Effects of Periodic Homogenization in Phase Transition Problems

Adrian Hagerty

joint work with Irene Fonseca and Riccardo Cristoferi

May 20, 2018

Cahn-Hilliard, 1958

 \triangleright Equilibrium behavior of a fluid with two stable phases may be described by the Gibbs free energy per unit volume

$$E_{\varepsilon}(u) := \int_{\Omega} \left[W(u) + \varepsilon^2 |\nabla u|^2 \right] dx$$

where $\varepsilon>0$ is a small parameter and $W:\mathbb{R}\to [0,+\infty)$ is a double well potential.

Figure: Example of double well potential $W(p) = (p^2 - 1)^2$.

Modica-Mortola, 1977

Asymptotic behavior of minimizers to E_ε described via $\Gamma\text{-convergence}.$ Scaling by ε^{-1} yields

$$\varepsilon^{-1}E_{\varepsilon} \xrightarrow{\Gamma} E,$$

$$E(u) := \begin{cases} c_W P(A_0; \Omega) & u \in BV(\Omega; \{a, b\}) \\ +\infty & u \in L^1(\Omega) \setminus BV(\Omega; \{a, b\}) \end{cases}$$

where

$$A_0 = \{u(x) = a\}, \ c_W = 2\int_a^b \sqrt{W(s)} ds.$$

Periodic Heterogeneity

We consider fluids which exhibit some periodic heterogeneity at small scales, i.e.

$$F_{\varepsilon}(u) := \int_{\Omega} \left[\frac{1}{\varepsilon} W\left(\frac{x}{\delta(\varepsilon)}, u \right) + \varepsilon |\nabla u|^2 \right] dx$$

where

$$W(x,p) = 0 \iff p \in \{a,b\},$$

 $W(\cdot, p)$ is *Q*-periodic for every p,

and

$$\delta(\varepsilon) \to 0 \text{ as } \varepsilon \to 0.$$

Goal: Identify Γ -limit F_{ε} .

Ansini, Braides, Piat (2003): W homogeneous, regularization $f\left(\frac{x}{\delta}, \nabla u\right)$

Scaling regime $\delta(\varepsilon) = \varepsilon$

Theorem (Cristoferi, Fonseca, H., Popovici)

Let
$$\delta(\varepsilon) = \varepsilon$$
. Then $F_{\varepsilon} \xrightarrow{\Gamma} F$,

$$F(u) := \begin{cases} \int_{\partial^* A_0} \sigma(\nu) d\mathcal{H}^{N-1} & u \in BV(\Omega; \{a, b\}) \\ +\infty & \textit{else} \end{cases}$$

where

$$A_0 := \{u(x) = a\}, \ \nu \text{ is the outward normal to } A_0,$$

and

$$\sigma(\nu) := \lim_{T \to \infty} \inf_{u \in \mathcal{A}_{\nu,T}} \left\{ \frac{1}{T^{N-1}} \int_{TQ_{\nu}} \left[W(y, u(y)) + |\nabla u(y)|^2 \right] dy \right\}$$

Cell Problem

$$\sigma(\nu) = \lim_{T \to \infty} \inf_{u \in \mathcal{A}_{\nu,T}} \left\{ \frac{1}{T^{N-1}} \int_{TQ_{\nu}} \left[W(y, u(y)) + |\nabla u(y)|^2 \right] dy \right\}$$

where

$$\mathcal{A}_{\nu,T} := \left\{ u \in H^1(TQ_{\nu}; \mathbb{R}^d) : u(x) = (\rho_T * u_0)(x \cdot \nu) \text{ on } \partial TQ_{\nu} \right\}$$
$$u_0(t) := \left\{ \begin{aligned} b & \text{if } t > 0\\ a & \text{if } t < 0 \end{aligned} \right.$$
$$\rho_T(x) := T^N \rho(Tx), \ \rho \in C_c^{\infty}(\mathbb{R}) \text{ with } \int_{\mathbb{R}} \rho = 1.$$

