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INSTABILITY OF ELECTRIFIED LIQUID SURFACES.

By JOHN ZELENY.

N a recent paper! a brief description was given of the appearance of
a liquid surface undergoing disintegration owing to instability arising
from an electric charge.

JOhn Zeleny (1 872—‘] 95‘]) 1 Proc. Camb. Philos. Soc., 18, p. 71, 1915.
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Instability of an electritied liquid surface
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motivated by the analysis of Lord Rayleigh:
an isolated charged spherical drop
becomes unstable, when O > Or:

Qr =8m+/g9o R3.
Lord Rayleigh, Phil. Mag. 14, 184-186 (1882) FIG. 3. FiG. 4. Fic. 5.

%Lﬁ T, J. Zeleny, Phys. Rev. 10, 1-6 (1917)




—lectrospray

John Fenn (1917-2010)

Nobel Prize
Chemistry, 2002

development of methods
for identification and
structure analyses of

biological macromolecules
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Pantano et al., J. Aerosol Sci. 25, 1065-1077 (1994)

Kebarle et al., Anal. Chim. Acta. 406, 11-35 (2000)
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Another kind of charged liquid: nuclear matter

nuclear matter: consists mostly of protons and neutrons

- nucleons (protons and neutrons) are attracted by strong forces
and form a dense nuclear liquid

- near the nuclear liquid-vacuum interface nucleons experience
reduction of the binding energy, resulting in surface tension

- protons move so fast that the charge is uniformly distributed
throughout the nuclear liquid

© Pearson Education

A Neutron Star: Surface and Intenior

- the competition of the attractive forces that tend to minimize the
the surface area with Coulombic repulsion leads to nuclear fission

- the same processes govern dense stellar matter
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Gamow'’s liquid drop model

In December 1928, while visiting Niels Bohr in
Copenhagen, George Gamow conceived of the liquid
drop model of the atomic nucleus

the model treats nucleons as an incompressible,
uniformly charged fluid with surface tension

warning: the original model is missing key physics
(treats nuclear matter as a collection of alpha-
particles)

the model was further refined and lbrought to
agreement with experiments by Heisenberg and
Von Weizsacker, following the discovery of neutron

George Gamow (1904-1968)
Portrait, 1932: courtesy of Elfriede and G. Gamow, Proc. R. Soc. Lond. A. 126, 632-644 (1930);
lgor Gamow W. Heisenberg, in: Institut International de Physique Solvay

(Gauthier-Villars, Paris, 1934);
C. von Weizsacker, Z. Phys. 96, 431-458 (1935);
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Gamow'’s liquid drop model

mathematically, the model gives rise to a geometric variational problem:

1
X — ¥

| L Al . 1
find e(m) ;= inf{E(Q): |Q| = m}, E(Q) := Per(Q) + - JQJQ dxdy,

here Per(Q) is the perimeter of the set (), a suitable generalization of surface area

iIn modern rendition, perimeter is defined in the sense of De Giorgi:
Per(Q)=sup {JQ Vo) dy: ¢ € CLR%RY), 9] < 1}

The purpose of the liguid drop model is to predict:

- the shape of nuclel
- non-existence of arbitrarily large nuclel
- existence of a nucleus with the largest binding energy

The ultimate triumph of the model was to explain the phenomenon of nuclear fission

w Meitner and Frisch, 1939; Bohr and Wheeler, 1939; Feenberg, 1939; Frenkel, 1939
New Jersey’s Science & Technology University



A marriage of two older variational problems

Greatest Coulomb energy
An ellipsoidal drop More perimeter
Less Coulomb energy
L= scission A

energy per unit mass under rescalings, A > O:
Fission into two
d Xdy spherical droplets

- for m << 1, surface tension dominates: expect minimizers to be balls

Gamow’s model puts the two terms in the -
energy into a direct opposition: o A spherical drop  Least perimeter

- the perimeter is minimized by a ball

- the Coulombic energy is maximized
by a ball

the relative strength of surface tension vs.
Coulomb repulsion is measured by m

Increasing mass

Coulomb energy wins
over surface energy

ASE(AQ) = A Per Q)+—JJ Ix—yl

- for m >> 1, Coulomb energy dominates: expect minimizers not to exist

it is precisely the competition of these two terms that makes the problem highly non-trivial

w Review: R. Choksi, C. B. Muratov, |. Topaloglu, Notices AMS 64, 1275-1283 (2017)
New Jersey’s Science & Technology University



