently small. Moreover, one can choose supp �� ⇢ B�/R(⌫0) for some ⌫0 2 S2.

Theorem 4. Let � > 0, m > 0, let R =
p

m/⇡, and define �Q

0 := 4m

⇡ . Then:

(i) The closed ball BR is the unique (up to translation) minimizer of EQ

� over Am, if
�  �Q

0 .

(ii) There is no minimizer of EQ

� over Am, if � > �Q

0 .

1



Flat charged drops
what about charged drops in a Hele-Shaw cell?

radial flows in section III. In section IIIA, we first develop the eigenvalue problem for 3-layer

radial flows from linear stability analysis and then analyze this problem for the dispersion

relation and upper bounds on the growth rate. The treatment in this section becomes the

building block for the stability analysis of the multi-layer case with an arbitrary number

of layers which is presented in section III B. In section III B, we derive upper bounds on

the growth rate for multi-layer radial flows. Section III C discusses some special cases. In

particular, we show how the previously obtained result on the upper bound on the growth

rate for the rectilinear geometry (see23) can be recovered from the results obtained in this

paper for the multi-layer radial geometry. In section IV, we show using the upper bounds

on the growth rate for multi-layer radial flows that an otherwise unstable two-layer radial

flow can be significantly stabilized by the addition of many layers of fluid with small positive

jumps in viscosity. Numerical results are presented in section V. Finally, we conclude in

section VI.

II. PRELIMINARIES

We start by deriving the equations for two-layer Hele-Shaw flows. Although this is done

in numerous other works4,7,11 with the use of the potential function, we follow an approach

that does not use the potential function. That is because our approach can be easily adapted

to study flows with variable viscosity fluids which do not have a potential function. This is

of considerable interest to EOR and will be the subject of a sequel to this paper.

We consider a Hele-Shaw flow in which two incompressible, immiscible fluids are present.

The less viscous fluid is injected into the center of the cell, displacing the more viscous fluid.

We denote the viscosity of the less viscous inner fluid by µi and the viscosity of the more

viscous outer fluid by µo (Figure 1).

R

Q

µi

µo

b

FIG. 1. Radial flow in a Hele-Shaw cell

By averaging across the gap, we may consider a two-dimensional flow domain in polar
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from Gin and Daripa, Phys. Fluids 27, 012101 (2015)

1-d interfacial energy vs. 1-Riesz capacity (=Newtonian capacity associated with 3-d space)
minimize for 
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Mathematically, this problem is interesting because the interplay between the cap-
illary and Coulombic forces produces a competition that makes prediction of the
energy minimizing configurations a highly non-trivial task.

The equilibrium configurations of electrified conducting liquids may be stud-
ied with the help of a basic variational model that goes back all the way to Lord
Rayleigh [48]. Let K ⇢R3 be a compact set with smooth boundary. If s is the sur-
face tension, e is the relative permittivity of the surrounding medium and e0 is the
permittivity of vacuum, then the energy of a charged, perfectly conducting liquid
drop occupying K, with volume V and the total charge Q, is given by [39]

EQ
3d(K) = sH

2(∂K)+
Q2

2C(K)
,(1.1)

where H
s denotes the s-dimensional Hausdorff measure, with H

2(∂K) repre-
senting the surface area of the liquid, and

1
C(K)

:=
1

4pee0
inf

µ(K)=1

Z

K

Z

K

dµ(x)dµ(y)
|x� y| ,(1.2)

is the inverse electric capacitance of K in the SI units. Here µ is a probability
measure supported on K, and the infimum in (1.2) is attained by a unique measure
that concentrates on ∂K [40]. If instead the voltage U on the drop is prescribed,
then the total energy (including that of the charge reservoir) is

EU
3d(K) := sH

2(∂K)� 1
2

C(K)U2.(1.3)

For flat drops, this model can be reformulated as follows. Let d be the distance
between the plates and assume that K = W⇥ [0,d], where W ⇢ R2 is a compact
set with smooth boundary which represents the shape of the flat drop. Note that
this means that we are assuming the contact angle q = p

2 , corresponding to a flat
meniscus. For a general contact angle q 2 [0,p] the set K may be similarly defined
in terms of W, with the shape of the meniscus determined by balancing the capillary
forces locally. In this case the meniscus cross-section will have the shape of a
circular arc of length ` = p�2q