Outline of Proof

The Γ -limit Cookbook:

- \bullet Compactness: Bounded energy $\rightarrow BV$ structure
 - Reduction to classical MM technique
 - Lax growth conditions on $W(x, \cdot)$
 - Only need measurability of $W(\cdot,p).$

• Γ-liminf: "Lower-semicontinuity" result using blow-up techniques

- "Blow up" at points in jump set
- De Giorgi's slicing method ightarrow prescribe boundary conditions from σ
- $\bullet\,$ Compare with optimal profiles given by $\sigma\,$
- Γ-limsup: Recovery sequences
 - Blow-Up Method
 - Recovery sequences for polyhedral sets with $\nu \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}$
 - Density result and upper semicontinuity of $\boldsymbol{\sigma}$

Outline of Proof

The Γ -limit Cookbook:

- Compactness: Bounded energy $\rightarrow BV$ structure
 - Reduction to classical MM technique
 - Lax growth conditions on $W(x,\cdot)$
 - Only need measurability of $W(\cdot, p)$.

• Γ-liminf: "Lower-semicontinuity" result using blow-up techniques

- "Blow up" at points in jump set
- De Giorgi's slicing method ightarrow prescribe boundary conditions from σ
- $\bullet\,$ Compare with optimal profiles given by $\sigma\,$
- Γ-limsup: Recovery sequences
 - Blow-Up Method
 - Recovery sequences for polyhedral sets with $\nu \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}$
 - $\bullet\,$ Density result and upper semicontinuity of $\sigma\,$

Compactness

Growth condition: There exists R>0 such, for a.e. $x\in Q,\ |p|>R$ implies

$$W(x,p) \ge \sup_{|q| \le R} W(x,q) \tag{1}$$

Allows for truncation:

$$w(x) := \begin{cases} u(x) & |u(x)| \le R\\\\ \frac{u(x)}{|u(x)|}R & |u(x)| > R \end{cases}$$

Since also

 $|\nabla w| \leq |\nabla u|,$

we have

 $F_{\varepsilon}(w) \leq F_{\varepsilon}(u).$

Compactness

Growth condition: There exists R>0 such, for a.e. $x\in Q,\ |p|>R$ implies

$$W(x,p) \ge \sup_{|q| \le R} W(x,q) \tag{1}$$

Allows for truncation:

$$w(x) := \begin{cases} u(x) & |u(x)| \le R\\\\ \frac{u(x)}{|u(x)|}R & |u(x)| > R \end{cases}$$

Since also

 $|\nabla w| \le |\nabla u|,$

we have

 $F_{\varepsilon}(w) \leq F_{\varepsilon}(u).$

 $\triangleright L^{\infty}$ control!

Outline of Proof

The Γ -limit Cookbook:

- \bullet Compactness: Bounded energy $\rightarrow BV$ structure
 - Reduction to classical MM technique
 - Lax growth conditions on $W(x, \cdot)$
 - Only need measurability of $W(\cdot, p)$.

• Γ -liminf: "Lower-semicontinuity" result using blow-up techniques

- "Blow up" at points in jump set
- De Giorgi's slicing method ightarrow prescribe boundary conditions from σ
- $\bullet\,$ Compare with optimal profiles given by σ
- Γ-limsup: Recovery sequences
 - Blow-Up Method
 - Recovery sequences for polyhedral sets with $\nu \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}$
 - Density result and upper semicontinuity of $\boldsymbol{\sigma}$

Outline of Proof

The Γ -limit Cookbook:

- Compactness: Bounded energy $\rightarrow BV$ structure
 - Reduction to MM technique
 - Lax growth conditions on $W(x, \cdot)$
 - Only need measurability of $W(\cdot, p)$.