Gamow’s model: current status

minimize

E(Q) = Per(Q) + —J JQ X—y dx dy,

among all measurable sets Q C R3, with |Q| = m

Theorem 1. There exist constants 0 < mog < m; < mp
such that:

(1) If m < m,, then there exists a minimizer.
(2) If m < my, then the unique minimizer is a ball.
(3) If m > m», then there is no minimizer.

the result of this theorem, In this form, was obtained in Knupfer and M, 2014
some earlier existence results can be found in Choksi and Peletier, 2010

an independent proof of radial symmetry is in Julin, 2014
an independent proof of non-existence can be found in Lu and Otto, 2014
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Generalized minimizers

what happens when minimizers fail to exist?  Knupfer, M, Novaga, 2016 from Okamoto et al., 2013

define generalized minimizers: finite collections of minimizers “infinitely far apart”
N

N
m = Zmi and e(m) = Ze(mi).
=1

i=1
Theorem 2 (Existence of generalized minimizers). For any m € (0, 00) there exists a
generalized minimizer (Q4,...,Qy) of E with total mass m. Moreover, after a possible

modification on a set of Lebesgue measure zero, the support of each component C); is
bounded, connected and has analytic boundary.

elm) f* = inf f(m)

m mel

T7={m>0: e(m) is attained} f(m) =

from compactness of generalized minimizers and Lipschitz continuity of e(m), we obtain
that 7 is compact = together with universal estimates on the components, this yields:

f(m) > f*forallm > 0 5 = {m* c€Z : f(m*) = inf f(m)} + .

mel

w. B independently obtained by Frank and Lieb, 2015



Perfectly conducting liquid drops

first treated by Lord Rayleigh, 1882, assuming the liquid is a perfect conductor
stable equilibrium shapes are local minimizers of the following energy:

QZ
E(2)=0P(£2 , 1R1=V, 3
(£2) a()+2q9) £2] Q2CR
= surface energy + capacitary energy, where, equivalently:
CU2)= inf J J du()du@y) or C(2)=gy  inf J Vil dx
w)=1)o Jo 4meglx — Y ueDY(R3)NC(R3) JR3

| | o u>11n 2
C the electrical capacitance of the liquid drop

Note: the energy coincides with that of Gamow’s model, if y is a multiple of the Lebesgue
measure

a pball is always a critical point of the energy EL equation: 20 H = €0 |ng|2 + A

2

Lord Rayleigh, 1882, computed the second variation of the energy and found that the ball
s a local minimizer of the energy iff 0 < Q < Qgr, Where

N J I QR=87T\/8()O‘R3.
New Jersey’s Science & Technology University



Instabllity of a charged conducting drop

120ps
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[ . i il
from Giglio et al., Phys Rev. E 77, 036319 (2008)

- as the solvent evaporates, the instability threshold is reached at a critical value of R
- the droplet elongates until a cone-like singularity appears at the top and the bottom

- iImmediately after the appearance of sharp tips a thin liquid jet issues from the tips
- the jet carries away a significant portion of the charge, but very small portion of mass

- the drop then returns to the equilibrium spherical shape
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Taylor cone

the appearance of a cone-like singularity can also be seen in the equilibrium meniscus

G. I. Taylor, Proc. R. Soc. Lond. A 280, 383-397 (1964)

Taylor, 1964, constructed a self-similar solution of the EL equation in the form of a cone

the mechanical equilibrium between the capillary and Coulomb forces dictates the cone
half-angle of ~49.3 degrees

below the critical voltage the interface attains a convex equilibrium shape

ﬁience &Technology University



Are equilibrium drops minimizers of the energy”?

surprisingly, Goldman, Novaga and Ruffini, 2015, showed that the minimum of
QZ

2C(£2)°

is not attained for any >0 and Q>0 - also in a container

E(2) =oP(2) + 2=V, QcR3

explanation: it is better to evaporate many small droplets which carry away all the charge
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choose N balls of radius ry = N~ with g € (%, 1) far apart and distribute the charge
uniformly between them. Then:

Q2
Sregry N
= the Infimum of the energy Is given by surface energy alone

w ey, 1OWeVer, minimizer exists for all > 0 and Q > 0 among convex sets

4
oP(By) < E(Q) < O'P(Bév) + 40'7rr]%,N + |BéV| =V - gﬂ'l’i,N




Are equiliorium drops local minimizers?

again, surprisingly, balls are never local minimizers in any reasonable sense: M, Novaga, 2016