2cosq d, with ` = d if q = p
2 . Then, to the leading order

in d ⌧ L, where L is the characteristic dimension of the drop, the energy EQ
3d(K) is

given by

EQ
2d(W) := s`H 1(∂W)+

Q2

8pee0
I1(W),(1.4)

where we introduced the Riesz capacitary energy of a set:

(1.5) Ia(W) := inf
⇢Z

W

Z

W

dµ(x)dµ(y)
|x� y|a : µ(W) = 1

�
,
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Mathematically, this problem is interesting because the interplay between the cap-
illary and Coulombic forces produces a competition that makes prediction of the
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The equilibrium configurations of electrified conducting liquids may be stud-
ied with the help of a basic variational model that goes back all the way to Lord
Rayleigh [48]. Let K ⇢R3 be a compact set with smooth boundary. If s is the sur-
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which is more generally defined for all Borel sets W ⇢ RN and a 2 (0,N). Simi-
larly, EU

3d(K) becomes

EU
2d(W) := s`H 1(∂W)� 2pee0U2

I1(W)
.(1.6)

The volume of the flat drop is, to the leading order, equal to V = |W|d, where |W|
denotes the area of W. Hence, fixing the volume of K amounts to fixing |W|.

We note that the infimum in the definition of I1(W) is attained by a unique
measure supported on W, and the value of I1(W) is proportional to the inverse of
the Riesz capacity of W [40]. Also, for fixed volume there is no shape-dependent
contribution to the energy from the liquid-solid interface to the leading order. We
point out that the same type of mathematical models is relevant to systems which
give rise to electric charges concentrating on planar regions, such as high-Tc super-
conductors [21], Langmuir monolayers [5] and, possibly, graphene [49]. In addi-
tion, it should be possible to rigorously obtain the corresponding two-dimensional
expressions for the energy from the original three-dimensional energy in the limit
d ! 0 via G-convergence for a suitable notion of convergence of sets [11].

We are now in a position to introduce the dimensionless versions of the energies
that we will analyze. Setting

E
Q

l (W) :=
EQ

2d(LW)

s`L
, l :=

Q2

8pee0s`L2 ,(1.7)

we obtain a one-parameter family of energy functionals

E
Q

l (W) = H
1(∂W)+lI1(W),(1.8)

with l > 0 a fixed dimensionless parameter, defined on all compact subsets of R2.
Similarly, setting

E
U
l (W) :=

EU
2d(LW)

s`L
, l :=

2pee0U2

s`
,(1.9)

we obtain a one-parameter family of energy functionals

E
U
l (W) = H

1(∂W)� l
I1(W)

,(1.10)

with l > 0 a fixed dimensionless parameter. These energy functionals and their
global minimizers with or without constraints are the main subject of the present
paper.

There has recently been a great interest in non-local variational problems in-
volving energies like those in (1.8) and (1.10). In particular, the non-local isoperi-
metric problems governed by (1.1), or (1.8), or their generalizations involving
Riesz energy, in which the measure µ is fixed to be the uniform measure, was
recently treated in [9,23,25,26,35–37,41,44] (see also [2,16,31,32,38] for closely
related problems on large bounded domains; these lists are by far not meant to be
exhaustive). One of the motivations for those studies comes from the fact that the
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for small charges. Finally, the non-existence for large charges for the constrained
problem is obtained by constructing a test configuration with many balls, whose
energy in the limit coincides with that of the unconstrained problem.

Let us also point out that while our paper is concerned exclusively with global
energy minimizers, existence of local minimizers or critical points of the energy is
naturally an interesting question, both physically and mathematically. Care, how-
ever, is needed in defining the appropriate notion of solution in view of the a priori
lack of regularity and potentially severe ill-posedness of the considered variational
problems [43]. In particular, one needs to take into consideration the possibility of
either local minimizers or critical points consisting of sets with many small holes
(“froth”). Some new quantitative insights into the capacitary energy of sets of finite
perimeter would be needed to deal with those issues, which goes beyond the scope
of the present work.

The rest of the paper is organized as follows: in Section 2, we give the precise
definitions of the variational problems to be studied and state our main results, in
Section 3 we discuss some preliminary results, and in Section 4 we present the
proofs of the main theorems.

2 Setting and statements of the main results

In this section we state the main results of our paper. Viewing E
Q

l in (1.8) as
a map from B(R2) to [0,+•], where B(R2) is the family of all Borel subsets
of R2, we start by defining the appropriate admissible classes in the domain of
E

Q
l . Given two sets A,B ⇢ R2 we introduce the equivalence relation A ⇠ B if

H
1(A\B) = H

1(B\A) = 0. We then set

A := {W ⇢ R2 : W compact, |W|> 0, H
1(∂W)< •}/⇠ .(2.1)

Notice that the equivalence relation ⇠ in the definition of the class A will be
needed in order to have uniqueness of minimizers of E

Q
l over A .