• Γ-liminf: "Lower-semicontinuity" result using blow-up techniques

- "Blow up" at points in jump set
- De Giorgi's slicing method ightarrow prescribe boundary conditions from σ
- $\bullet\,$ Compare with optimal profiles given by $\sigma\,$
- Γ-limsup: Recovery sequences
 - Blow-Up Method
 - Recovery sequences for polyhedral sets with $\nu \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}$
 - $\bullet\,$ Density result and upper semicontinuity of $\sigma\,$

Easy Case: Transition Layer aligned with Principal Axes

If $\nu \in \{e_1, \ldots, e_N\}$, create recovery sequence by tiling optimal profiles from definition of σ .

$$\begin{split} & \operatorname{Pick} \, T_k \subset \mathbb{N} \text{ and } u_k \text{ s.t.} \\ & \sigma(e_N) = \lim_{k \to \infty} \frac{1}{T_k^{N-1}} \int_{T_k Q} W(y, u_k(y)) + |\nabla u_k(y)|^2 dy, \\ & v_k(x) := u_k(T_k x), \text{ extended by } Q' \text{-periodicity}, \\ & v_{k,\varepsilon,r}(x) := \begin{cases} u_0(x) & |x_N| \geq \frac{\varepsilon T_k}{2r} \\ v_k\left(\frac{rx}{\varepsilon T_k}\right) & |x_N| < \frac{\varepsilon T_k}{2r} \\ u_{k,\varepsilon,r}(x) := v_{k,\varepsilon,r}\left(\frac{x}{r}\right) \to u \text{ in } L^1(rQ) \end{split}$$

Blow up:

r-

$$\begin{split} \lim_{r \to 0} \frac{F(u; rQ)}{r^{N-1}} &\leq \lim_{r \to 0} \lim_{\varepsilon \to 0} \frac{1}{r^{N-1}} \int_{rQ} \left[\frac{1}{\varepsilon} W(x, u_{k,\varepsilon,r}) + \varepsilon |\nabla u_{k,\varepsilon,r}|^2 \right] dx \\ &= \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-\varepsilon T_k/2r}^{\varepsilon T_k/2r} \left[\frac{r}{\varepsilon} W\left(\frac{r}{\varepsilon} y, v_k\left(\frac{ry}{\varepsilon T_k} \right) \right) \right. \\ &\quad + \frac{r}{\varepsilon T_k^2} \left| \nabla v_k\left(\frac{ry}{\varepsilon T_k} \right) \right|^2 \right] dy \\ &= \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W\left(\left(T_k \frac{rz'}{\varepsilon T_k}, T_k z_N, v_k\left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right) \right) \\ &\quad + \frac{1}{T_k} \left| \nabla v_k\left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right|^2 \right] dz \end{split}$$

Blow up:

$$\begin{split} \lim_{r \to 0} \frac{F(u; rQ)}{r^{N-1}} &\leq \lim_{r \to 0} \lim_{\varepsilon \to 0} \frac{1}{r^{N-1}} \int_{rQ} \left[\frac{1}{\varepsilon} W(x, u_{k,\varepsilon,r}) + \varepsilon |\nabla u_{k,\varepsilon,r}|^2 \right] dx \\ &= \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-\varepsilon T_k/2r}^{\varepsilon T_k/2r} \left[\frac{r}{\varepsilon} W\left(\frac{r}{\varepsilon} y, v_k\left(\frac{ry}{\varepsilon T_k} \right) \right) \right. \\ &\quad + \frac{r}{\varepsilon T_k^2} \left| \nabla v_k\left(\frac{ry}{\varepsilon T_k} \right) \right|^2 \right] dy \\ &= \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W\left(\left(T_k \frac{rz'}{\varepsilon T_k}, T_k z_N, v_k\left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right) \right) \\ &\quad + \frac{1}{T_k} \left| \nabla v_k\left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right|^2 \right] dz \end{split}$$