Theorem 3. For any V > 0 and Q > 0 there exists a smooth map ¢5 : S* — (=0, 6) such
that if

Qrs = {x €R’ : x| < R+ ¢s(x/|x])},

then |Qrs| =V and E(Qrs) < E(Bg), where R > 0 is such that V = %ﬂ'R3, forall 6 > 0
sufficiently small. Moreover, one can choose supp ¢s C Bs/r(vo) for some vy € S?,

same conclusion holds for any smooth critical point of the energy

find a small smooth perturbation to lower energy: AE < AE,,

2 5
AEONU(78‘|—h2)‘|—q_1n(—>— qQ ) hwr28/r/2
€00 r

choosing r=8e"R/°, ¢ =@Rs*)Y*, we get

2 2 5/2 “
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J/.FL AEqg < 0 for all sufficiently small 4.



Q2

ES(K) = 02 (IK) + 20K

The variational problem is ill-posed

there is an intrinsic iIncompatibility between the perimeter and the capacitary energy:

- the perimeter functional does not see sets of zero Lebesgue measure

- the capacitary energy does not see sets of zero harmonic capacity

the charges may concentrate on sets of zero Lebesgue measure

a possible way out Is to strengthen the definition of the surface measure

still does not work for 3-d electrostatic problems:
- the 2-d Hausdorff surface measure does not see sets of Hausdorff dimension s < 2

- the 3-d harmonic capacity Is positive for sets of Hausdorff dimension s > 1

thus, there isa gap 1 < s < 2 between the two
the classical variational model does not describe the physics of conducting charged drops

more physics needs to be incorporated to restore well-posedness (surface tension insufficient)

N1 possible remedies: finite screening length, discreteness of charges, etc.
Npr’;&ience&nchnology University M, Novaga, 2016



The model with finite screening

In a perfect conductor the charges go to the boundary

In reality, thermal effects cause finite penetration length —>

the free energy:

F(2,ny,n_)=0P(2) + %OJ a0 (x)|Vo|? dx + kg TJ (n+ In s +n_In n__> dx.
R3

2 no no
where
— g0V - (ag(¥)Vv)=p inD'(RY), a(x)=14 (¢ — 1)xn(x), p=¢e(ny —n_)
expand in the spirit of Debye-Huckel theory - Gamow’s modelfore =1, R« rp = SOkBZT
nopée
kgT
F($2,v)=0P(82) + 0 J a0 ()| Vo> dx + C J p? dx
2 R3 4€2n0 0

admissible class => existence of minimizers in a container M, Novaga, 2016

Az{(.@,v): 2 CBg, |£2]=V, J pdx =0, p:OinR3\[Z}
$2
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Flat charged drops - /

from Gin and Daripa, Phys. Fluids 27, 012101 (2015)

what about charged drops in a Hele-Shaw cell”? borderline case

1-d interfacial energy vs. 1-Riesz capacity (=Newtonian capacity associated with 3-d space)
minimize for Q ¢ R?

2
Q . 1 Q . o
ES/(Q) 1= 0t (09) + L2 — A (Q). _mf{// " y|a ,MQ)_l}
rescaling
ES (LQ) 0?
00y . L2 _ 00
Q)= A=t ER(Q) = ' (9Q) + 1.7 (Q),

we getfor o, :={Q e : |Q=m} & :={QCR?: Qcompact, |Q| >0, H#"'(IQ) <o}/ ~ .
Theorem 4. Let A > 0, m > 0, let R = \/m/n, and define /lQ 4m . Then:

(i) The closed ball By is the unique (up to translation) minimizer of 8/? over Ay, if

1< 8. >
dm~/2
splitting at A2 := .

(ii) There is no minimizer of 8? over Ay, if 1 > /lg. P J cl T

%iencemechnology University A ~ B 1f %1 (A \B) — %1 (B \A) —




Conclusions and outlook

- competition of capillary forces with long-range repulsion produces a very rich set of behaviors

- these emergent behaviors depend quite delicately on the precise mathematical details of the
models, despite similar physics

- for Gamow’s and related models, the main challenge is in the global aspects: Is the solution
always a ball? Can there be non-spherical minimizers?

- for capacitary problems, even the basic local properties are an issue due to lack of regularity

- for 3-d conducting charged drops, new physics needs to be incorporated into the models to
resolve the issue of ill-posedness

- ill-posedness also needs to be addressed in the computational models of charged liquid drops
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