The definition above ensures that 0 < E
Q

l (W) < • whenever W 2 A . We note
that physically the class A corresponds to flat drops with fixed charge and variable
volume, which can be achieved by placing a porous membrane, permeable to the
liquid but impermeable to the charge-carrying ions, into the opening supplying the
liquid. Similarly, for m > 0 we define

Am := {W 2 A : |W|= m}.(2.2)

Note that the definitions of both the energy and the associated admissible classes
A and Am involve the Hausdorff measure H

1 of the topological boundary. Un-
fortunately, H

1 fails to be lower semicontinuous even with respect to Hausdorff
convergence of compact sets, making it difficult to apply the direct method of the
calculus of variations to establish existence of minimizers of E

Q
l . One possibility

Per(⌦0)  Per(⌦) + ⇤|⌦4⌦0| 8⌦0 ⇢ R3 : |⌦0| = m

Per(F) m0 = m1 = m2 = mc1 m  4⇡ ' 12.57 f
⇤ � 35/3 · 4�1 ⇡ 1.56

m
⇤ � 10⇡ and f

⇤  35/3 · 2�2/3 · 5�1/3 ⇡ 2.299 mc2 = 40⇡ ⇡ 125.66 I = [0,mc1]

I⇤ = {10⇡} 2H =
"0
2 |r�|2 + � � 2 (1

2, 1)

�P(B0)  E(⌦)  �P(BN

0 ) + 4�⇡r2
N

N +
Q

2

8⇡"0rN N
|BN

0 | = V � 4
3⇡r

3
N

N

Theorem 2 (Existence of generalized minimizers). For any m 2 (0,1) there exists a
generalized minimizer (⌦1, . . . ,⌦N ) of E with total mass m. Moreover, after a possible
modification on a set of Lebesgue measure zero, the support of each component ⌦i is
bounded, connected and has analytic boundary.

Theorem 3. For any V > 0 and Q > 0 there exists a smooth map �� : S2 ! (��, �) such
that if

⌦R,� = {x 2 R3 : |x |  R + ��(x/|x |)},

then |⌦R,� | = V and E(⌦R,�) < E(BR), where R > 0 is such that V = 4
3⇡R

3, for all � > 0
su�ciently small. Moreover, one can choose supp �� ⇢ B�/R(⌫0) for some ⌫0 2 S2.

Theorem 4. Let � > 0, m > 0, let R =
p

m/⇡, and define �Q

0 := 4m

⇡ . Then:

(i) The closed ball BR is the unique (up to translation) minimizer of EQ

� over Am, if
�  �Q

0 .

(ii) There is no minimizer of EQ

� over Am, if � > �Q

0 .

1
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Remark 2.2. For l > 0 the infimum of E
Q

l over A is achieved by a sequence of N
balls of radius Rl/N running off to infinity. There are also minimizing sequences
consisting of N balls with N ! •. Indeed, taking We =

SN
i=1 BRl /N(xi), with |xi �

x j|� Rl , in view of Theorem 2.1 and Lemma 3.2 we have

E
Q

l (We) NE
Q

l/N2(BRl /N)+ e = E
Q

l (BRl )+ e = inf
W2A

E
Q

l (W)+ e,(2.6)

for an arbitrary e > 0. Thus, the energy can be equally minimized by a fine “mist”
of droplets moving off to infinity by distributing the charge proportionally to their
perimeter.

As a byproduct of the proof of Theorem 2.1 we can show that balls minimize I1
(that is, maximize the capacity) among sets of fixed perimeter, thus generalizing a
result in [45, Corollary 3.2].

Corollary 2.3. The closed ball BR is the unique (up to translations) minimizer
of I1 among the sets W 2 A with P(W) = 2pR. The ball BR is also the unique
minimizer of I1 among the sets W 2 A with H

1(∂W) = 2pR.

Turning now to the minimizers of E
Q

l over Am, we have the following result.

Theorem 2.4. Let l > 0, m > 0, let R =
p

m/p , and define

l Q
0 :=

4m
p

.(2.7)

Then:
(i) The closed ball BR is the unique (up to translation) minimizer of E

Q
l over Am,

if l  l Q
0 .