Blow up:

r

$$\begin{split} \lim_{r \to 0} \frac{F(u; rQ)}{r^{N-1}} &\leq \lim_{r \to 0} \lim_{\varepsilon \to 0} \frac{1}{r^{N-1}} \int_{rQ} \left[\frac{1}{\varepsilon} W(x, u_{k,\varepsilon,r}) + \varepsilon |\nabla u_{k,\varepsilon,r}|^2 \right] dx \\ &= \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-\varepsilon T_k/2r}^{\varepsilon T_k/2r} \left[\frac{r}{\varepsilon} W\left(\frac{r}{\varepsilon} y, v_k\left(\frac{ry}{\varepsilon T_k} \right) \right) \right. \\ &\left. + \frac{r}{\varepsilon T_k^2} \left| \nabla v_k\left(\frac{ry}{\varepsilon T_k} \right) \right|^2 \right] dy \\ &= \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W\left(\left(T_k \frac{rz'}{\varepsilon T_k}, T_k z_N, v_k\left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right) \right) \\ &\left. + \frac{1}{T_k} \left| \nabla v_k\left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right|^2 \right] dz \end{split}$$

Blow up:

$$\begin{split} \lim_{r \to 0} \frac{F(u; rQ)}{r^{N-1}} &\leq \lim_{r \to 0} \lim_{\varepsilon \to 0} \frac{1}{r^{N-1}} \int_{rQ} \left[\frac{1}{\varepsilon} W(x, u_{k,\varepsilon,r}) + \varepsilon |\nabla u_{k,\varepsilon,r}|^2 \right] dx \\ &= \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-\varepsilon T_k/2r}^{\varepsilon T_k/2r} \left[\frac{r}{\varepsilon} W\left(\frac{r}{\varepsilon} y, v_k\left(\frac{ry}{\varepsilon T_k} \right) \right) \right. \\ &+ \frac{r}{\varepsilon T_k^2} \left| \nabla v_k\left(\frac{ry}{\varepsilon T_k} \right) \right|^2 \right] dy \\ &= \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W\left(\left(T_k \frac{rz'}{\varepsilon T_k}, T_k z_N, v_k\left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right) \right) \\ &+ \frac{1}{T_k} \left| \nabla v_k\left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right|^2 \right] dz \end{split}$$

$$\begin{split} \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W \left(\left(T_k \frac{rz'}{\varepsilon T_k}, T_k z_N \right), v_k \left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right) \right. \\ &+ \frac{1}{T_k} \left| \nabla v_k \left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right|^2 \right] dz \\ &= \lim_{r \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W((T_k y', T_k z_N), v_k (y', z_N) \right. \\ &+ \frac{1}{T_k} |\nabla v_k (y', z_N)|^2 dz_N \right] dy' \\ &= \frac{1}{T_k^{N-1}} \int_{T_k Q} W(x, u_k(x)) + |\nabla u_k(x)|^2 dx. \end{split}$$

$$\begin{split} \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W \left(\left(T_k \frac{rz'}{\varepsilon T_k}, T_k z_N \right), v_k \left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right) \right. \\ &\left. + \frac{1}{T_k} \left| \nabla v_k \left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right|^2 \right] dz \\ &= \lim_{r \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W((T_k y', T_k z_N), v_k (y', z_N) \right. \\ &\left. + \frac{1}{T_k} |\nabla v_k (y', z_N)|^2 dz_N \right] dy' \\ &= \frac{1}{T_k^{N-1}} \int_{T_k Q} W(x, u_k(x)) + |\nabla u_k(x)|^2 dx. \end{split}$$

$$\begin{split} \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W \left(\left(T_k \frac{rz'}{\varepsilon T_k}, T_k z_N \right), v_k \left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right) \right. \\ &+ \frac{1}{T_k} \left| \nabla v_k \left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right|^2 \right] dz \\ &= \lim_{r \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W((T_k y', T_k z_N), v_k (y', z_N) \right. \\ &+ \frac{1}{T_k} |\nabla v_k (y', z_N)|^2 dz_N \right] dy' \\ &= \frac{1}{T_k^{N-1}} \int_{T_k Q} W(x, u_k(x)) + |\nabla u_k(x)|^2 dx. \end{split}$$