(ii) There is no minimizer of E
Q

l over Am, if l > l Q
0 .

One should contrast the result in Theorem 2.4 with the expectation in the case
of nonlocal isoperimetric problems with uniform charge that balls are the unique
minimizers, unless it becomes advantageous to split a ball into two equal size balls
[17, 36, 44]. In our problem the latter would happen at the value of l at which two
balls of area m/2 infinitely far apart and carrying equal charge have the same total
energy as one ball of area m and the same total charge. By Lemma 3.5, this is the
case if l > l Q

c1, where

l Q
c1 :=

4m
p

2
p

.(2.8)

Comparing this value with l Q
0 , one sees, however, that balls become unstable be-

fore it becomes energetically favorable to split them into two equal balls. Fur-
thermore, by Lemma 3.5 the instability with respect to elongations occurs at even
higher values of l > l Q

c2, where

l Q
c2 :=

12m
p

.(2.9)

splitting at
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Coming back to our main problem of interest, which consists of minimizing
E

Q
l (W) in (1.8) among all compact sets W ⇢ R2 with |W| = m fixed, one can see

that the reduced dimensionality of the problem makes it a borderline case between
the ill-posed capacitary problem in three-dimensions and the well-posed uniform
charge density problem in two dimensions. Indeed, in this case the perimeter con-
trols sets of zero Riesz capacity for a = 1 in two space dimensions. Therefore, the
question of existence vs. non-existence of minimizers in this setting becomes par-
ticularly delicate. In what follows, we will show that the non-local isoperimetric
problem associated with (1.8) remains on the “good side” of the critical value of
a = 1, exhibiting existence of minimizers for small values of m and non-existence
for large values of m.

Remarkably, we are able to give a complete explicit solution to this problem,
both with and without the constraint on |W|. In the absence of the constraint, the
energy E

Q
l is uniquely minimized by balls of radius R = 1

2

p
l . With the constraint

|W|= m the unique minimizers of EQ
l are balls when l  4m/p , while there are no

minimizers when l > 4m/p . We note that balls loose their minimizing property
before it becomes energetically favorable to split one ball into two well separated
balls with equal area and charge, which happens for l > 4m

p
2/p , or before de-

forming a ball into an elliptical domain of the same area lowers energy, which hap-
pens for l > 12m/p . The nature of the instability for l > 4m/p is similar to the
one for the three-dimensional capacitary problem [33]: one can lower the energy
by splitting off a large number of small balls, putting the right amount of charge on
them and sending them off to infinity. This catastrophic loss of stability suggests
that the ill-posedness exhibited by the three-dimensional problem [33,43] begins to
manifest itself in our two-dimensional problem at a critical value of charge. Lastly,
we also provide a complete solution to the problem of minimizing E

U
l from (1.10).

Without the constraint on |W|, this energy has minimizers if and only if l = p2,
and the only minimizers are balls (of any radius). If also |W|= m, then balls of area
m are the only minimizers when l  p2, and there are no minimizers for l > p2.

The strategy of the proof of our main theorems is to take advantage of the fact
that without the volume constraint the energy E

Q
l of a set W decreases if we convex-

ify each connected component of W. Then we exploit the fact that the perimeter is
linear for the Minkowski sum [28], while the non-local term I1 is sublinear [45].
This, together with some classical, simple results in the theory of convex bodies,
allows us to transform each convex component of a set into a ball. Eventually
we show that by suitably merging several balls into one ball we decrease the en-
ergy. Let us stress that such a technique is very special and applies only to the
two-dimensional case and only to the capacitary energy I1. It is indeed an open
problem whether Ia is a subadditive operator with respect to the Minkowski sum-
mation for a 6= 1 (and for a 6= N � 2 in RN with N � 3). For the constrained
problem, we combine the previous result with the well-known maximizing prop-
erty of balls with respect to the Riesz capacitary energy [46,47] to prove existence



Conclusions and outlook

- competition of capillary forces with long-range repulsion produces a very rich set of behaviors


- these emergent behaviors depend quite delicately on the precise mathematical details of the 
models, despite similar physics


-  for Gamow’s and related models, the main challenge is in the global aspects: Is the solution 
always a ball? Can there be non-spherical minimizers? 


- for capacitary problems, even the basic local properties are an issue due to lack of regularity


- for 3-d conducting charged drops, new physics needs to be incorporated into the models to 
resolve the issue of ill-posedness


- ill-posedness also needs to be addressed in the computational models of charged liquid drops