$$\begin{split} \lim_{r \to 0} \lim_{\varepsilon \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W \left(\left(T_k \frac{rz'}{\varepsilon T_k}, T_k z_N \right), v_k \left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right) \right. \\ &+ \frac{1}{T_k} \left| \nabla v_k \left(\frac{rz'}{\varepsilon T_k}, z_N \right) \right|^2 \right] dz \\ &= \lim_{r \to 0} \int_{Q'} \int_{-1/2}^{1/2} \left[T_k W((T_k y', T_k z_N), v_k (y', z_N) \right. \\ &+ \frac{1}{T_k} |\nabla v_k (y', z_N)|^2 dz_N \right] dy' \\ &= \frac{1}{T_k^{N-1}} \int_{T_k Q} W(x, u_k(x)) + |\nabla u_k(x)|^2 dx. \end{split}$$

Other Transition Directions?

Figure: Since W is Q-periodic, can tile along principal axes. What if the transition layer is **not** aligned?

Q-periodic implies $\lambda_{\nu}Q_{\nu}$ -periodic

Key observation: Periodic microstructure in principal directions \rightarrow periodicity in other directions.

Figure: Integer lattice contains copies of itself, rotated and scaled

$$\triangleright W$$
 is $\lambda_{\nu}Q_{\nu}$ -periodic for $\nu \in \mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$: Dense!

Adrian Hagerty (CMU)

BIRS, May 2018

Important: Every face of Q_{ν} has rational normal.

Need an orthonormal basis using rational vectors:

Theorem (Witt, '37)

Any isometry between two subspaces F_1 and F_2 of a finite-dimensional vector space V defined over a field \mathbb{K} of characteristic different from 2 and provided with a metric structure induced from a nondegenerate symmetric or skew-symmetric bilinear form $B[\cdot, \cdot]$ may be extended to a metric automorphism of the entire space V.

In particular:

$$V = \mathbb{Q}^N, \ F_1 := \operatorname{span}_{\mathbb{Q}}(e_N), \ F_2 := \operatorname{span}_{\mathbb{Q}}(\nu), \ B[x, y] := x \cdot y$$

Then, the mapping $e_N\mapsto
u$ extends to an isometry!

Important: Every face of Q_{ν} has rational normal.

Need an orthonormal basis using rational vectors: Gram-Schmidt

Theorem (Witt, '37)

Any isometry between two subspaces F_1 and F_2 of a finite-dimensional vector space V defined over a field \mathbb{K} of characteristic different from 2 and provided with a metric structure induced from a nondegenerate symmetric or skew-symmetric bilinear form $B[\cdot, \cdot]$ may be extended to a metric automorphism of the entire space V.

In particular:

$$V = \mathbb{Q}^N, \ F_1 := \operatorname{span}_{\mathbb{Q}}(e_N), \ F_2 := \operatorname{span}_{\mathbb{Q}}(\nu), \ B[x, y] := x \cdot y$$

Then, the mapping $e_N\mapsto
u$ extends to an isometry!

Adrian Hagerty (CMU)

BIRS, May 2018

Important: Every face of Q_{ν} has rational normal.

Need an orthonormal basis using rational vectors: Gram-Schmidt Theorem (Witt, '37)

Any isometry between two subspaces F_1 and F_2 of a finite-dimensional vector space V defined over a field \mathbb{K} of characteristic different from 2 and provided with a metric structure induced from a nondegenerate symmetric or skew-symmetric bilinear form $B[\cdot, \cdot]$ may be extended to a metric automorphism of the entire space V.

In particular:

$$V = \mathbb{Q}^N, \ F_1 := \operatorname{span}_{\mathbb{Q}}(e_N), \ F_2 := \operatorname{span}_{\mathbb{Q}}(\nu), \ B[x, y] := x \cdot y$$

Then, the mapping $e_N\mapsto
u$ extends to an isometry!

Important: Every face of Q_{ν} has rational normal.

Need an orthonormal basis using rational vectors: Gram-Schmidt

Theorem (Witt, '37)

Any isometry between two subspaces F_1 and F_2 of a finite-dimensional vector space V defined over a field \mathbb{K} of characteristic different from 2 and provided with a metric structure induced from a nondegenerate symmetric or skew-symmetric bilinear form $B[\cdot, \cdot]$ may be extended to a metric automorphism of the entire space V.

In particular:

$$V = \mathbb{Q}^N, \ F_1 := \operatorname{span}_{\mathbb{Q}}(e_N), \ F_2 := \operatorname{span}_{\mathbb{Q}}(\nu), \ B[x, y] := x \cdot y$$

Then, the mapping $e_N \mapsto \nu$ extends to an isometry!

Transition Layer aligned with $\nu \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}$

Same periodic tiling technique: Use $T_k \in \lambda_{\nu} \mathbb{N}$.

 \triangleright Blow up method \rightarrow Recovery sequences for polyhedral sets A_0 with $\nu \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}$.

• For $u \in BV(\Omega; \{a, b\})$, we can find $u^{(n)} \in BV(\Omega; \{a, b\})$ such that $A_0^{(n)}$ are polyhedral,

$$\begin{split} u^{(n)} &\to u \text{ in } L^1 \\ |Du^{(n)}|(\Omega) \to |Du|(\Omega). \\ \text{Since } \mathbb{Q}^N \cap \mathbb{S}^{N-1} \text{ dense, can require } \nu^{(n)} \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}. \\ \bullet \text{ Since } \sigma \text{ upper-semicontinuous, by a theorem of Reshetnyak,} \\ \int \sigma(\nu) d\mathcal{H}^{n-1} &\leq \limsup \int \sigma\left(\nu^{(n)}\right) d\mathcal{H}^{n-1} \end{split}$$

 \bullet Find recovery sequences $u_{\varepsilon}^{(n)}$ for the $u^{(n)}$ so

$$\int_{\partial^* A_0^{(n)}} \sigma\left(\nu^{(n)}\right) d\mathcal{H}^{n-1} \le \limsup_{\varepsilon \to 0^+} F_{\varepsilon}\left(u_{\varepsilon}^{(n)}\right)$$

• For $u \in BV(\Omega; \{a, b\})$, we can find $u^{(n)} \in BV(\Omega; \{a, b\})$ such that $A_0^{(n)}$ are polyhedral,

$$\begin{split} u^{(n)} &\to u \text{ in } L^1 \\ &|Du^{(n)}|(\Omega) \to |Du|(\Omega). \end{split}$$
 Since $\mathbb{Q}^N \cap \mathbb{S}^{N-1}$ dense, can require $\nu^{(n)} \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}.$
• Since σ upper-semicontinuous, by a theorem of Reshetnyak,
 $\int_{\partial^* A_0} \sigma(\nu) d\mathcal{H}^{n-1} \leq \limsup_{n \to \infty} \int_{\partial^* A_0^{(n)}} \sigma\left(\nu^{(n)}\right) d\mathcal{H}^{n-1}$

 \bullet Find recovery sequences $u_{\varepsilon}^{(n)}$ for the $u^{(n)}$ so

$$\int_{\partial^* A_0^{(n)}} \sigma\left(\nu^{(n)}\right) d\mathcal{H}^{n-1} \le \limsup_{\varepsilon \to 0^+} F_{\varepsilon}\left(u_{\varepsilon}^{(n)}\right)$$

• For $u\in BV(\Omega;\{a,b\}),$ we can find $u^{(n)}\in BV(\Omega;\{a,b\})$ such that $A_0^{(n)}$ are polyhedral,

$$\begin{split} u^{(n)} &\to u \text{ in } L^1 \\ |Du^{(n)}|(\Omega) \to |Du|(\Omega). \\ \text{Since } \mathbb{Q}^N \cap \mathbb{S}^{N-1} \text{ dense, can require } \nu^{(n)} \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}. \\ \bullet \text{ Since } \sigma \text{ upper-semicontinuous, by a theorem of Reshetnyak,} \\ \int_{\partial^* A_0} \sigma(\nu) d\mathcal{H}^{n-1} &\leq \limsup_{n \to \infty} \int_{\partial^* A_0^{(n)}} \sigma\left(\nu^{(n)}\right) d\mathcal{H}^{n-1} \end{split}$$

 \bullet Find recovery sequences $u_{\varepsilon}^{(n)}$ for the $u^{(n)}$ so

$$\int_{\partial^* A_0^{(n)}} \sigma\left(\nu^{(n)}\right) d\mathcal{H}^{n-1} \le \limsup_{\varepsilon \to 0^+} F_{\varepsilon}\left(u_{\varepsilon}^{(n)}\right)$$

• Diagonalize!

• For $u\in BV(\Omega;\{a,b\}),$ we can find $u^{(n)}\in BV(\Omega;\{a,b\})$ such that $A_0^{(n)}$ are polyhedral,

$$\begin{split} u^{(n)} &\to u \text{ in } L^1 \\ |Du^{(n)}|(\Omega) \to |Du|(\Omega). \\ \text{Since } \mathbb{Q}^N \cap \mathbb{S}^{N-1} \text{ dense, can require } \nu^{(n)} \in \mathbb{Q}^N \cap \mathbb{S}^{N-1}. \\ \bullet \text{ Since } \sigma \text{ upper-semicontinuous, by a theorem of Reshetnyak,} \\ \int_{\partial^* A_0} \sigma(\nu) d\mathcal{H}^{n-1} &\leq \limsup_{n \to \infty} \int_{\partial^* A_0^{(n)}} \sigma\left(\nu^{(n)}\right) d\mathcal{H}^{n-1} \end{split}$$

• Find recovery sequences $u_{arepsilon}^{(n)}$ for the $u^{(n)}$ so

$$\int_{\partial^* A_0^{(n)}} \sigma\left(\nu^{(n)}\right) d\mathcal{H}^{n-1} \leq \limsup_{\varepsilon \to 0^+} F_{\varepsilon}\left(u_{\varepsilon}^{(n)}\right)$$

• Diagonalize!

Future problems

Current direction:

• Other scaling regimes $\delta(\varepsilon),$ forthcoming

Some interesting future directions:

- Problem of multiple wells.
- More general regularization terms, i.e. $|\nabla u|^2 \rightarrow f(x, u, \nabla u)$.
- Solid-solid phase transitions: $W\left(\frac{x}{\delta(\varepsilon)}, \nabla u(x)\right)$

Note: Solid-sold phase transitions without homogenization:

 $W(F) \approx |F|^p$, Conti, Fonseca, Leoni, '02.

 $W(F) \approx \operatorname{dist}^{p}(F, SO(N)A \cup SO(N)B)$

only studied for N=2 (Conti-Schweizer, '06)

Thank you for your attention!

- \triangleright References
 - N. Ansini, A. Braides, C. Piat, Gradient Theory of Phase Transitions in Composite Media, Proc. Roy. Soc. Edinburgh Sect. A (2) 133 (2003)
 - J. W. Cahn and J. E. Hilliard, *Free Energy of a Nonuniform System. I. Interfacial Free Energy*, J. Chem. Phys. (2) 28 (1958)
 - S. Conti, I. Fonseca, G. Leoni, A Γ-Convergence Result for the Two-Gradient Theory of Phase Transitions, Comm. Pure and Appl. Math. (7) 55 (2002)
 - S. Conti and B. Schweizer, A Sharp-Interface Limit for a Two-Well Problem in Geometrically Linear Elasticity, Arch. Ration. Mech. Anal. (3) 179 (2006)
 - L. Modica and S. Mortola, Un Esempio di Γ-Convergenza, Boll. Un. Mat. Ital. B (4) 14 (1977)